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Abstract: The honey bee is an important pollinator. In the environment, it can be exposed to many
harmful factors, such as pesticides. Nowadays, attention is paid to evaluating the potentially harmful
effects of these substances. This study aimed to evaluate the effect of worst-case environmental
concentrations of pesticide mixtures on honey bee survival and selected physiological markers (the
activity of ALT, AST, ALP, and GGTP, and the concentration of albumin, creatinine, urea, and uric
acid). Pesticides of three different groups (insecticide—acetamiprid, herbicide—glyphosate, and
fungicide—tebuconazole) and their mixtures were resolved in 50% (w/v) sucrose solution and given
to bees ad libitum. After 24 h, hemolymph was collected. All mixtures caused higher mortality than
single pesticides. Pesticides in mixtures caused disturbances in biochemical markers, and in some
cases the interaction between pesticides was synergistic. The mixtures had individual effects on
physiology, and the results were sensitive to changes in proportions.
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1. Introduction

As a pollinator, the honey bee has a positive effect on increasing agricultural yields
and preserving biodiversity. Bee pollination is valued at around 15 billion USD in the US,
19 billion USD in Europe, and 69 billion USD in East Asia [1]. For many years, the toxicity
of pesticides to these insects has drawn the attention of researchers. One of the criteria for
the division of pesticides concerns the type of target pest [2]. This classification includes,
among others, insecticides, fungicides, and herbicides [3,4]. Honey bee contact with the
pesticide at a sub-lethal dose may affect their behavior and/or physiology. Poisoning
may occur after contact and/or oral exposure. Systemic pesticides, commonly used in
developed countries, spread in plant tissues and may accumulate in plant nectar and pollen.
In addition to exposure to harmful substances in the environment, bees may also come
into contact with them in the hive, as they collect potentially contaminated nectar or pollen
and store it in combs [5]. Due to the fact that many different pesticides are used in plant
production, and their residues can accumulate in the environment, bees come into contact
with many different toxins in various concentrations and proportions simultaneously [6].
When combined, an additive effect (i.e., the sum of the individual substances), synergistic
effect (greater than an additive effect), or antagonistic effect (less than an additive effect)
may occur. According to Regulation (EC) No 1107/2009 of the European Parliament and of
the Council of 21 October 2009 concerning the placing of plant protection products on the
market and repealing Council Directives 79/117/EEC and 91/414/EEC, mixing pesticides
is a legal action unless it is expressly prohibited on the label of the product.

So far, the exposure of honey bees to pesticides has been shown to affect bee motor
activity, navigation, feeding, learning ability, and memory, to weaken the immune and
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reproductive systems, and to activate the body’s antioxidant and detoxification mecha-
nisms [7–12]. In order to fight harmful substances, the honey bee organism has developed
many defense mechanisms within their detoxification and antioxidant systems. The detoxi-
fication mechanisms of the bee body mainly include enzymes involved in the metabolism
of toxins or the detoxification process, i.e., cytochrome P450 monooxygenase (P450), glu-
tathione transferase (GST), carboxylesterase (COE), aspartate aminotransferase (AST),
alkaline aminotransferase (ALT) (ALP), gamma-glutamyl transpeptidase (GGTP), and
bilirubin [12,13]. The mechanisms of the antioxidant system are designed to remove free
radicals from the body. Antioxidants give electrons to free radicals and, as a result, the
possibility of oxidizing other components is blocked. Among antioxidants, enzymatic
antioxidants, such as glutathione peroxidase (GPX), catalases (CAT), superoxide dismu-
tase (SOD), and glucose-6-phosphate dehydrogenase (GP6D), can be distinguished from
non-enzymatic antioxidants (e.g., albumin, creatinine, glutathione, uric acid, urea, and vita-
mins) [11,13]. Many studies have confirmed that insecticides change enzyme activity and
the content of some key substances [11,12,14–17]. However, reference values have not been
estimated and there is still a lack of information about the influence of pesticide mixtures.

Our research aimed to investigate how oral exposure to pesticide mixtures affects the
activity of selected hemolymph enzymes and non-enzymatic antioxidants of worker honey
bees, i.e., ALT, ALP, AST, GGTP, albumin, creatinine, uric acid, and urea.

