Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Used for This Comparison
2.2. Comparison of Potential Risks for Human Health and Aquatic Toxicity
- their classification as basic substance, low-risk AS, candidate for substitution, and substances that do not fall into any of these groups [46];
- their health-based guidance values: Acceptable Daily Intake ADI, Acute Reference Dose ARfD, and the Acceptable Operator Exposure Level AOEL [40]; and
- their hazard classifications under the Globally Harmonized System GHS on classification, labelling, and packaging of substances and mixtures [42].
2.3. Statistical Analyses
3. Results
3.1. Comparison of Pesticide Categories
3.2. Comparison Based on Substance Origin
3.3. Comparison of Regulatory Risk Ratings
3.4. Comparison Based on Health-Based Guidance Values ADI, ARfD, AOEL
3.5. Comparison of Globally Harmonized Hazard Statements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017, 15, 84–90. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Zaller, J.G. Daily Poison. Pesticides—An Underestimated Danger; Springer Nature: Cham, Switzerland, 2020; 315p. [Google Scholar]
- Van Gestel, C.A.M.; Belleghem, F.G.A.J.V.; Brink, N.W.V.D.; Droge, S.T.J.; Hamers, T.; Hermens, J.L.M.; Kraak, M.H.S.; Löhr, A.J.; Parsons, J.R.; Ragas, A.M.J.; et al. (Eds.) Environmental Toxicology, an Open Online Textbook; Vrije Universiteit: Amsterdam, The Netherlands, 2019; Available online: https://maken.wikiwijs.nl/147644/Environmental_Toxicology__an_open_online_textbook (accessed on 25 October 2022).
- FAO. A Scheme and Training Manual of Good Agricultural Practices (GAP) for Fruits and Vegetables. 2016. 124p. Available online: https://www.fao.org/3/i6677e/i6677e.pdf (accessed on 31 October 2022).
- Mesnage, R.; Szekács, A.; Zaller, J.G. Herbicides: Brief history, agricultural use, and potential alternatives for weed control. In Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts; Emerging Issues in Analytical Chemistry; Mesnage, R., Zaller, J., Thomas, B.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–20. [Google Scholar]
- Zadoks, J.C. Crop Protection in Medieval Agriculture: Studies in Pre-Modern Organic Agriculture; Sidestone Press: Leiden, The Netherlands, 2013. [Google Scholar]
- Marchand, P.A. Evolution of plant protection active substances in Europe: The disappearance of chemicals in favour of biocontrol agents. Envrion. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Börner, H. Pflanzenkrankheiten und Pflanzenschutz (Springer-Lehrbuch) (German Edition), 8th ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kühne, S.; Burth, U.; Marx, P. Biologischer Pflanzenschutz im Freiland. Pflanzengesundheit im Ökologischen Landbau; Ulmer: Stuttgart, Germany, 2006. [Google Scholar]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Envrion. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Friis, K.; Damgaard, C.; Holmstrup, M. Sublethal soil copper concentrations increase mortality in the earthworm Aporrectodea caliginosa during drought. Ecotoxicol. Envrion. Saf. 2004, 57, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Mackie, K.A.; Müller, T.; Zikeli, S.; Kandeler, E. Long-term copper application in an organic vineyard modifies spatial distribution of soil micro-organisms. Soil Biol. Biochem. 2013, 65, 245–253. [Google Scholar] [CrossRef]
- Holzer, U.; Kührer, E.; Blümel, S. Freilandversuche zur Wirkung verschiedener biologischer Pflanzenschutzmittel auf Uncinula necator (Oidium) und die Raubmilbenfauna im Weinbau. Obst Wein Garten 1994, 63, 11–13. [Google Scholar]
- Lopes, M.P.; Fernandes, K.M.; Tomé, H.V.V.; Gonçalves, W.G.; Miranda, F.R.; Serrão, J.E.; Martins, G.F. Spinosad-mediated effects on the walking ability, midgut, and Malpighian tubules of Africanized honey bee workers. Pest Manag. Sci. 2018, 74, 1311–1318. [Google Scholar] [CrossRef] [Green Version]
- van der Sluijs, J.P. Insect decline, an emerging global environmental risk. Curr. Opin. Environ. Sustain. 2020, 46, 39–42. [Google Scholar] [CrossRef]
