Phytochemicals and Biological Activities of Garcinia atroviridis: A Critical Review
Abstract
:1. Introduction
2. Geographical Distribution
3. Botanical Description
4. Traditional Uses
5. Proximate Composition and Phytochemical Reports of G. atroviridis
6. Biological Activities of G. atroviridis and its Constituents
6.1. Antimicrobial
6.2. Antioxidant
6.3. Anti-Inflammatory
6.4. Antihyperlipidemic/Anti-Obesity/Antidiabetic
6.5. Anticancer
7. Future Perspective
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemonnier, N.; Zhou, G.-B.; Prasher, B.; Mukerji, M.; Chen, Z.; Brahmachari, S.K.; Noble, D.; Auffray, C.; Sagner, M. Traditional Knowledge-based Medicine: A Review of History, Principles, and Relevance in the Present Context of P4 Systems Medicine. Prog. Prev. Med. 2017, 2, e0011. [Google Scholar] [CrossRef]
- Zimmermann-Klemd, A.M.; Reinhardt, J.K.; Winker, M.; Gründemann, C. Phytotherapy in Integrative Oncology—An Update of Promising Treatment Options. Molecules 2022, 27, 3209. [Google Scholar] [CrossRef] [PubMed]
- Seidel, V. Plant-derived chemicals: A source of inspiration for new Drugs. Plants 2020, 9, 1562. [Google Scholar] [CrossRef] [PubMed]
- Drasar, P.B.; Khripach, V.A. Growing importance of natural products research. Molecules 2019, 25, 6. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; Volume 1. [Google Scholar]
- Pangsuban, S.; Bamroongrugsa, N.; Kanchanapoom, K.; Nualsri, C. Facultative apomixis in Garcinia atroviridis (Clusiaceae) and effects of different pollination regimes on reproductive success. Trop. Life Sci. Res. 2009, 20, 89. [Google Scholar] [PubMed]
- Kosin, J.; Ruangrungsi, N.; Ito, C.; Furukawa, H. A xanthone from Garcinia atroviridis. Phytochemistry 1998, 47, 1167–1168. [Google Scholar] [CrossRef]
- Tan, W.N.; Wong, K.C.; Khairuddean, M.; Eldeen, I.M.; Asmawi, M.Z.; Sulaiman, B. Volatile constituents of the fruit of Garcinia atroviridis and their antibacterial and anti-inflammatory activities. Flavour Fragr. J. 2013, 28, 2–9. [Google Scholar] [CrossRef]
- Mackeen, M.M.M. Bioassay-Guided Isolation, and Identification of Bioactive Compounds from Garcinia Atroviridis (Asam Gelugor). Ph.D. Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 1998. [Google Scholar]
- Chew, Y.-L.; Lim, Y.-Y. Evaluation and comparison of antioxidant activity of leaves, pericarps and pulps of three Garcinia species in Malaysia. Free Radic. Antioxid. 2018, 8, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Mackeen, M.M.; Ali, A.M.; Lajis, N.H.; Kawazu, K.; Hassan, Z.; Amran, M.; Habsah, M.; Mooi, L.Y.; Mohamed, S.M. Antimicrobial, antioxidant, antitumour-promoting and cytotoxic activities of different plant part extracts of Garcinia atroviridis griff. ex T. anders. J. Ethnopharmacol. 2000, 72, 395–402. [Google Scholar] [CrossRef]
- Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008, 46, 3227–3239. [Google Scholar] [CrossRef]
- Grosvenor, P.W.; Gothard, P.K.; McWilliam, N.C.; Supriono, A.; Gray, D.O. Medicinal plants from riau province, sumatra, Indonesia. Part 1: Uses. J. Ethnopharmacol. 1995, 45, 75–95. [Google Scholar] [CrossRef]
- Nursakinah, I.; Zulkhairi, H.A.; Norhafizah, M.; Hasnah, B.; Zamree, M.S.; Farrah, S.I.; Razif, D.; Hamzah, F.H. Nutritional content and in vitro antioxidant potential of Garcinia atroviridis (Asam gelugor) leaves and fruits. Malays. J. Nutr. 2012, 18, 363–371. [Google Scholar] [PubMed]
- Kalsum, H.; Mirfat, A. Proximate composition of Malaysian underutilised fruits. J. Trop. Agric. Food Sci. 2014, 42, 63–72. [Google Scholar]
- Karo-Karo, T.; Julianti, E.; Nurminah, M. Physicochemical Properties of Gelugur Powder (Garcinia atroviridis). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Medan, Indonesia, 8–9 December 2018; p. 012033. [Google Scholar]
- Reang, J.; Sharma, P.C.; Thakur, V.K.; Majeed, J. Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. Biomolecules 2021, 11, 1130. [Google Scholar] [CrossRef] [PubMed]
- Dweck, D. A Review of Asam Gelugor (Garcinia atroviridis) Griff ex T Anders. 1999. Available online: http://www.dweckdata.com/research_files/garcinia_atroviridis.pdf (accessed on 28 March 2015).