2. Materials and Methods
2.1. Research Material—Honey Bee Workers

Honey bee (Apis mellifera carnica) colonies used for research were treated against
Varroa destructor using amitraz fumigation four times at 4-day intervals (12.5 mg/tablet;
Apiwarol®, Biowet, Pulawy, Poland) before starting the experiment. To monitor the number
of Nosema spp. spores, the hemocytometer method was used (30 bees per hive in three
repetitions). After 28 days from the last fumigation, we selected 3 frames with bee brood in
20 days of apian development. Next, we took the brood to the laboratory and incubated it at
temperatures of 34 and 70% of relative humidity. After 24 h, we collected the bees. Worker
bees were placed in wooden cages (20 cm × 15 cm × 7 cm), each containing 100 workers and
two inner feeders with 50% (w/v) sucrose solution (Chempur®, Piekary Śląskie, Poland)
ad libitum. The adaptation process lasted 24 h at a temperature of 25 ◦C ± 0.5 ◦C and
relative humidity of 70% ± 5%. Caged bees were maintained in the incubator in the same
conditions described above until being used for the experiment [18]. Two-day-old bees
were used in the study, and the bees were divided into 14 groups. Dead bees were utilized
by a special biohazard waste company.

2.2. Experimental Setup

Each group consisted of ten cages. The experiment was performed by feeding bees
50% (w/v) sucrose solution containing the established concentrations of particular pes-
ticides for 24 h. Bees in the experimental groups were exposed to the single-pesticide
commercial formulations or their trinary mixtures in different proportions. The control
group was fed an untreated 50% (w/v) sucrose solution. The experiment used doses of
pesticides recommended by the manufacturer for the selected active substance, which repre-
sented worst-case environmental concentrations. The bees were exposed to the insecticide
Mospilan® 20SP, Target, Kartoszyno, Poland (ai acetamiprid 20%), the herbicide Agrosar®

360 SL, CIECH Sarzyna, Nowa Sarzyna, Poland (ai glyphosate 36%), and the fungicide
Tebu® EW, HELM, Hamburg, Germany (ai tebuconazole 25.8%) (Figure 1). Acetamiprid,
as a cyano-substituted neonicotinoid, has a higher dose value that kills 50% of honey
bees (LD50) compared to the nitro-substituted neonicotinoids (imidacloprid, clothianidin,
thiamethoxam) and is considered less toxic than them [5,19]. However, its toxicity can be
higher after being mixed with fungicide [20]. The LD50 of acetamiprid is 14,530 ng/bee
(food exposure) and 8090 ng/bee (contact exposure) [5]. Mortality and syrup intake were
recorded after 24 h.
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lymph was conserved in a 20 μL end-to-end glass capillary without anticoagulant. Hemo-
lymph from the control honey bees was collected at the same time. The test tubes were 
placed on the cooling block during the operation. After collecting the hemolymph, sam-
ples were stored at −80 °C [21]. 
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Figure 1. The scheme of treatments. Each group was fed ad libitum with a solution of a total volume of
6 mL. The solution composition differed between groups. The group abbreviated as C was a control
group, fed with 50% (w/v) sucrose solution. Groups XI–XIII were fed with single pesticides dissolved
in 50% (w/v) sucrose solution. Groups I-X were fed with pesticide compositions consisting of each
type of pesticide in varying proportions.

2.3. Collection of Hemolymph

Hemolymph was taken from 100 alive worker honey bees from each group im-
mediately after 24 h of oral exposure by removing the antennae with sterile tweezers.
Hemolymph was conserved in a 20 µL end-to-end glass capillary without anticoagulant.
Hemolymph from the control honey bees was collected at the same time. The test tubes
were placed on the cooling block during the operation. After collecting the hemolymph,
samples were stored at −80 ◦C [21].

2.4. Biochemical Analysis

Hemolymph biochemical parameters were determined using the Pentra 400 automated
biochemical analyzer by Horiba ABX (Longjumeau, France). The colorimetric method with
the use of bromocresol green and the creatinine kinetic method with alkaline picrate were
used for measurement of complex formation coloring; urea—the UV enzyme test; uric
acid—the enzymatic method using the Trinder reaction with Horiba ABX reagents were
used to assess the level of albumin activity. Reagents from Randox (Crumlin, Great Britain)
were used to assess the enzymatic activity (aspartate aminotransferase—AST, alkaline
phosphatase—ALP, alanine aminotransferase—ALT, gamma-glutamyl transpeptidase—
GGTP). Analysis kits for ALP—the photometric kinetic test in accordance with the rec-
ommendations of the International Federation of Clinical Chemistry (IFCC); for ALT and
AST—the enzymatic method (UV detection) in accordance with IFCC recommendations;
and for GGTP—the kinetic photometric test.
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2.5. Statistical Analysis

Statistical analyses were performed using the R program, version 3.4.4 (R Core Team,
2018, R-3.4.4 for Windows, CRAN, Vienna, Austria), with the RStudio overlay, using, inter
alia, the packages “dplyr”, “tidyr”, “agricolae”, and “ggplot2” [22]. The normality of the
distribution was checked by the Shapiro–Wilk test, and the differences between the groups
by the Kruskal–Wallis test with holm correction for multiple comparisons, α = 0.05. In
Inkscape, the experiment scheme was made, and the charts were visually improved.

