Lead Exposure in Infancy and Subsequent Growth in Beninese Children
Abstract
:1. Introduction
- To investigate associations between BLLs at the age of 12.8 months and the following growth outcomes at ages 4 and 6 years in Beninese children: weight-for-age Z-score (WAZ), height-for-age Z-score (HAZ), BMI-for-age Z-score (BMIZ), weight-for-height Z-score (WHZ), and head circumference (HC) assessed at age 6 years only.
- To examine associations between childhood BLLs at the age of 12.8 months and underweight, stunting, and wasting at ages 4 and 6 years.
- To evaluate associations between childhood BLLs at the age of 12.8 months and growth velocities at ages 4 and 6 years.
2. Materials and Methods
2.1. Study Design and Population
2.2. Exposure and Data Collection
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Association between BLLs at Age 1 and WAZ, HAZ, BMI-Z, WHZ, and HC at Age 6
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falk, H. International environmental health for the pediatrician: Case study of lead poisoning. Pediatrics 2003, 112 Pt 2, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr. 2008, 20, 172–177. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, J.P.; Dietrich, K.N.; Ris, M.D.; Hornung, R.W.; Wessel, S.D.; Lanphear, B.P.; Ho, M.; Rae, M.N. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med. 2008, 5, e101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanphear, B.P.; Rauch, S.; Auinger, P.; Allen, R.W.; Hornung, R.W. Low-level lead exposure and mortality in US adults: A population-based cohort study. Lancet Public Health 2018, 3, e177–e184. [Google Scholar] [CrossRef]
- Ruckart, P.; Jones, R.; Courtney, J.; LeBlanc, T.; Jackson, W.; Karwowski, M.; Cheng, P.; Allwood, P.; Svendsen, E.; Breysse, P. Update of the Blood Lead Reference Value—United States, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1509–1512. [Google Scholar] [CrossRef] [PubMed]
- Lanphear, B.P.; Dietrich, K.; Auinger, P.; Cox, C. Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep. 2000, 115, 521–529. [Google Scholar] [CrossRef]
- Institute for Health Metrics and Evaluation (IHME). GBD Compare. 2017. Available online: https://vizhub.healthdata.org/gbd-compare/ (accessed on 5 January 2020).
- World Health Organisation. Lead Poisoning and Health. 23 August 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 6 February 2020).
- Ahmadi, S.; Maman, S.; Zoumenou, R.; Massougbodji, A.; Cot, M.; Glorennec, P.; Bodeau-Livinec, F. Hunting, Sale, and Consumption of Bushmeat Killed by Lead-Based Ammunition in Benin. Int. J. Environ. Res. Public Health 2018, 15, 1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, S.; Le Bot, B.; Zoumenou, R.; Durand, S.; Fievet, N.; Ayotte, P.; Massougbodji, A.; Alao, M.J.; Cot, M.; Glorennec, P.; et al. Follow-up of Elevated Blood Lead Levels and Sources in a Cohort of Children in Benin. Int. J. Environ. Res. Public Health 2020, 17, 8689. [Google Scholar] [CrossRef] [PubMed]
- Bodeau-Livinec, F.; Glorennec, P.; Cot, M.; Dumas, P.; Durand, S.; Massougbodji, A.; Ayotte, P.; Le Bot, B. Elevated Blood Lead Levels in Infants and Mothers in Benin and Potential Sources of Exposure. Int. J. Environ. Res. Public Health 2016, 13, 316. [Google Scholar] [CrossRef]
- Jurowski, K.; Krosniak, M. The Human Health Risk Assessment of Heavy Metals Impurities (Cd and Pb) in Herbal Medicinal Products as Menthae piperitae tinctura (Mentha × piperita L. folium) Available in Pharmacies from Poland. Toxics 2022, 10, 273. [Google Scholar] [CrossRef]
- Jurowski, K.; Krosniak, M.; Folta, M.; Cole, M.; Piekoszewski, W. The toxicological analysis of lead and cadmium in prescription food for special medical purposes and modified milk products for newborns and infants available in Polish pharmacies. J. Trace Elem. Med. Biol. 2019, 51, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurowski, K.; Krosniak, M.; Folta, M.; Cole, M.; Piekoszewski, W. Toxicological analysis of Pb and Cd by ET AAS in local anaesthetics for teething (teething gels) based on herbs available in Polish pharmacies. J. Trace Elem. Med. Biol. 2019, 52, 18–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna-Attisha, M.; LaChance, J.; Sadler, R.C.; Champney Schnepp, A. Champney Schnepp. Elevated Blood Lead Levels in Children Associated With the Flint Drinking Water Crisis: A Spatial Analysis of Risk and Public Health Response. Am. J. Public Health 2016, 106, 283–290. [Google Scholar] [CrossRef] [PubMed]
- EPA. National Primary Drinking Water Regulations for Lead and Copper: Short-Term Regulatory Revisions and Clarifications; EPA, Ed.; Environmental Protection Agency (EPA): Washington, DC, USA, 2007; pp. 57782–57820.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead. (Draft for Public Comment); Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2019.