- Behera, B.C. Citric acid from Aspergillus niger: A comprehensive overview. Crit. Rev. Microbiol. 2020, 46, 727–749. [Google Scholar] [CrossRef]
- Kövilein, A.; Kubisch, C.; Cai, L.; Ochsenreither, K. Malic acid production from renewables: A review. J. Chem. Technol. Biotechnol. 2020, 95, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Basak, B.; Jeon, B.-H. Sustainable production and purification of succinic acid: A review of membrane-integrated green approach. J. Clean. Prod. 2020, 277, 123954. [Google Scholar] [CrossRef]
- Ismail, A.; Doghish, A.S.; Elsadek, B.E.; Salama, S.A.; Mariee, A.D. Hydroxycitric acid potentiates the cytotoxic effect of tamoxifen in MCF-7 breast cancer cells through inhibition of ATP citrate lyase. Steroids 2020, 160, 108656. [Google Scholar] [CrossRef]
- Li, L.; Chu, X.; Yao, Y.; Cao, J.; Li, Q.; Ma, H. (-)-Hydroxycitric Acid Alleviates Oleic Acid-Induced Steatosis, Oxidative Stress, and Inflammation in Primary Chicken Hepatocytes by Regulating AMP-Activated Protein Kinase-Mediated Reactive Oxygen Species Levels. J. Agric. Food Chem. 2020, 68, 11229–11241. [Google Scholar] [CrossRef]
- Tomar, M.; Rao, R.P.; Dorairaj, P.; Koshta, A.; Suresh, S.; Rafiq, M.; Kumawat, R.; Paramesh, R.; Venkatesh, K. A clinical and computational study on anti-obesity effects of hydroxycitric acid. RSC Adv. 2019, 9, 18578–18588. [Google Scholar] [CrossRef] [Green Version]
- Galdiero, E.; Ricciardelli, A.; D’Angelo, C.; de Alteriis, E.; Maione, A.; Albarano, L.; Casillo, A.; Corsaro, M.M.; Tutino, M.L.; Parrilli, E. Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: Towards the development of an anti-biofilm coating to prevent polymicrobial infections. Res. Microbiol. 2021, 172, 103880. [Google Scholar] [CrossRef] [PubMed]
- To, N.B.; Nguyen, Y.T.-K.; Moon, J.Y.; Ediriweera, M.K.; Cho, S.K. Pentadecanoic acid, an odd-chain fatty acid, suppresses the stemness of MCF-7/SC human breast cancer stem-like cells through JAK2/STAT3 signaling. Nutrients 2020, 12, 1663. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.C.; Li, H.Y.; Li, T.T.; Yang, K.; Chen, J.X.; Wang, S.J.; Liu, C.H.; Zhang, W. Pentadecanoic acid promotes basal and insulin-stimulated glucose uptake in C2C12 myotubes. Food Nutr. Res. 2021, 65, 4527. [Google Scholar] [CrossRef] [PubMed]
- Venn-Watson, S.; Lumpkin, R.; Dennis, E.A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: Could it be essential? Sci. Rep. 2020, 10, 8161. [Google Scholar] [CrossRef] [PubMed]
- Permana, D.; Lajis, N.H.; Shaari, K.; Ali, A.M.; Mackeen, M.M.; Kitajima, M.; Takayama, H.; Aimi, N. A new prenylated hydroquinone from the roots of Garcinia atroviridis Griff ex T. Anders (Guttiferae). Z. Nat. B 2003, 58, 332–335. [Google Scholar] [CrossRef]
- Syahida, A.; Israf, D.A.; Permana, D.; Lajis, N.H.; Khozirah, S.; Afiza, A.W.; Khaizurin, T.A.; Somchit, M.N.; Sulaiman, M.R.; Nasaruddin, A.A. Atrovirinone inhibits pro-inflammatory mediator release from murine macrophages and human whole blood. Immunol. Cell Biol. 2006, 84, 250–258. [Google Scholar] [CrossRef]
- Permana, D.; Lajis, N.H.; Mackeen, M.M.; Ali, A.M.; Aimi, N.; Kitajima, M.; Takayama, H. Isolation and Bioactivities of Constitutents of the Roots of Garcinia a troviridis. J. Nat. Prod. 2001, 64, 976–979. [Google Scholar] [CrossRef]
- Permana, D.; Abas, F.; Maulidiani, F.; Shaari, K.; Stanslas, J.; Ali, A.M.; Lajis, N.H. Atrovirisidone B, a new prenylated depsidone with cytotoxic property from the roots of Garcinia atroviridis. Z. Nat. C 2005, 60, 523–526. [Google Scholar] [CrossRef]
