Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participant Clinical Characteristics
3.2. Metabolite Alterations in Symptomatic GBCA Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals 2016, 29, 365–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, R.J.; Levine, D.; Weinreb, J.; Kanal, E.; Davenport, M.S.; Ellis, J.H.; Jacobs, P.M.; Lenkinski, R.E.; Maravilla, K.R.; Prince, M.R.; et al. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology 2018, 289, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.B.; Ramalho, M.; Al Obaidy, M.; Chang, E.; Jay, M.; Semelka, R.C. Self-reported gadolinium toxicity: A survey of patients with chronic symptoms. Magn. Reson. Imaging 2016, 34, 1078–1080. [Google Scholar] [CrossRef] [PubMed]
- Semelka, R.C.; Ramalho, J.; Vakharia, A.; AIObaidy, M.; Burke, L.M.; Jay, M.; Ramalho, M. Gadolinium deposition disease: Initial description of a disease that has been around for a while. Magn. Reson. Imaging 2016, 34, 1383–1390. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yuan, L.; Yang, X.; Wang, K. La3+, Gd3+ and Yb3+ induced changes in mitochondrial structure, membrane permeability, cytochrome c release and intracellular ROS level. Chem. Biol. Interact. 2003, 146, 27–37. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, Z.-Q.; Jin, J.C.; Yuan, L.; He, H.; Jiang, F.L.; Yang, X.G.; Dai, J.; Liu, Y. Mitochondrial dysfunction induced by different concentrations of gadolinium ion. Chemosphere 2014, 100, 194–199. [Google Scholar] [CrossRef]
- Feng, X.; Xia, Q.; Yuan, L.; Yang, X.; Wang, K. Impaired mitochondrial function and oxidative stress in rat cortical neurons: Implications for gadolinium-induced neurotoxicity. Neurotoxicology 2010, 31, 391–398. [Google Scholar] [CrossRef]
- Ye, L.; Shi, Z.; Liu, H.; Yang, X.; Wang, K. Gadolinium induced apoptosis of human embryo liver L02 cell line by ROS-mediated AIF pathway. J. Rare Earths 2011, 29, 178–184. [Google Scholar] [CrossRef]
- Weng, T.-I.; Chen, H.J.; Lu, C.W.; Ho, Y.C.; Wu, J.L.; Liu, S.H.; Hsiao, J.K. Exposure of macrophages to low-dose gadolinium-based contrast medium: Impact on oxidative stress and cytokines production. Contrast Media Mol. Imaging 2018, 2018, 3535769. [Google Scholar] [CrossRef]
- Bower, D.V.; Richter, J.K.; von Tengg-Kobligk, H.; Heverhagen, J.T.; Runge, V.M. Gadolinium-based MRI contrast agents induce mitochondrial toxicity and cell death in human neurons, and toxicity increases with reduced kinetic stability of the agent. Investig. Radiol. 2019, 54, 453–463. [Google Scholar] [CrossRef]
- Stanescu, A.L.; Shaw, D.W.; Murata, N.; Murata, K.; Rutledge, J.C.; Maloney, E.; Maravilla, K.R. Brain tissue gadolinium retention in pediatric patients after contrast-enhanced magnetic resonance exams: Pathological confirmation. Pediatr. Radiol. 2020, 50, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Goetzl, E.J.; Maecker, H.T.; Rosenberg-Hasson, Y.; Koran, L.M. Altered functional mitochondrial protein levels in plasma neuron-derived extracellular vesicles of patients with gadolinium deposition. Front. Toxicol. 2021, accepted. [Google Scholar] [CrossRef]
- Pereira, L.V.B.; Shimizu, M.H.M.; Rodrigues, L.P.M.R.; Leite, C.C.; Andrade, L.; Seguro, A.C. N-Acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity. PLoS ONE 2012, 7, e39528. [Google Scholar] [CrossRef] [PubMed]