- Hu, H.; Rabinowitz, M.; Smith, D. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: Conceptual paradigms. Environ. Health Perspect. 1998, 106, 1–8. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007.
- Cassidy-Bushrow, A.E.; Havstad, S.; Basu, N.; Ownby, D.R.; Park, S.K.; Ownby, D.R.; Johnson, C.C.; Wegienka, G. Detectable Blood Lead Level and Body Size in Early Childhood. Biol. Trace Elem. Res. 2016, 171, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Renzetti, S.; Just, A.C.; Burris, H.H.; Oken, E.; Amarasiriwardena, C.; Svensson, K.; Mercado-García, A.; Cantoral, A.; Schnaas, L.; Baccarelli, A.A.; et al. The association of lead exposure during pregnancy and childhood anthropometry in the Mexican PROGRESS cohort. Environ. Res. 2017, 152, 226–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Lanphear, B.; Muckle, G.; Bouchard, M.F.; Fisher, M.; Asztalos, E.; Foster, W.; Kuhle, S. Blood metal levels and early childhood anthropometric measures in a cohort of Canadian children. Environ. Res. 2019, 179 Pt A, 108736. [Google Scholar] [CrossRef]
- Moody, E.C.; Colicino, E.; Wright, R.O.; Mupere, E.; Jaramillo, E.G.; Amarasiriwardena, C.; Cusick, S.E. Environmental exposure to metal mixtures and linear growth in healthy Ugandan children. PLoS ONE 2020, 15, e0233108. [Google Scholar]
- Vrijheid, M.; Casas, M.; Gascon, M.; Valvi, D.; Nieuwenhuijsen, M. Environmental pollutants and child health-A review of recent concerns. Int. J. Hyg. Environ. Health 2016, 219, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Ashley-Martin, J.; Iannotti, L.; Lesorogol, C.; Hilton, C.E.; Olungah, C.O.; Zava, T.; Needham, B.L.; Cui, Y.; Brindle, E.; Straight, B. Heavy metal blood concentrations in association with sociocultural characteristics, anthropometry and anemia among Kenyan adolescents. Int. J. Environ. Health Res. 2021, 32, 1935–1949. [Google Scholar] [CrossRef]
- Dallaire, R.; Dewailly, É.; Ayotte, P.; Forget-Dubois, N.; Jacobson, S.W.; Jacobson, J.L.; Muckle, G. Growth in Inuit children exposed to polychlorinated biphenyls and lead during fetal development and childhood. Environ. Res. 2014, 134, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabelova, L.; Vandentorren, S.; Vuillermoz, C.; Garnier, R.; Lioret, S.; Botton, J. Hair concentration of trace elements and growth in homeless children aged <6 years: Results from the ENFAMS study. Environ. Int. 2018, 114, 318–325. [Google Scholar]