- Tan, W.-N.; Khairuddean, M.; Wong, K.-C.; Khaw, K.-Y.; Vikneswaran, M. New cholinesterase inhibitors from Garcinia atroviridis. Fitoterapia 2014, 97, 261–267. [Google Scholar] [CrossRef]
- Liu, C.; Ho, P.C.; Wong, F.C.; Sethi, G.; Wang, L.Z.; Goh, B.C. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett. 2015, 362, 8–14. [Google Scholar] [CrossRef]
- Yamaguchi, F.; Saito, M.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. Free radical scavenging activity and antiulcer activity of garcinol from Garcinia indica fruit rind. J. Agric. Food Chem. 2000, 48, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
- Schobert, R.; Biersack, B. Chemical and biological aspects of garcinol and isogarcinol: Recent developments. Chem. Biodivers. 2019, 16, e1900366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lacerda Leite, G.M.; de Oliveira Barbosa, M.; Lopes, M.J.P.; de Araújo Delmondes, G.; Bezerra, D.S.; Araújo, I.M.; de Alencar, C.D.C.; Coutinho, H.D.M.; Peixoto, L.R.; Barbosa-Filho, J.M. Pharmacological and toxicological activities of α-humulene and its isomers: A systematic review. Trends Food Sci. Technol. 2021, 115, 255–274. [Google Scholar] [CrossRef]
- Jang, H.I.; Rhee, K.J.; Eom, Y.B. Antibacterial and antibiofilm effects of alpha-humulene against Bacteroides fragilis. Can. J. Microbiol. 2020, 66, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A sesquiterpene with countless biological properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef] [Green Version]
- Legault, J.; Pichette, A. Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol. 2007, 59, 1643–1647. [Google Scholar] [CrossRef]
- de Oliveira, C.C.; de Oliveira, C.V.; Grigoletto, J.; Ribeiro, L.R.; Funck, V.R.; Grauncke, A.C.; de Souza, T.L.; Souto, N.S.; Furian, A.F.; Menezes, I.R.; et al. Anticonvulsant activity of beta-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy Behav. 2016, 56, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Hutadilok-Towatana, N.; Kongkachuay, S.; Mahabusarakam, W. Inhibition of human lipoprotein oxidation by morelloflavone and camboginol from Garcinia dulcis. Nat. Prod. Res. 2007, 21, 655–662. [Google Scholar] [CrossRef]
- Patel, K.; Singh, G.K.; Patel, D.K. A Review on Pharmacological and Analytical Aspects of Naringenin. Chin. J. Integr. Med. 2018, 24, 551–560. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Sun, Y.; Zhang, G.; Bai, J.; Guo, J.; Su, X.; Du, H.; Cao, X.; Yang, J. Naringenin improves insulin sensitivity in gestational diabetes mellitus mice through AMPK. Nutr. Diabetes 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Pinkaew, D.; Cho, S.G.; Hui, D.Y.; Wiktorowicz, J.E.; Hutadilok-Towatana, N.; Mahabusarakam, W.; Tonganunt, M.; Stafford, L.J.; Phongdara, A.; Liu, M.; et al. Morelloflavone blocks injury-induced neointimal formation by inhibiting vascular smooth muscle cell migration. Biochim. Biophys. Acta 2009, 1790, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Taher, M.; Aminuddin, A.; Susanti, D.; Aminudin, N.I.; On, S.; Ahmad, F.; Hamidon, H. Cytotoxic, anti-inflammatory and adipogenic effects of inophyllum D, calanone, isocordato-oblongic acid, and morelloflavone on cell lines. Nat. Prod. Sci. 2016, 22, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ai, H.; Sun, D.; Wu, T.; He, J.; Xu, Z.; Ding, L.; Wang, L. Anti-tumoral activity of native compound morelloflavone in glioma. Oncol. Lett. 2016, 12, 3373–3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayanti, T.; Ambardhani, N.; Kurnia, D. Morelloflavone as Potential Anticancer Agent Against MCF-7 Breast Cancer Cell Lines: In vitro and In silico Studies. Lett. Drug Des. Discov. 2022, 19, 293–303. [Google Scholar]