3. Results
3.1. Mortality and Syrup Intake

In the control group, there was 0% mortality. Among the pesticides administered sepa-
rately, none caused acute toxicity, with the highest mortality after fungicide administration
being only 3.2% (Figure 2 and Table 1). All compositions showed mortality significantly
higher than the control, while all except groups III and IV caused mortality higher than
single pesticides. The highest mortality—over 70%—occurred in groups VIII, IX, and IV.
Considering syrup intake within separately administered pesticides, the herbicide caused
an intake similar to the control, while the fungicide intake was almost 50% lower, but the
difference was not statistically significant. Mean values of syrup intake were lower in all
compositions compared to the control, but the difference was statistically significant only
in group I, with the lowest value over 3× lower than the control.
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Figure 2. Mortality and syrup intake during 24 h of the experiment. Bars represent the mean,
and error bars represent the standard deviation. The same letters between groups within one plot
means no statistically significant differences (Kruskal–Wallis test with holm correction for multiple
comparisons, α = 0.05); the statistical values are shown in the lower right corner of each graph.

Table 1. The dose of each active ingredient per individual bee used in the research.

Group Acetamiprid (µg) Glyphosate (µL) Tebuconazole (µg)

C 0.00 0.00 0.00

I 0.21 0.02 2.67

II 0.28 0.06 2.63

III 0.45 0.14 2.83

IV 0.49 0.20 1.54

V 0.61 0.03 2.88

VI 0.67 0.07 2.08

VII 0.69 0.10 1.08

VIII 1.00 0.03 2.08

IX 0.80 0.05 0.83
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Table 1. Cont.

Group Acetamiprid (µg) Glyphosate (µL) Tebuconazole (µg)

X 1.47 0.04 1.15

XI 3.64 0.00 0.00

XII 0.00 0.48 0.00

XIII 0.00 0.00 7.75

3.2. Enzymatic Activity

The overall effect of pesticides was an increase in alanine aminotransferase (ALT).
Of the single pesticides, only the insecticide increased ALT (Figure 3). All compositions
caused an increase except group IV (with the highest amount of herbicide). The highest
value was in group VII—more than 7× higher than the control and more than 2× higher
than the single insecticide. Concerning aspartate aminotransferase (AST), the overall
effect of pesticides was an increase in this parameter. Of the single pesticides, only the
insecticide increased AST. All compositions except group IX caused an increase in AST. The
highest increase occurred in group VII—more than 4× higher than the control and almost
2× higher than the insecticide, with a high value also in group X (composition with the
highest proportion of insecticide). The overall effect of pesticides on alkaline phosphatase
(ALP) was an increase in this parameter. Of the single pesticides, the insecticide and
fungicide caused an increase in this parameter, while the herbicide had no effect. Most of
the compositions increased ALP—only groups III and VII showed no increase. The highest
value was found in group II—more than twice as high as the control, and a high value also
in group VI. Generally, pesticides caused an increase or a decrease in gamma-glutamyl
transpeptidase (GGTP), but the decreases were not statistically significant. Among the
single pesticides, the differences were not significant in any, but the herbicide caused a very
low GGTP value, while the fungicide caused an increase in GGTP. Among the compositions,
groups IX and III caused a lower level of GGTP than in the control; however, the difference
was not statistically significant. The highest value of GGTP occurred in group VI (approx.
4× higher than the control), and a significant increase in this indicator was also observed
in groups II and VII.
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3.3. Detoxification System Indicators

Generally, pesticides caused the albumin levels to rise or fall. Among single pesticides,
only the fungicide significantly changed the level of albumin, causing an increase (Figure 4).
No composition had a higher level than the fungicide, while the highest values occurred in
groups VI, II, and I. In the IX group, the albumin level was 3× lower than in the control.
Pesticides generally caused a drop in creatinine levels. Among the pure pesticides, a
statistically significant effect occurred only for the insecticide. Of the compositions, only
two groups did not cause a statistically significant decrease (I and IV). The lowest value
occurred in group IX, while low levels of creatinine also occurred in groups VII, VIII, III,
and X. The values of urea acid after pesticide exposure were higher or lower than the
control. Neither group differed statistically significantly from the control. The highest
values were found in group V (2× higher than the control), and high levels of uric acid
were also in groups VI and VIII. The lowest values were in groups I and IX and the single
insecticide. Pesticides caused both an increase and a decrease in urea levels, with the higher
values not statistically different from the control. The lowest value occurred in group IX
(approx. 4× lower than the control), and low urea rates also occurred in groups IV and III.
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4. Discussion