- Huzior-Balajewicz, A.; Pietrzyk, J.J.; Schlegel-Zawadzka, M.; Piatkowska, E.; Zachwieja, Z. The influence of lead and cadmium environmental pollution on anthropometric health factors in children. Prz. Lek. 2001, 58, 315–324. [Google Scholar]
- Lamb, M.R.; Janevic, T.; Liu, X.; Cooper, T.; Kline, J.; Factor-Litvak, P. Environmental lead exposure, maternal thyroid function, and childhood growth. Environ. Res. 2008, 106, 195–202. [Google Scholar] [CrossRef]
- Gleason, K.M.; Valeri, L.; Shankar, A.H.; Hasan, M.O.S.I.; Quamruzzaman, Q.; Rodrigues, E.G.; Christiani, D.C.; Wright, R.O.; Bellinger, D.C.; Mazumdar, M. Stunting is associated with blood lead concentration among Bangladeshi children aged 2–3 years. Environ. Health 2016, 15, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raihan, M.J.; Briskin, E.; Mahfuz, M.; Islam, M.M.; Mondal, D.; Hossain, M.I.; Ahmed, A.M.S.; Haque, R.; Ahmed, T. Examining the relationship between blood lead level and stunting, wasting and underweight- A cross-sectional study of children under 2 years-of-age in a Bangladeshi slum. PLoS ONE 2018, 13, e0197856. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.; Mombo-Ngoma, G.; Ouedraogo, S.; Kakolwa, M.A.; Abdulla, S.; Accrombessi, M.; Aponte, J.J.; Akerey-Diop, D.; Basra, A.; Briand, V.; et al. Intermittent preventive treatment of malaria in pregnancy with mefloquine in HIV-negative women: A multicentre randomized controlled trial. PLoS Med. 2014, 11, e1001733. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.; Bodeau-Livinec, F.; Zoumenou, R.; Garcia, A.; Courtin, D.; Alao, J.; Fievet, N.; Cot, M.; Massougbodji, A.; Botton, J. Comparison of growth models to describe growth from birth to 6 years in a Beninese cohort of children with repeated measurements. BMJ Open 2020, 10, e035785. [Google Scholar] [CrossRef]
- Ouedraogo, S.; Koura, G.K.; Accrombessi, M.M.; Bodeau-Livinec, F.; Massougbodji, A.; Cot, M. Maternal anemia at first antenatal visit: Prevalence and risk factors in a malaria-endemic area in Benin. Am. J. Trop. Med. Hyg. 2012, 87, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Botton, J.; Scherdel, P.; Regnault, N.; Heude, B.; Charles, M.-A.; Group, E.M.-C.C.S. Postnatal Weight and Height Growth Modeling and Prediction of Body Mass Index as a Function of Time for the Study of Growth Determinants. Ann. Nutr. Metab. 2014, 65, 156–166. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. The WHO Child Growth Standards. 2006. Available online: https://www.who.int/childgrowth/standards/en/ (accessed on 2 February 2019).