- van Hoesel, W.; Tiefenbacher, A.; Koönig, N.; Dorn, V.M.; Hagenguth, J.F.; Prah, U.A.; Widhalm, T.; Wiklicky, V.; Koller, R.; Bonkowski, M.; et al. Single and Combined Effects of Pesticide Seed Dressings and Herbicides on Earthworms, Soil Microorganisms, and Litter Decomposition. Front. Plant Sci. 2017, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Zaller, J.G.; König, N.; Tiefenbacher, A.; Muraoka, Y.; Querner, P.; Ratzenböck, A.; Bonkowski, M.; Koller, R. Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material. BMC Ecol. 2016, 16, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humann-Guilleminot, S.; Laurent, S.; Bize, P.; Roulin, A.; Glauser, G.; Helfenstein, F. Contamination by neonicotinoid insecticides in barn owls (Tyto alba) and Alpine swifts (Tachymarptis melba). Sci. Total Environ. 2021, 785, 147403. [Google Scholar] [CrossRef]
- Centner, T.J. Creating a compensation program for injuries from dicamba spray drift and volatilization. Appl. Econ. Perspect. Policy 2021, 44, 1068–1082. [Google Scholar] [CrossRef]
- Humann-Guilleminot, S.; Binkowski, Ł.J.; Jenni, L.; Hilke, G.; Glauser, G.; Helfenstein, F. A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J. Appl. Ecol. 2019, 56, 1502–1514. [Google Scholar] [CrossRef]
- Riedo, J.; Wettstein, F.E.; Rösch, A.; Herzog, C.; Banerjee, S.; Büchi, L.; Charles, R.; Wächter, D.; Martin-Laurent, F.; Bucheli, T.D.; et al. Widespread Occurrence of Pesticides in Organically Managed Agricultural Soils—the Ghost of a Conventional Agricultural Past? Envrion. Sci. Technol. 2021, 55, 2919–2928. [Google Scholar] [CrossRef]
- Brühl, C.A.; Bakanov, N.; Köthe, S.; Eichler, L.; Sorg, M.; Hörren, T.; Mühlethaler, R.; Meinel, G.; Lehmann, G.U.C. Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep. 2021, 11, 24144. [Google Scholar] [CrossRef]
- Kruse-Plaß, M.; Hofmann, F.; Wosniok, W.; Schlechtriemen, U.; Kohlschütter, N. Pesticides and pesticide-related products in ambient air in Germany. Envrion. Sci. Eur. 2021, 33, 114. [Google Scholar] [CrossRef]
- Zaller, J.G.; Kruse-Plaß, M.; Schlechtriemen, U.; Gruber, E.; Peer, M.; Nadeem, I.; Formayer, H.; Hutter, H.-P.; Landler, L. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and human. Sci. Total Environ. 2022, 838, 156012. [Google Scholar] [CrossRef]
- SCNAT. Pestizide: Auswirkungen auf Umwelt, Biodiversität und Ökosystemleistungen. Swiss Acad. Factsheets 2021, 16, 12. [Google Scholar]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- Brühl, C.A.; Zaller, J.G. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ. Sci. 2019, 7, 177. [Google Scholar] [CrossRef]
- Persson, L.; Carney Almroth, B.M.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Envrion. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; 572p, Available online: https://www.fao.org/3/ca3129en/CA3129EN.pdf (accessed on 1 November 2022).
- EC. Farm to Fork Strategy for a Fair, Healthy and Environmentally-friendly Food System. 2020, p. 23. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 1 November 2022).
- ECI. European Citizens’ Initative: Save Bees and Farmers! Towards a Bee-Friendly Agriculture for a Healthy Environment. 2022. Available online: https://europa.eu/citizens-initiative/initiatives/details/2019/000016_en (accessed on 1 November 2022).
- ECPA. Feedback from: European Crop Protection Association. 2020. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12183-Sustainable-food-farm-to-fork-strategy/F506589_en (accessed on 31 October 2022).
- Stein-Bachinger, K.; Preißel, S.; Kühne, S.; Reckling, M. More diverse but less intensive farming enhances biodiversity. TREE 2022, 37, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Brühl, C.A.; Zaller, J.G.; Liess, M.; Wogram, J. The rejection of synthetic pesticides in organic farming has multiple benefits. TREE 2022, 37, 113–114. [Google Scholar] [CrossRef]
- Portier, C.J.; Armstrong, B.K.; Baguley, B.C.; Baur, X.; Belyaev, I.; Bellé, R.; Belpoggi, F.; Biggeri, A.; Bosland, M.C.; Bruzzi, P.; et al. Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA). J. Epidem. Comm. Health 2016, 70, 741–745. [Google Scholar] [CrossRef] [Green Version]
- Clausing, P.; Robinson, C.; Burtscher-Schaden, H. Pesticides and public health: An analysis of the regulatory approach to assessing the carcinogenicity of glyphosate in the European Union. J. Epidem. Comm. Health 2018, 72, 668–672. [Google Scholar] [CrossRef] [Green Version]
- Topping, C.J.; Aldrich, A.; Berny, P. Overhaul environmental risk assessment for pesticides. Science 2020, 367, 360–363. [Google Scholar] [CrossRef]
- EP. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union 2009, 309, 1–50. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009R1107 (accessed on 1 November 2022).