- Mackeen, M.M.; Ali, A.M.; Lajis, N.H.; Kawazu, K.; Kikuzaki, H.; Nakatani, N. Antifungal garcinia acid esters from the fruits of Garcinia atroviridis. Z. Naturforschung. C J. Biosci. 2002, 57, 291–295. [Google Scholar] [CrossRef]
- Nandu, T.G.; Subramenium, G.A.; Shiburaj, S.; Viszwapriya, D.; Iyer, P.M.; Balamurugan, K.; Rameshkumar, K.B.; Karutha Pandian, S. Fukugiside, a biflavonoid from Garcinia travancorica inhibits biofilm formation of Streptococcus pyogenes and its associated virulence factors. J. Med. Microbiol. 2018, 67, 1391–1401. [Google Scholar] [CrossRef]
- Aravind, A.A.; Rameshkumar, K. Antioxidant and cytotoxic activities of Fukugiside-The major biflavonoid from Garcinia travancorica Bedd. In Diversity of Garcinia Species in the Western Ghats: Phytochemical Perspective; JNTBGRI: Thiruvananthapuram, India, 2016; p. 187. [Google Scholar]
- Tan, W.-N.; Khairuddean, M.; Wong, K.-C.; Tong, W.-Y.; Ibrahim, D. Antioxidant compounds from the stem bark of Garcinia atroviridis. J. Asian Nat. Prod. Res. 2016, 18, 804–811. [Google Scholar] [CrossRef]
- Nishina, A.; Hasegawa, K.; Uchibori, T.; Seino, H.; Osawa, T. 2, 6-Dimethoxy-p-benzoquinone as an antibacterial substance in the bark of Phyllostachys heterocycla var. pubescens, a species of thick-stemmed bamboo. J. Agric. Food Chem. 1991, 39, 266–269. [Google Scholar] [CrossRef]
- Yang, H.; Xu, W.; Zhao, W.; Gu, M.; Wang, W. 1, 3, 7-Trihydroxyxanthone, derived from Polygalae Radix, a herbal medicine, stimulates the expression of neurotrophic factors in rat astrocyte primary cultures via cAMP-and ERK-dependent pathways. Biomed. Pharmacother. 2018, 98, 762–768. [Google Scholar] [CrossRef]
- Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases. Exp. Ther. Med. 2019, 18, 2759–2776. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O. Therapeutic potential of quercetin: New insights and perspectives for human health. Acs Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2019, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Na, Y. Recent cancer drug development with xanthone structures. J. Pharm. Pharmacol. 2009, 61, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.M.; Freitas, M.; Fernandes, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem. 2018, 157, 1460–1479. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Nazir, M.; Ali, M.S.; Hussain, H.; Lee, Y.S.; Riaz, N.; Jabbar, A. Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Prod. Rep. 2010, 27, 238–254. [Google Scholar] [CrossRef]
- Newman, D.J. Natural products as leads to potential drugs: An old process or the new hope for drug discovery? J. Med. Chem. 2008, 51, 2589–2599. [Google Scholar] [CrossRef]
- Basri, D.; Sharif, R.; Morat, P.; Latip, J. Evaluation of antimicrobial activities of the crude extracts from Garcinia atroviridis and Solanum torvum. Malays. J. Sci. 2005, 24, 233–238. [Google Scholar]
- Thongkham, E.; Aiemsaard, J.; Kaenjampa, P. Antioxidant and Antimicrobial Properties of Ethanolic Extract of Asam Gelugor Fruit (Garcinia atroviridis). Burapha Sci. J. 2021, 26, 1293–1307. [Google Scholar]