- Gonete, A.T.; Kassahun, B.; Mekonnen, E.G.; Takele, W.W. Stunting at birth and associated factors among newborns delivered at the University of Gondar Comprehensive Specialized Referral Hospital. PLoS ONE 2021, 16, e0245528. [Google Scholar]
- Abbas, F.; Kumar, R.; Mahmood, T.; Somrongthong, R. Somrongthong. Impact of children born with low birth weight on stunting and wasting in Sindh province of Pakistan: A propensity score matching approach. Sci. Rep. 2021, 11, 19932. [Google Scholar] [CrossRef] [PubMed]
- Aryastami, N.K.; Shankar, A.; Kusumawardani, N.; Besral, B.; Jahari, A.B.; Achadi, E. Low birth weight was the most dominant predictor associated with stunting among children aged 12–23 months in Indonesia. BMC Nutr. 2017, 3, 16. [Google Scholar] [CrossRef]
- Kordas, K. Iron, Lead, and Children’s Behavior and Cognition. Annu. Rev. Nutr. 2010, 30, 123–148. [Google Scholar] [CrossRef]
- Moradi, S.; Arghavani, H.; Issah, A.; Mohammadi, H.; Mirzaei, K. Food insecurity and anaemia risk: A systematic review and meta-analysis. Public Health Nutr. 2018, 21, 3067–3079. [Google Scholar] [CrossRef]
- Haschke, F.; Binder, C.; Huber-Dangl, M.; Haiden, N. Early-Life Nutrition, Growth Trajectories, and Long-Term Outcome. Nestle Nutr. Inst. Workshop. Ser. 2019, 90, 107–120. [Google Scholar]
- Veldhuis, J.D.; Roemmich, J.N.; Richmond, E.J.; Rogol, A.D.; Lovejoy, J.C.; Sheffield-Moore, M.; Mauras, N.; Bowers, C.Y. Endocrine control of body composition in infancy, childhood, and puberty. Endocr. Rev. 2005, 26, 114–146. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gao, Z.Y.; Yan, J.; Ying, X.L.; Tong, S.L.; Yan, C.H. Sex differences in the effects of prenatal lead exposure on birth outcomes. Environ. Pollut. 2017, 225, 193–200. [Google Scholar] [CrossRef]
- Shih, Y.H.; Chen, H.Y.; Christensen, K.; Handler, A.; Turyk, M.E.; Argos, M. Prenatal exposure to multiple metals and birth outcomes: An observational study within the National Children’s Study cohort. Environ. Int. 2021, 147, 106373. [Google Scholar] [CrossRef]
- Zhou, C.C.; He, Y.Q.; Gao, Z.Y.; Wu, M.Q.; Yan, C.H. Sex differences in the effects of lead exposure on growth and development in young children. Chemosphere 2020, 250, 126294. [Google Scholar] [CrossRef] [PubMed]
- Ballew, C.; Khan, L.K.; Kaufmann, R.; Mokdad, A.; Miller, D.T.; Gunter, E.W. Blood lead concentration and children’s anthropometric dimensions in the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. J. Pediatrics 1999, 134, 623–630. [Google Scholar] [CrossRef]
- Taylor, C.M.; Golding, J.; Kordas, K. Prenatal lead exposure: Associations with growth and anthropometry in early childhood in a UK observational birth cohort study. Wellcome Open Res. 2020, 5, 235. [Google Scholar] [CrossRef]
- Berry, W.D., Jr.; Moriarty, C.M.; Lau, Y.S. Lead attenuation of episodic growth hormone secretion in male rats. Int. J. Toxicol. 2002, 21, 93–98. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Category | n (%) or Mean/Median (SD) |