- EFSA, S.C.; More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hougaard Bennekou, S.; Koutsoumanis, K.; Machera, K.; Naegeli, H.; et al. Statement on the derivation of Health-Based Guidance Values (HBGVs) for regulated products that are also nutrients. EFSA J. 2021, 19, e06479. [Google Scholar] [CrossRef]
- UN. Globally Harmonized System of Classification and Labelling of Chemicals (GHS); United Nations: New York, NY, USA; Geneva, Switzerland, 2021; Available online: https://unece.org/sites/default/files/2021-09/GHS_Rev9E_0.pdf (accessed on 26 August 2022).
- Cech, R.; Zaller, J.G.; Lyssimachou, A.; Clausing, P.; Hertoge, K.; Linhart, C. Pesticide drift mitigation measures appear to reduce contamination of non-agricultural areas, but hazards to humans and the environment remain. Sci. Total Environ. 2023, 854, 158814. [Google Scholar] [CrossRef]
- Cech, R.M.; Jovanovic, S.; Kegley, S.; Hertoge, K.; Leisch, F.; Zaller, J.G. Reducing overall herbicide use may reduce risks to humans but increase toxic loads to honeybees, earthworms and birds. Envrion. Sci. Eur. 2022, 34, 44. [Google Scholar] [CrossRef]
- EC. EU Pesticides Database. 2022. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances (accessed on 1 November 2022).
- EU. Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances Text with EEA relevance. Off. J. Eur. Union 2011, 153, 1–186. Available online: http://data.europa.eu/eli/reg_impl/2011/2540/oj (accessed on 1 November 2022).
- EU. Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 authorising certain products and substances for use in organic production and establishing their lists (Text with EEA relevance) C/2021/5149. Off. J. Eur. Union 2021, 253, 13–48. Available online: http://data.europa.eu/eli/reg_impl/2021/1165/oj (accessed on 1 November 2022).
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- EU. EU Pesticides Database: Search Active Substances, Safeners and Synergists. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=search.as (accessed on 15 October 2022).
- Marchand, P.A. Basic substances under EC 1107/2009 phytochemical regulation: Experience with non-biocide and food products as biorationals. J. Plant Prot. Res. 2016, 56, 312–318. [Google Scholar] [CrossRef]
- Romanazzi, G.; Orçonneau, Y.; Moumni, M.; Davillerd, Y.; Marchand, P.A. Basic Substances, a Sustainable Tool to Complement and Eventually Replace Synthetic Pesticides in the Management of Pre and Postharvest Diseases: Reviewed Instructions for Users. Molecules 2022, 27, 3484. [Google Scholar] [CrossRef] [PubMed]
- EC. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Union 2002, 31, 1–24. Available online: http://data.europa.eu/eli/reg/2002/2178/oj (accessed on 1 November 2022).
- Robin, D.C.; Marchand, P.A. Expansion of the Low-Risk Substances in the Framework of the European Pesticide Regulation (EC) No 1107/2009. Eur. J. Risk Regul. 2022, 13, 514–531. [Google Scholar] [CrossRef]
- EP. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. 31 December 2008. Off. J. Eur. Union 2008, L353, 1–1355. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2008:1353:TOC (accessed on 1 November 2022).
- Robin, D.C.; Marchand, P.A. The Slow Decrease of Active Substance Candidates for Substitution in the Framework of the European Pesticide Regulation (EC) No 1107/2009. Eur. J. Risk Regul. 2021, 1–22. [Google Scholar] [CrossRef]
- EC. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007 PE/62/2017/REV/1. Off. J. Eur. Union 2018, 150, 1–92. Available online: http://data.europa.eu/eli/reg/2018/2848/oj (accessed on 1 November 2022).
- Mesnage, R. Coformulants in commercial herbicides. In Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts; Mesnage, R., Zaller, J., Thomas, B.F., Eds.; Emerging Issues in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 87–112. [Google Scholar]
- Straw, E.A.; Brown, M.J.F. Co-formulant in a commercial fungicide product causes lethal and sub-lethal effects in bumble bees. Sci. Rep. 2021, 11, 21653. [Google Scholar] [CrossRef] [PubMed]
- Zaller, J.G.; Weber, M.; Maderthaner, M.; Gruber, E.; Takács, E.; Mörtl, M.; Klátyik, S.; Győri, J.; Römbke, J.; Leisch, F.; et al. Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration and glyphosate leaching are influenced by soil properties. Envrion. Sci. Eur. 2021, 33, 51. [Google Scholar] [CrossRef]
- Schulz, R.; Bub, S.; Petschick, L.L.; Stehle, S.; Wolfram, J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 2021, 372, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Senthil-Nathan, S. A Review of Biopesticides and Their Mode of Action Against Insect Pests. In Environmental Sustainability: Role of Green Technologies; Thangavel, P., Sridevi, G., Eds.; Springer: New Delhi, India, 2015; pp. 49–63. [Google Scholar]
- McCallan, S.E.A. The nature of the fungicidal action of copper and sulfur. Bot. Rev. 1949, 15, 629–643. [Google Scholar] [CrossRef]
- Burtscher-Schaden, H. HRI 1: A Risk Indicator to Promote Toxic Pesticides? Report Global 2000. 5p. Available online: https://www.organicseurope.bio/content/uploads/2022/06/GLOBAL2000_HRI-1_final_28022022.pdf?dd (accessed on 15 November 2022).