- Suwanmanee, S.; Kitisin, T.; Luplertlop, N. In vitro screening of 10 edible thai plants for potential antifungal properties. Evid. Based Complement. Altern. Med. Ecam 2014, 2014, 138587. [Google Scholar] [CrossRef] [Green Version]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Al-Mansoub, M.A.; Asmawi, M.Z.; Murugaiyah, V. Effect of extraction solvents and plant parts used on the antihyperlipidemic and antioxidant effects of Garcinia atroviridis: A comparative study. J. Sci. Food Agric. 2014, 94, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Chatatikun, M.; Supjaroen, P.; Promlat, P.; Chantarangkul, C.; Waranuntakul, S.; Nawarat, J.; Tangpong, J. Antioxidant and tyrosinase inhibitory properties of an aqueous extract of Garcinia atroviridis griff. ex. T. Anderson fruit pericarps. Pharmacogn. J. 2020, 12, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Artis, D.; Spits, H. The biology of innate lymphoid cells. Nature 2015, 517, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Waisman, A.; Liblau, R.S.; Becher, B. Innate and adaptive immune responses in the CNS. Lancet. Neurol. 2015, 14, 945–955. [Google Scholar] [CrossRef]
- Azab, A.; Nassar, A.; Azab, A.N. Anti-Inflammatory Activity of Natural Products. Molecules 2016, 21, 1321. [Google Scholar] [CrossRef]
- Montgomery, S.L.; Bowers, W.J. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J. Neuroimmune Pharmacol. 2012, 7, 42–59. [Google Scholar] [CrossRef]
- Sabat, R. IL-10 family of cytokines. Cytokine Growth Factor Rev. 2010, 21, 315–324. [Google Scholar] [CrossRef]
- Moncada, S.; Bolanos, J.P. Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 2006, 97, 1676–1689. [Google Scholar] [CrossRef]
- Bhatelia, K.; Singh, K.; Singh, R. TLRs: Linking inflammation and breast cancer. Cell Signal 2014, 26, 2350–2357. [Google Scholar] [CrossRef]
- Israf, D.; Tham, C.; Syahida, A.; Lajis, N.; Sulaiman, M.; Mohamad, A.; Zakaria, Z. Atrovirinone inhibits proinflammatory mediator synthesis through disruption of NF-κB nuclear translocation and MAPK phosphorylation in the murine monocytic macrophage RAW 264.7. Phytomedicine 2010, 17, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N. Isolation and Characterization of Organic Acid in Asam gelugor (Garcinia atroviridis). Bachelor’s Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 1994. Unpublished. [Google Scholar]
- Jena, B.S.; Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. J. Agric. Food Chem. 2002, 50, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Achmadi, S.S. The potency of potassium hydroxycitrate derived from gelugur fruit (Garcinia atroviridis) in reducing body weight and cholesterol levels in rats. Hayati 2001, 8, 23–26. [Google Scholar]
- Al-Mansoub, M.A.; Asmawi, M.; Murugaiyah, V. Evaluation of Antihyperlipidemic Effect of Aqueous and Methanol Extracts of Garcinia Atroviridis in Poloxamer 407-Induced Acute Hyperlipidemic Rats. Open Conf. Proc. J. 2013, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Kongchian, A.; Keawboonlert, N.; Boonrak, T.; Lookyee, S.; Buasri, K.; Surongkul, N.; Tangpong, J. Anti-hyperlipidemia and anti-obesity properties of Garcinia atroviridis and Camellia sinensis extracts in high-fat diet mice. Walailak J. Sci. Technol. 2020, 17, 1126–1138. [Google Scholar] [CrossRef]
- Susanti, D.; Hamidon, H.; Taher, M.; Ahmad Rusmili, M.R.; Hamid, S.A.; Zakaria, Z.A. Lipid Accumulation Modulation by Garcinia atroviridis Fruit Extract in 3T3-L1 Adipocyte Cells. J. Biol. Act. Prod. Nat. 2020, 10, 303–316. [Google Scholar] [CrossRef]