- Chinnery, P.F. Mitochondrial disease in adults: What’s old and what’s new? EMBO Mol. Med. 2015, 7, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.L.; Liang, C.; Sue, C.M. Mitochondrial Diseases. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 147, pp. 125–141. [Google Scholar] [CrossRef]
- Parikh, S.; Goldstein, A.; Koenig, M.K.; Scaglia, F.; Enns, G.M.; Saneto, R.; Anselm, I.; Cohen, B.H.; Falk, M.J.; Greene, C.; et al. Diagnosis and management of mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet. Med. 2015, 17, 689–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.M.; Vilasi, A.; Garcia-Perez, I.; Lapsley, M.; Alston, C.L.; Pitceathly, R.D.; McFarland, R.; Schaefer, A.M.; Turnbull, D.M.; Beaumont, N.J.; et al. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int. 2015, 87, 610–622. [Google Scholar] [CrossRef] [Green Version]
- Esterhuizen, K.; van der Westhuizen, F.H.; Louw, R. Metabolomics of mitochondrial disease. Mitochondrion 2017, 35, 97–110. [Google Scholar] [CrossRef]
- Buzkova, J.; Nikkanen, J.; Ahola, S.; Hakonen, A.H.; Sevastianova, K.; Hovinen, T.; Yki-Järvinen, H.; Pietiläinen, K.H.; Lönnqvist, T.; Velagapudi, V.; et al. Metabolomes of mitochondrial diseases and inclusion body myositis patients: Treatment targets and biomarkers. EMBO Mol. Med. 2018, 10, e9091. [Google Scholar] [CrossRef]
- Newgard, C.B. Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maecker, H.T.; Wang, W.; Rosenberg-Hasson, Y.; Semelka, R.C.; Hickey, J.; Koran, L.M. An initial investigation of serum cytokine levels in patients with gadolinium retention. Radiol. Bras. 2020, 53, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Zolkipli-Cunningham, Z.; Xiao, R.; Stoddart, A.; McCormick, E.M.; Holberts, A.; Burrill, N.; McCormack, S.; Williams, L.; Wang, X.; Thompson, J.L.; et al. Mitochondrial disease patient motivations and barriers to participate in clinical trials. PLoS ONE 2018, 13, e0197513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, T.; Hicks, M.; Yu, H.-C.; Biggs, W.H.; Kirkness, E.F.; Menni, C.; Zierer, J.; Small, K.S.; Mangino, M.; Messier, H.; et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 2017, 49, 568–578. [Google Scholar] [CrossRef]
- Hou, Y.C.C.; Yu, H.C.; Martin, R.; Cirulli, E.T.; Schenker-Ahmed, N.M.; Hicks, M.; Cohen, I.V.; Jönsson, T.J.; Heister, R.; Napier, L.; et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proc. Natl. Acad. Sci. USA 2020, 117, 3053–3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwasiyah, D.; Murphy, C.; Jannetto, P.; Hogg, M.; Beuhler, M.C. Urinary gadolinium levels after contrast-enhanced MRI in individuals with normal renal function: A pilot study. J. Med. Toxicol. 2019, 15, 121–127. [Google Scholar] [CrossRef]
- Semelka, R.C.; Ramalho, M.; Jay, M.; Hickey, L.; Hickey, J. Intravenous calcium-/zinc-diethylene triamine penta-acetic acid in patients with presumed Gadolinium Deposition Disease: A preliminary report on 25 patients. Investig. Radiol. 2018, 53, 373–379. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Sampson, J.N.; Boca, S.M.; Shu, X.O.; Stolzenberg-Solomon, R.Z.; Matthews, C.E.; Hsing, A.W.; Tan, Y.T.; Ji, B.T.; Chow, W.H.; Cai, Q.; et al. Metabolomics in epidemiology: Sources of variability in metabolite measurements and implications. Cancer Epidemiol. Biomark. Prev. 2013, 22, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Chong, N.; Lewis, N.E.; Jia, W.; Xie, G.; Garmire, L.X. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Med. 2016, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Smeitink, J.A.; Zeviani, M.; Turnbull, D.M.; Jacobs, H.T. Mitochondrial medicine: A metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab. 2006, 3, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pareyson, D.; Piscosquito, G.; Moroni, I.; Salsano, E.; Zeviani, M. Peripheral neuropathy in mitochondrial disorders. Lancet Neurol. 2013, 12, 1011–1024. [Google Scholar] [CrossRef]
