Selected Biochemical Markers Change after Oral Administration of Pesticide Mixtures in Honey Bees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material—Honey Bee Workers
2.2. Experimental Setup
2.3. Collection of Hemolymph
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Mortality and Syrup Intake
3.2. Enzymatic Activity
3.3. Detoxification System Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allsopp, M.H.; de Lange, W.J.; Veldtman, R. Valuing Insect Pollination Services with Cost of Replacement. PLoS ONE 2008, 3, e3128. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Fishel, F.M.; Ferrell, J.A. Managing Pesticide Drift; Agronomy Department. PI232; University of Florida: Gainesville, FL, USA, 2013; Available online: http://edis.ifas.ufl.edu/pi232 (accessed on 1 April 2022).
- Kaur, R.; Mavi, G.K.; Raghav, S.; Khan, I. Pesticides Classification and its Impact on Environment. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1889–1897. [Google Scholar] [CrossRef]
- Decourtye, A.; Devillers, J. Ecotoxicity of Neonicotinoid Insecticides to Bees. In Insect Nicotinic Acetylcholine Receptors; Thany, S.H., Ed.; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2010; Volume 683, pp. 85–95. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Decourtye, A.; Devillers, J.; Cluzeau, S.; Charreton, M.; Pham-Delègue, M.H. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 2004, 57, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, T. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: A unique hypothesis. Neurochem. Int. 2013, 62, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Grünewald, B.; Siefert, P. Acetylcholine and Its Receptors in Honeybees: Involvement in Development and Impairments by Neonicotinoids. Insects 2019, 10, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migdał, P.; Roman, A.; Popiela-Pleban, E.; Kowalska-Góralska, M.; Opaliński, S. The Impact of Selected Pesticides on Honey Bees. Pol. J. Environ. Stud. 2018, 27, 787–792. [Google Scholar] [CrossRef]
- Paleolog, J.; Wilde, J.; Miszczak, A.; Gancarz, M.; Strachecka, A. Antioxidation Defenses of Apis mellifera Queens and Workers Respond to Imidacloprid in Different Age-Dependent Ways: Old Queens Are Resistant, Foragers Are Not. Animals 2021, 11, 1246. [Google Scholar] [CrossRef] [PubMed]
- Paleolog, J.; Wilde, J.; Siuda, M.; Bąk, B.; Wójcik, Ł.; Strachecka, A. Imidacloprid markedly affects hemolymph proteolysis, biomarkers, DNA global methylation, and the cuticle proteolytic layer in western honeybees. Apidologie 2020, 51, 620–630. [Google Scholar] [CrossRef] [Green Version]
- Łoś, A.; Strachecka, A. Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution. Sensors 2018, 18, 1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almasri, H.; Tavares, D.A.; Pioz, M.; Sené, D.; Tchamitchian, S.; Cousin, M.; Brunet, J.L.; Belzunces, L.P. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 2020, 203, 111013. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, M.; He, J.; Zhao, X.; Chaimanee, V.; Huang, W.F.; Nie, H.; Zhao, Y.; Su, S. Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana. Pestic. Biochem. Physiol. 2017, 140, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wilde, J.; Frączek, R.J.; Siuda, M.; Bąk, B.; Hatjina, F.; Miszczak, A. The influence of sublethal doses of imidacloprid on protein content and proteolytic activity in honey bees (Apis mellifera L.). J. Apic. Res. 2016, 55, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.C.; Yao, J.; Adamczyk, J.; Luttrell, R. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS ONE 2017, 12, e0176837. [Google Scholar] [CrossRef]
- Medrzycki, P.; Giffard, H.; Aupinel, P.; Belzunces, L.; Chauzat, M.P.; Claßen, C.; Colin, M.E.; Dupont, T.; Girolami, V.; Johnson, R.; et al. Standard methods for toxicology research in Apis mellifera. J. Apic. Res. 2013, 52, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Iwasa, T.; Motoyama, N.; Ambrose, J.T.; Roe, R.M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 2004, 23, 371–378. [Google Scholar] [CrossRef]
- Brunet, J.L.; Badiou, A.; Belzunces, L.P. In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag. Sci. 2005, 61, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Migdał, P.; Murawska, A.; Roman, A. A modified standardized method to extract and store insect hemolymph with use of a glass capillary. J. Apic. Sci. 2020, 64, 165–168. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 2 April 2022).