The pesticide compositions induced much higher acute toxicity than single pesticides.
The differences were so large that this relationship can be called synergistic for all tested
compositions. The synergistic mortality-increasing effect of the combinations of different
types of pesticides has been previously observed [14,17,23]. This study suggests that the
use of Acetamiprid, Glyphosate, and Tebuconazole in mixtures can significantly increase
bee mortality. The specified toxicity in the first 24 h of our study was high. A bee in
the environment, had it come into contact with such a set of pesticides, would not have
returned to the hive. The concentrations of the pesticides did not exceed the manufacturer’s
recommendations and were given to the bees separately; they did not show a significant
effect on survival with short-term 24-h exposure. Walker et al. [24], investigating the
linkage of an insecticide, fungicide, and adjuvant, had similar observations. The pesti-
cides in combinations caused higher mortality than those used alone in the studies by
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Belsky et al. [25]. This shows that it is very important to compare the honey bee toxicity of
individual pesticides and their mixtures. Additionally, the high toxicity of the pesticide
compositions was confirmed by the syrup intake generally being lower in groups fed with
the pesticide compositions than in groups fed with the single pesticides and control. Higher
mortality was observed in the groups with pesticide mixtures despite lower syrup intake.

The pesticide mixtures had an individual effect; for each enzyme tested, there were
compositions whose effect was greater than that of single pesticides. The general effect of
single pesticides and mixtures on AST, ALT, and ALP was, if one occurred, an increase in
these indicators. The observed effect on GGTP was either the increase or decrease of its
activity compared to the control. Our research showed statistically significant changes in
the activity of ALT, AST, and ALP compared to the control group in the case of most of the
mixtures of pesticides. Similar observations of changes in activity were observed in the
studies by Zhu et al. [17] when combining two insecticides containing the active substances
imidacloprid and oxamyl, which resulted in a decrease in the activity of phenoloxidase—an
immunity enzyme—and this effect did not occur when these substances were administered
separately. Two binary compositions, thiamethoxam + λ-cyhalothrin and thiamethoxam
+ abamectin, caused a significant decrease in the activity and expression of a group of
key insect detoxifying enzymes—glutathione S-transferases. A significant increase in
mortality was also observed in these groups compared to the effects of single pesticides. In
addition, thiamethoxam + abamectin caused a significant increase in ALP expression with
a simultaneous decrease in the activity of this enzyme [23]. Changes in the activity of AST,
ALT, and ALP have also been demonstrated in studies on the effect of imidacloprid [12]. In
our research, the effect of selected plant protection products was an increase in the activity
of these enzymes. Changes in the activity of these enzymes were also observed when bees
were exposed to other substances. Bromfenvinphos, which is a substance used to treat
bees during the infestation of the Varroa destructor mite, caused a decrease in the activity
of AST, ALT, and ALP [26]. A similar effect was observed with the antifungal antibiotic
amphotericin B [27]. During long-term coenzyme Q10 supplementation, an increase in ALT,
AST, and ALP activity was observed [28]. Caffeine also caused an increase in the activity
of these enzymes, and a similar effect was observed for piperine [29] and curcumin [30].
Increased concentrations of enzymes in the hemolymph may indicate a greater need for
them by the organism.

Pesticides and mixtures caused a decrease in creatinine concentration, while in the
case of albumin, urea, and uric acid an increase was observed in some groups, while a
decrease was observed in others. Some mixtures of pesticides had a greater effect than
individual pesticides; thus, in the case of the detoxification system, the individual effect of
the mixture was also visible. The single use of the fungicide and some mixtures increased
the concentration of albumin, and a similar effect was observed with the administration of
bromfenvinphos used in the treatment of varroosis. Bromfenvinphos also caused a decrease
in creatinine, urea, and uric acid levels [31]. Long-term administration of coenzyme Q10
caused a decrease in each of these indicators [28]. Caffeine supplementation caused an
increase in uric acid and creatinine concentration and a decrease in albumin and urea
concentration, and curcumin had a similar effect [30]. Albumin, creatinine, uric acid, and
urea are substances that can also be classified as non-enzymatic antioxidants [28], hence
they participate in the detoxification of oxidative stress agents.

5. Conclusions

Assessing the degree of pesticide effects on the honey bee in different combinations of
substances continuously provides new information. It can be seen that the multidirectional
exposure of bees to pesticides contributes to an increase in mortality and the disruption of
the activity of biochemical markers. Such disturbances in the functioning of the organism
may cause higher sensitivity to external factors. Showing the effects of single substances
and comparing them with the effects of their mixtures is the basis for developing this
research area.
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