- Gross, E.C.; Lisicki, M.; Fischer, D.; Sándor, P.S.; Schoenen, J. The metabolic face of migraine—From pathophysiology to treatment. Nat. Rev. Neurol. 2019, 15, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, S.M. The gadolinium hypothesis for fibromyalgia and unexplained widespread chronic pain. Med. Hypotheses 2019, 129, 109240. [Google Scholar] [CrossRef] [PubMed]
- Naviaux, R.K. Metabolic features and regulation of the healing cycle—A new model for chronic disease pathogenesis and treatment. Mitochondrion 2019, 46, 278–297. [Google Scholar] [CrossRef] [PubMed]
- Mordaunt, D.; Cox, D.; Fuller, M. Metabolomics to improve the diagnostic efficiency of inborn errors of metabolism. Int. J. Mol. Sci. 2020, 21, 1195. [Google Scholar] [CrossRef] [Green Version]
- Elhassan, Y.S.; Philp, A.A.; Lavery, G.G. Targeting NAD+ in metabolic disease: New insights into an old molecule. J. Endocr. Soc. 2017, 1, 816–835. [Google Scholar] [CrossRef]
- Kirchner, S.; Ignatova, Z. Emerging roles of tRNA in adaptive translation, signaling dynamics and disease. Nat. Rev. Genet. 2015, 16, 98–112. [Google Scholar] [CrossRef]
- Esterhuizen, K.; Lindeque, J.Z.; Mason, S.; van der Westhuizen, F.H.; Suomalainen, A.; Hakonen, A.H.; Carroll, C.J.; Rodenburg, R.J.; de Laat, P.B.; Janssen, M.C.H.; et al. A urinary biosignature for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS). Mitochondrion 2019, 45, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Liao, P.; Wei, L.; Zhang, X.; Li, X.; Wu, H.; Wu, Y.; Ni, J.; Pei, F. Metabolic profiling of serum from gadolinium chloride-treated rats by 1H NMR spectroscopy. Anal. Biochem. 2007, 364, 112–121. [Google Scholar] [CrossRef]
- Youdim, M.B.H.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 2006, 7, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Garnero, P.; Delmas, P.D. Biochemical markers of bone turnover: Applications for osteoporosis. Endocrinol. Metab. Clin. North. Am. 1998, 27, 303–323. [Google Scholar] [CrossRef]
- Darrah, T.H.; Prutsman-Pfeiffer, J.J.; Poreda, R.J.; Ellen Campbell, M.; Hauschka, P.V.; Hannigan, R.E. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 2009, 1, 479. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, S.B.; Kluijtmans, L.A.J.; Rodenburg, R.J.; Sass, J.O.; Nouws, J.; van Kaauwen, E.P.; Kleefstra, T.; Tranebjaerg, L.; de Vries, M.C.; Isohanni, P.; et al. 3-Methylglutaconic aciduria—Lessons from 50 genes and 977 patients. J. Inherit. Metab. Dis. 2013, 36, 913–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, R.I.; Kratz, L. 3-Methylglutaconic Acidemia in Smith-Lemli-Opitz Syndrome. Pediatr. Res. 1995, 37, 671–674. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, I. Biochemical assessment and monitoring of mitochondrial disease. J. Clin. Med. 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Browne, D.; McGuinness, B.; Woodside, J.V.; McKay, G.J. Vitamin E and Alzheimer’s disease: What do we know so far? Clin. Interv. Aging 2019, 14, 1303–1317. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ko, E.R.; Gilchrist, J.J.; Pittman, K.J.; Rautanen, A.; Pirinen, M.; Thompson, J.W.; Duboise, L.G.; Langley, R.J.; Jaslow, S.L.; et al. Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis. Sci. Adv. 2017, 3, e1602096. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, L.; Blandizzi, C.; Pacher, P.; Haskó, G. Immunity, inflammation and cancer: A leading role for adenosine. Nat. Rev. Cancer 2013, 13, 842–857. [Google Scholar] [CrossRef]
- Jung, J.; Zeng, H.; Horng, T. Metabolism as a guiding force for immunity. Nat. Cell Biol. 2019, 21, 85–93. [Google Scholar] [CrossRef] [PubMed]
ID# | GBCA a | MRI to Symptom Onset (Days) | Number of Lifetime MRIs | Total Symptom Score (max = 109) | MD Symptom Score (max = 67) | MRI to Urine Gd (Days) | 24 h Urine Gd Level (µg) | MRI to Blood Draw (Days) |
---|---|---|---|---|---|---|---|---|
15 | MV, MH, OM, G | 0 | 32 | 85 | 57 | 127 | 1.9 b | 535 |
18 | D | 0 | 1 | 84 | 52 | 38 | 3.0 b | 293 |
8 | MH, G | 3 | 9 | 79 | 50 | 214 | 1.7 b | 248 |
6 | G | 3 | 1 | 74 | 48 | 89 | 1.0 b | 179 |
10 | G | 14 | 1 | 71 | 46 | 57 | 8.8 d | 265 |
11 | OM | 2 | 1 | 59 | 29 | 90 | 5.0 b | 695 |
7 | G, MH | 1 | 3 | 53 | 31 | 28 | 33.0 b | 71 |
1 | G | 3 | 1 | 47 | 28 | 41 | 26.0 c | 565 |
16 | G | 2 | 4 | 38 | 24 | 34 | 8.3 c | 128 |
4 | G | 1 | 2 | 38 | 24 | 87 | 1.3 b | 154 |
3 | G, OP | 0 | 1 | 36 | 21 | 36 | 22.0 b | 84 |
2 | G | 0 | 1 | 29 | 19 | 105 | 1.8 b | 450 |
9 | G | 1 | 1 | 28 | 22 | 77 | 3.9 c | 116 |
17 | D | 0 | 2 | 24 | 11 | 30 | 3.5 b | 94 |
5 | MV | 0 | 1 | 20 | 19 | 45 | 3.9 b | 1076 |
mean | 52 | 32 | 73 | 8.3 | 330 | |||
median | 47 | 28 | 57 | 3.9 | 248 | |||
Total symptom score | r (p) e | 0.53 (0.04) | 0.97 (<0.001) | 0.44 (0.10) | −0.12 (0.67) | −0.06 (0.83) | ||
MD symptom score | 0.47 (0.08) | 0.47 (0.08) | −0.19 (0.50) | −0.01 (0.97) | ||||
MRI to urine Gd | −0.49 (0.06) | 0.08 (0.77) | ||||||
24 h urine Gd level | −0.18 (0.53) |
Symptom | No. (%) a |
---|---|
Tingling sensations b | 15 (100) |
Fatigue b | 14 (93) |
Cognitive difficulty b,c | 13 (87) |
Muscle twitching b | 13 (73) |
Bone pain | 13 (87) |
Extremity/Joint pain c | 13 (80) |
New onset frequent headaches b,c | 12 (80) |
Skin/muscle pain b,c | 12 (80) |
Dry eyes b | 12 (80) |
Skin tightening or thickening c | 12 (80) |
Chest/Abdominal pain c | 10 (67) |
Decreased visual acuity b | 9 (60) |
Skin hyperpigmentation c | 8 (53) |
Eye pain b | 8 (53) |
Decreased skin sensation b | 7 (47) |
Decreased bowel/bladder sensation b | 5 (33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denmark, D.; Ruhoy, I.; Wittmann, B.; Ashki, H.; Koran, L.M. Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI. Toxics 2022, 10, 56. https://doi.org/10.3390/toxics10020056
Denmark D, Ruhoy I, Wittmann B, Ashki H, Koran LM. Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI. Toxics. 2022; 10(2):56. https://doi.org/10.3390/toxics10020056
Chicago/Turabian StyleDenmark, DeAunne, Ilene Ruhoy, Bryan Wittmann, Haleh Ashki, and Lorrin M. Koran. 2022. "Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI" Toxics 10, no. 2: 56. https://doi.org/10.3390/toxics10020056
APA StyleDenmark, D., Ruhoy, I., Wittmann, B., Ashki, H., & Koran, L. M. (2022). Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI. Toxics, 10(2), 56. https://doi.org/10.3390/toxics10020056