- Wang, Y.; Zhang, W.; Shi, T.; Xu, S.; Lu, B.; Qin, H.; Yu, L. Synergistic toxicity and physiological impact of thiamethoxam alone or in binary mixtures with three commonly used insecticides on honeybee. Apidologie 2020, 51, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Walker, E.K.; Brock, G.N.; Arvidson, R.S.; Johnson, R.M. Acute Toxicity of Fungicide–Insecticide–Adjuvant Combinations Applied to Almonds During Bloom on Adult Honey Bees. Environ. Toxicol. Chem. 2022, 41, 1042–1053. [Google Scholar] [CrossRef] [PubMed]
- Belsky, J.; Biddinger, D.J.; Seiter, N.; Joshi, N.K. Various routes of formulated insecticide mixture whole-body acute contact toxicity to honey bees (Apis mellifera). Environ. Chall. 2022, 6, 100408. [Google Scholar] [CrossRef]
- Strachecka, A.; Krauze, M.; Olszewski, K.; Borsuk, G.; Paleolog, J.; Merska, M.; Chobotow, J.; Bajda, M.; Grzywnowicz, K. Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochem. Mosc. 2014, 79, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Bajda, M.; Splitt, A.; Merska-Kazanowska, M. Effect of amphotericin B on the biochemical markers in the haemolymph of honey bees. Med. Weter 2014, 70, 766–769. [Google Scholar]
- Strachecka, A.; Olszewski, K.; Paleolog, J.; Borsuk, G.; Bajda, M.; Krauze, M.; Merska, M.; Chobotow, J. Coenzyme q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera. Arch. Insect Biochem. Physiol. 2014, 86, 165–179. [Google Scholar] [CrossRef]
- Schulz, M.; Łoś, A.; Grzybek, M.; Ścibior, R.; Strachecka, A. Piperine as a new natural supplement with beneficial effects on the life-span and defence system of honeybees. J. Agric. Sci. 2019, 157, 140–149. [Google Scholar] [CrossRef]
- Strachecka, A.J.; Olszewski, K.; Paleolog, J. Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. J. Apic. Sci. 2015, 59, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Strachecka, A.; Olszewski, K.; Paleolog, J. Varroa treatment with bromfenvinphos markedly suppresses honeybee biochemical defence levels. Entomol. Exp. Appl. 2016, 160, 57–71. [Google Scholar] [CrossRef]
Group | Acetamiprid (µg) | Glyphosate (µL) | Tebuconazole (µg) |
---|---|---|---|
C | 0.00 | 0.00 | 0.00 |
I | 0.21 | 0.02 | 2.67 |
II | 0.28 | 0.06 | 2.63 |
III | 0.45 | 0.14 | 2.83 |
IV | 0.49 | 0.20 | 1.54 |
V | 0.61 | 0.03 | 2.88 |
VI | 0.67 | 0.07 | 2.08 |
VII | 0.69 | 0.10 | 1.08 |
VIII | 1.00 | 0.03 | 2.08 |
IX | 0.80 | 0.05 | 0.83 |
X | 1.47 | 0.04 | 1.15 |
XI | 3.64 | 0.00 | 0.00 |
XII | 0.00 | 0.48 | 0.00 |
XIII | 0.00 | 0.00 | 7.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migdal, P.; Murawska, A.; Berbeć, E.; Plotnik, M.; Skorus, A.; Latarowski, K. Selected Biochemical Markers Change after Oral Administration of Pesticide Mixtures in Honey Bees. Toxics 2022, 10, 590. https://doi.org/10.3390/toxics10100590
Migdal P, Murawska A, Berbeć E, Plotnik M, Skorus A, Latarowski K. Selected Biochemical Markers Change after Oral Administration of Pesticide Mixtures in Honey Bees. Toxics. 2022; 10(10):590. https://doi.org/10.3390/toxics10100590
Chicago/Turabian StyleMigdal, Pawel, Agnieszka Murawska, Ewelina Berbeć, Mateusz Plotnik, Anita Skorus, and Krzysztof Latarowski. 2022. "Selected Biochemical Markers Change after Oral Administration of Pesticide Mixtures in Honey Bees" Toxics 10, no. 10: 590. https://doi.org/10.3390/toxics10100590
APA StyleMigdal, P., Murawska, A., Berbeć, E., Plotnik, M., Skorus, A., & Latarowski, K. (2022). Selected Biochemical Markers Change after Oral Administration of Pesticide Mixtures in Honey Bees. Toxics, 10(10), 590. https://doi.org/10.3390/toxics10100590