- Lim, W.F.; Nasir, S.M.; Teh, L.K.; James, R.J.; Izhar, M.H.M.; Salleh, M.Z. The methanolic extract of Garcinia atroviridis (MeGa) reduces body weight and food intake, and improves lipid profiles by altering the lipid metabolism: A rat model. Turk. J. Biol. 2020, 44, 437–448. [Google Scholar] [CrossRef]
- Ong, C.Y.; Ling, S.K.; Ali, R.M.; Chee, C.F.; Samah, Z.A.; Ho, A.S.; Teo, S.H.; Lee, H.B. Systematic analysis of in vitro photo-cytotoxic activity in extracts from terrestrial plants in Peninsula Malaysia for photodynamic therapy. J. Photochem. Photobiol. B 2009, 96, 216–222. [Google Scholar] [CrossRef]
Part | Moisture | Fat (%) | Protein (%) | Carbohydrate (%) | Ash (%) | Mineral | Energy (Kcal) | Source |
---|---|---|---|---|---|---|---|---|
young leafy shoot | 79.1 | 0.4 | 1.8 | 15.5 | 0.6 | Ca, P, Fe, Na, K, carotenes, niacin, vitamin A, B1, B2, and C | 73 | [5] |
dried fruit | 30.3 | 1.3 | 2.7 | 51.9 | 1.6 | Ca, P, Fe, Na, K, carotenes, niacin, vitamin A, B1, B2, and C | - | |
leaf | 81.03 | 0.12 | 2.16 | 15.98 | 0.72 | Ca, P, K, Al, S, Br | 73.64 | [14] |
fresh fruit | 90.52 | 0.22 | 0.46 | 8.64 | 0.15 | Ca, P, K, Al, S, Br | 38.38 | |
fresh fruit | 0.24–23.21 | 0.35–0.81 | 1.06–2.42 | 76.86–96.03 | 1.36–2.06 | - | 303–397 | [15] |
dried unripe fruit | 5.43 | - | - | - | 1.83 | - | - | [16] |
dried ripe fruit | 6.19 | - | - | - | 1.82 | - | - |
Compound Name | Class | Part Used | Biological Activities | References |
---|---|---|---|---|
ascorbic acid | organic acid | fruit | antioxidant, anticancer, epigenetic regulator, beverages | [17,18] |
citric acid | organic acid | fruit | antioxidant, | [18,19] |
malic acid | organic acid | fruit | beverages, chelating agent, buffering | [18,20] |
succinic acid | organic acid | fruit | food additive | [18,21] |
tartaric acid | organic acid | fruit | food additive | [18] |
hydroxycitric acid | organic acid | fruit | anticancer, anti-obesity, anti-inflammatory | [22,23,24] |
pentadecanoic acid | organic acid | fruit | antimicrobial, anticancer, antihyperglycemic, anti-inflammatory | [18,25,26,27,28] |
nonadecanoic acid | organic acid | fruit | - | [18] |
dodecanoic acid | organic acid | fruit | - | [18] |
14-cis-docosenoic acid | organic acid | root | - | [29] |
atroviridin | pyranoxanthones | stem bark | - | [7] |
benzoquinone atrovirinone | ubiquinones | root | anti-inflammatory | [30,31] |
atrovirisidone | depsidones | root | - | [31] |
atrovirisidone B | depsidones | root | anticancer | [32] |
garcineflavonol A | flavonoid | stem bark | - | [33] |
garcineflavanone A | flavonoid | stem bark | - | [33] |
garcinol | terpenoid | fruit | antioxidant, anticancer, anti-inflammatory, anti-glycation, antiulcer, antibacterial | [18,34,35,36] |
α-humulene | sesquiterpenoid | fruit | antitumor, anti-inflammatory, antibacterial | [8,37,38] |
isogarcinol | terpenoid | fruit | antioxidant, anticancer, anti-inflammatory, antibacterial | [18,36] |
β-caryophyllene alcohol | sesquiterpenoid | fruit | [8] | |
(−)-β-caryophyllene | sesquiterpenoid | fruit | antioxidant, antitumor, anti-inflammatory, antibacterial, anticancer, anticonvulsant | [8,39,40,41] |
camboginol | prenyltated xanthone | fruit | antioxidant | [18,42] |
naringenin | flavonoid | root | antioxidant, anticancer, antidiabetic, anti-inflammatory, antiproliferative, antimutagenic, antiatherogenic | [32,43,44] |