---|---|---|
Parental characteristics | ||
Gravidity | ||
primigravida | 116 (17.6) | |
multigravida | 129 (19.5) | |
Grand multigravida | 416 (62.9) | |
Maternal Education | ||
Primary education or more | 94 (14.4) | |
No education | 560 (85.6) | |
Maternal age at childbirth (years) | <22 22–25 26–30 >31 | 173 (26. 2) 178 (26.9) 191 (28.9) 119 (18.0) |
Pre-pregnancy BMI (kg/m2) | ||
Underweight (<18.5) | 107 (16.2) | |
Normal (18.5–24.9) | 481 (72.8) | |
Overweight (25–29.9) or obese (> 30) | 73 (11.0) | |
21 (3.2) | ||
Gestational age (weeks) | ||
<37 | 45 (6.9) | |
>37 | 606 (93.1) | |
Family wealth score at age 1 (tertiles) | ||
Lowest | 268 (41.0) | |
Medium | 195 (29.8) | |
Highest | 191 (29.2) | |
Child characteristics | ||
Sex | ||
Male | 333 (50.5) | |
Female | 326 (49.5) | |
Low birth weight | ||
Yes | 54 (8.5) | |
No | 579 (91.5) | |
Birth length | 49.1 (2.2) | |
Age of child at lead assessment (median, months) | 12.0 (1.87) | |
Low birth weight (<2.5 kg) | ||
Yes | 54 (8.5) | |
No | 579 (91.5) | |
Blood lead level (median, μg/L) | 55.7 (61.7) | |
Exclusive breastfeeding for 6 months | ||
Yes | 646 (97.7) | |
No | 12 (1.8) | |
Anemia at age 1 year Hb < 110 g/L | ||
Yes | 450 (71.5) | |
No | 179 (28.5) | |
Iron deficiency at 1 year (ferritin < 12 μg/L or 12–70 μg/L if CRP > 5 mg/L) | ||
Yes | 293 (44.33) | |
No | 368 (55.67) | |
Malaria at age 1 year | ||
Yes | 65 (10.4) | |
No | 561 (89.6) | |
Weight-for-age Z-score (6 years) | −1.24 (0.78) | |
Height-for-age Z-score (6 years) | −0.31 (0.83) | |
BMI-for-age Z-score (6 years) | −1.65 (0.87) | |
Weight-for-height Z-score | −1.67 (0.80) | |
Head circumference (6 years) (n = 370) | 49.93 (1.79) | |
Medical center location | ||
Sekou | 399 (60.6) | |
Attogon/Allada | 259 (39.4) |
Age (Year) | BLLs Quartile * | WAZ | HAZ | BMI-Z | WHZ | HC | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
unadjusted β coeff. (95% CI) | adjusted β coeff. (95% CI)a | unadjusted β coeff. (95% CI) | adjusted β coeff. (95% CI)b | unadjusted β coeff. (95% CI) | adjusted β coeff. (95% CI)c | unadjusted β coeff. (95% CI) | adjusted β coeff. (95% CI)d | unadjusted β coeff. (95% CI) | adjusted β coeff. (95% CI)e | ||
n = 659 | n = 652 | n = 659 | n = 626 | n = 659 | n = 626 | n = 659 | n = 626 | ||||
4 | 2nd | −0.01 (−0.16, 0.14) | −0.02 (−0.17, 0.13) | −0.06 (−0.21, 0.10) | −0.04 (−0.19, 0.11) | 0.05 (−0.11, 0.21) | 0.01 (−0.15, 0.18) | 0.02 (−0.14, 0.19) | 0.001 (−0.17, 0.17) | - | - |
3rd | −0.07 (−0.22, 0.09) | −0.08 (−0.24, 0.07) | −0.08 (−0.24, 0.07) | −0.07 (−0.23, 0.08) | −0.01 (−0.17, 0.15) | −0.03 (−0.19, 0.13) | −0.03 (−0.19, 0.14) | −0.04 (−0.21, 0.13) | - | - | |
4th | −0.17 (−0.33, −0.02) | −0.14 (−0.29, 0.01) | −0.17 (−0.32, −0.01) | −0.11 (0.26, 0.04) | −0.08 (−0.24, 0.08) | −0.05 (−0.21, 0.12) | −0.11 (−0.27, 0.06) | −0.07 (−0.23, 0.10) | - | - | |
P-trend † | 0.02 | 0.13 | 0.03 | 0.14 | 0.25 | 0.48 | 0.16 | 0.88 | |||