- EU. Commission Directive (EU) 2019/782 of 15 May 2019 amending Directive 2009/128/EC of the European Parliament and of the Council as regards the establishment of harmonised risk indicators (Text with EEA relevance.) C/2019/3580. Off. J. Eur. Union 2019, 127, 4–10. Available online: http://data.europa.eu/eli/dir/2019/2782/oj (accessed on 1 November 2022).
- Mesnage, R.; Zaller, J.G. Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts; Emerging Issues in Analytical Chemistry; Thomas, B.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; 366p. [Google Scholar]
- Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 2019, 29, R967–R971. [Google Scholar] [CrossRef]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Envrion. Chem. Lett. 2018, 16, 401–426. [Google Scholar] [CrossRef]
- Tarazona, J.V.; González-Caballero, M.d.C.; Alba-Gonzalez, M.d.; Pedraza-Diaz, S.; Cañas, A.; Dominguez-Morueco, N.; Esteban-López, M.; Cattaneo, I.; Katsonouri, A.; Makris, K.C.; et al. Improving the Risk Assessment of Pesticides through the Integration of Human Biomonitoring and Food Monitoring Data: A Case Study for Chlorpyrifos. Toxics 2022, 10, 313. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 736–746. [Google Scholar] [CrossRef] [Green Version]
- BPDB. Bio-Pesticides DataBase; University of Hertfordshire: Hatfield, UK, 2022; Available online: http://sitem.herts.ac.uk/aeru/bpdb/atoz.htm (accessed on 2 November 2022).
- Felgentreu, D.; Herwig, N.; Hommel, B. Kupfergehalte in deutschen Obstbauregionen und deren Auswirkungen auf Regenwürmer. Öko-Obstbau 2017, 4, 19–21. [Google Scholar]
- Karimi, B.; Masson, V.; Guilland, C.; Leroy, E.; Pellegrinelli, S.; Giboulot, E.; Maron, P.-A.; Ranjard, L. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Envrion. Chem. Lett. 2021, 19, 2013–2030. [Google Scholar] [CrossRef]
- EC. Commission implementing regulation (EU) 2022/1252 of 19 July 2022 amending Implementing Regulation (EU) 2015/408 to update the list of candidates for substitution. Off. J. Eur. Union 2022, L191, 41–44. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R31252&qid=1658822755710&from=en (accessed on 1 November 2022).
- EFSA; Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; et al. Peer review of the pesticide risk assessment of the active substance copper compounds copper(I), copper(II) variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper(I) oxide, Bordeaux mixture. EFSA J. 2018, 16, e05152. [Google Scholar] [CrossRef] [Green Version]
- EFSA; Hernandez-Jerez, A.; Adriaanse, P.; Aldrich, A.; Berny, P.; Coja, T.; Duquesne, S.; Focks, A.; Marina, M.; Millet, M.; et al. Statement of the PPR Panel on a framework for conducting the environmental exposure and risk assessment for transition metals when used as active substances in plant protection products (PPP). EFSA J. 2021, 19, e06498. [Google Scholar] [CrossRef]
- EC. Organic Production and Products. European Commission. Available online: https://ec.europa.eu/info/food-farming-fisheries/farming/organic-farming/organic-production-and-products_en (accessed on 2 November 2022).
- Sanders, J.; Heß, J. (Eds.) Leistungen des ökologischen Landbaus für Umwelt und Gesellschaft, 2nd ed.; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2019; 398p. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burtscher-Schaden, H.; Durstberger, T.; Zaller, J.G. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics 2022, 10, 753. https://doi.org/10.3390/toxics10120753
Burtscher-Schaden H, Durstberger T, Zaller JG. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics. 2022; 10(12):753. https://doi.org/10.3390/toxics10120753
Chicago/Turabian StyleBurtscher-Schaden, Helmut, Thomas Durstberger, and Johann G. Zaller. 2022. "Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe" Toxics 10, no. 12: 753. https://doi.org/10.3390/toxics10120753