3,8″-binaringenin | flavonoid | root | [32] | |
morelloflavone | flavonoid | root | antiproliferative, anti-inflammatory, antihyperlipidemic, anticancer | [29,45,46,47,48] |
4-methylhydroatrovirinone | benzenoid | root | - | [29] |
1′,1″-dibutyl methyl hydroxycitrate | organic acid | fruit | - | [49] |
2-(butoxycarbonylmethyl)-3-butoxycarbonyl-2-hydroxy-3-propanolide | organic acid | fruit | - | [49] |
fukugiside | flavonoid | root | antioxidant, antibacterial | [29,50,51] |
garcinexanthone G | xanthone | stem bark | antioxidant | [52] |
stigmasta-5,22-dien-3β-ol | sterol | stem bark | antioxidant | [52] |
stigmasta-5,22-dien-3-O-β-glucopyranoside | steroid saponin | stem bark | antioxidant | [52] |
3β-acetoxy-11α,12α-epoxyoleanan-28,13β-olide | triterpenoids | stem bark | antioxidant | [52] |
2,6-dimethoxy-p-benzoquinone | benzoquinone | stem bark | antioxidant, antibacterial | [52,53] |
1,3,5-trihydroxy2-methoxyxanthone | xanthone | stem bark | antioxidant | [52] |
1,3,7-trihydroxyxanthone | xanthone | stem bark | antioxidant, neurotropic factor | [52,54] |
kaempferol | flavonoid | stem bark | antioxidant, anti-inflammatory, antiatherogenic, hepatoprotective, cardioprotective, neuroprotective anticancer | [52,55] |
quercetin | flavonoid | stem bark | antioxidant, antidiabetic, anti-inflammatory, antimicrobial, anti-Alzheimer’s, antiarthritic, cardioprotective | [52,56] |
Plant Part | Extract Type | Antioxidant Test | Results | Reference |
---|---|---|---|---|
fruit, leaf, bark, and stem, | methanol | FTC and TBA | -fruits showed high antioxidant potential compared to other plant parts | [11] |
matured and young leaf and fruit | aqueous (distilled hot water) | DPPH and FRAP | -matured leaves and young fruits had higher antioxidant capacity | [14] |
leaf, fruit, and stem | aqueous and methanol | DPPH, ABTS, and FRAP | -all methanol extracts of all parts showed comparatively better potential than aqueous extracts -stem exhibited higher antioxidant potential among methanol part extracts | [67] |
stem bark | chloroform, hexane, dichloromethane, and methanol | DPPH | -among all the nine identified compounds from the fractions, 1,3,7-trihydroxyxanthone exhibited the highest antioxidant potential | [52] |
fruit pericarp | aqueous (hot water) | DPPH and ABTS | -fruit pericarp also has good antioxidant potential | [68] |
fruit | ethanol | DPPH | -ethanol fruit extract has good antioxidant property | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahid, M.; Law, D.; Azfaralariff, A.; Mackeen, M.M.; Chong, T.F.; Fazry, S. Phytochemicals and Biological Activities of Garcinia atroviridis: A Critical Review. Toxics 2022, 10, 656. https://doi.org/10.3390/toxics10110656
Shahid M, Law D, Azfaralariff A, Mackeen MM, Chong TF, Fazry S. Phytochemicals and Biological Activities of Garcinia atroviridis: A Critical Review. Toxics. 2022; 10(11):656. https://doi.org/10.3390/toxics10110656
Chicago/Turabian StyleShahid, Muhammad, Douglas Law, Ahmad Azfaralariff, Mukram M. Mackeen, Teek Foh Chong, and Shazrul Fazry. 2022. "Phytochemicals and Biological Activities of Garcinia atroviridis: A Critical Review" Toxics 10, no. 11: 656. https://doi.org/10.3390/toxics10110656
APA StyleShahid, M., Law, D., Azfaralariff, A., Mackeen, M. M., Chong, T. F., & Fazry, S. (2022). Phytochemicals and Biological Activities of Garcinia atroviridis: A Critical Review. Toxics, 10(11), 656. https://doi.org/10.3390/toxics10110656