6 | n = 649 | n = 620 | n = 649 | n = 620 | n = 649 | n = 620 | n = 646 | n = 614 | n = 370 | n = 353 | |
2nd | 0.01 (−0.16, 0.18) | −0.01 (−0.18, 0.16) | −0.07 (−0.25, 0.11) | −0.05 (−0.23, 0.13) | 0.08 (−0.11, 0.27) | 0.05 (−0.14, 0.23) | 0.08 (−0.09, 0.25) | 0.05 (−0.13, 0.22) | 0.22 (−0.29, 0.72) | 0.09 (−0.41, 0.59) | |
3rd | −0.07 (−0.23, 0.10) | −0.07 (−0.24, 0.10) | −0.11 (−0.29, 0.07) | −0.10 (−0.28, 0.08) | 0.02 (−0.17, 0.21) | −0.004 (−0.19, 0.18) | −0.01 (−0.19, 0.16) | −0.01 (−0.19, 0.17) | 0.11 (−0.41, 0.62) | 0.12 (−0.39, 0.64) | |
4th | −0.16 (−0.33, 0.01) | −0.09 (−0.26, 0.08) | −0.19 (−0.37, −0.01) | −0.13 (−0.32, 0.05) | −0.04 (−0.23, 0.15) | 0.001 (−0.19, 0.20) | −0.05 (−0.22, 0.12) | 0.0004 (−0.18, 0.18) | −0.37 (−0.90, 0.16) | −0.30 (−0.84, 0.23) | |
P-trend † | 0.05 | 0.21 | 0.04 | 0.13 | 0.58 | 0.89 | 0.40 | 0.56 | 0.16 | 0.33 |
Age (Year) | BLLs Quartile * | Height Velocities (mm/Day) | Weight Velocities (g/Day) | ||
---|---|---|---|---|---|
unadjusted β coeff. (95% CI) | adjusted β coeff. (95% CI) a | unadjusted β coeff. (95% CI) | adjusted β coeff. (95% CI) a | ||
n = 659 | n = 626 | n = 659 | n = 626 | ||
4 | 2nd | −0.13 (−0.46, 0.19) | −0.11 (−0.44, 0.22) | 0.03 (−0.13, 0.20) | 0.004 (−0.16, 0.17) |
3rd | −0.19 (−0.52, 0.14) | −0.20 (−0.53, 0.14) | −0.01 (−0.17, 0.15) | −0.01 (−0.18, 0.15) | |
4th | −0.29 (−0.61, 0.04) | −0.19 (−0.52, 0.14) | −0.08 (−0.24, 0.08) | −0.03 (−0.20, 0.13) | |
P-trend † | 0.09 | 0.22 | 0.26 | 0.67 | |
n = 659 | n = 626 | n = 659 | n = 626 | ||
6 | 2nd | −0.13 (−0.46, 0.19) | −0.11 (−0.44, 0.22) | 0.05 (−0.12, 0.21) | 0.02 (−0.15, 0.18) |
3rd | −0.19 (−0.52, 0.14) | −0.20 (−0.53, 0.14) | −0.01 (−0.18, 0.16) | −0.01 (−0.18, 0.16) | |
4th | −0.29 (−0.61, 0.04) | −0.19 (−0.52, 0.14) | −0.08 (−0.24, 0.09) | −0.03 (−0.19, 0.14) | |
P-trend † | 0.08 | 0.22 | 0.29 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, S.; Botton, J.; Zoumenou, R.; Ayotte, P.; Fievet, N.; Massougbodji, A.; Alao, M.J.; Cot, M.; Glorennec, P.; Bodeau-Livinec, F. Lead Exposure in Infancy and Subsequent Growth in Beninese Children. Toxics 2022, 10, 595. https://doi.org/10.3390/toxics10100595
Ahmadi S, Botton J, Zoumenou R, Ayotte P, Fievet N, Massougbodji A, Alao MJ, Cot M, Glorennec P, Bodeau-Livinec F. Lead Exposure in Infancy and Subsequent Growth in Beninese Children. Toxics. 2022; 10(10):595. https://doi.org/10.3390/toxics10100595
Chicago/Turabian StyleAhmadi, Shukrullah, Jérémie Botton, Roméo Zoumenou, Pierre Ayotte, Nadine Fievet, Achille Massougbodji, Maroufou Jules Alao, Michel Cot, Philippe Glorennec, and Florence Bodeau-Livinec. 2022. "Lead Exposure in Infancy and Subsequent Growth in Beninese Children" Toxics 10, no. 10: 595. https://doi.org/10.3390/toxics10100595
APA StyleAhmadi, S., Botton, J., Zoumenou, R., Ayotte, P., Fievet, N., Massougbodji, A., Alao, M. J., Cot, M., Glorennec, P., & Bodeau-Livinec, F. (2022). Lead Exposure in Infancy and Subsequent Growth in Beninese Children. Toxics, 10(10), 595. https://doi.org/10.3390/toxics10100595