The Association between Mercury and Lead Exposure and Liver and Kidney Function in Pregnant Surinamese Women Enrolled in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Environmental Epidemiologic Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Liver and Kidney Function Assessments
2.3. Collection and Heavy Metal Analysis
2.4. Data and Statistical Analysis
3. Results
3.1. Blood Level Values for Liver and Kidney Function Biomarkers
3.2. Kidney Function
3.3. Liver Function
3.4. Heavy Metals
3.5. Weighted Least Squares Regression Predictive Modeling
4. Discussion
4.1. Kidney Function
4.2. Liver Function
4.3. Mercury
4.3.1. Kidney Function
4.3.2. Liver Function
4.3.3. Demographics
4.4. Lead
4.4.1. Kidney Function
4.4.2. Liver Function
4.4.3. Demographics
4.5. Kidney Function Demographics
4.5.1. Age
4.5.2. Geographic Region
4.5.3. Ethnicity and Socioeconomic Status
4.6. Liver Function Demographics
4.6.1. Geographic Location
4.6.2. Socioeconomics
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bharti, J.; Vatsa, R.; Singhal, S.; Roy, K.K.; Kumar, S.; Perumal, V.; Meena, J. Pregnancy with Chronic Kidney Disease: Maternal and Fetal Outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 204, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Cui, A.-M.; Wang, Q.; Cheng, X.-Y.; Shen, Y.; Cai, W.-H.; Li, H.-B.; Zhang, S.; Qin, G. Liver Dysfunction during Pregnancy and Its Association With Preterm Birth in China: A Prospective Cohort Study. EBioMedicine 2017, 26, 152–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuyts, G.D.; Phd, H.; Elseviers, M.M.; De Broe, M.E. New Occupational Risk Factors for Chronic Renal Failure. Lancet 1995, 346, 7–11. [Google Scholar] [CrossRef]
- Zalups, R.K. Molecular Interactions with Mercury in the Kidney. Pharmacol. Rev. 2000, 52, 113–143. [Google Scholar]
- Hou, S. Historical Perspective of Pregnancy in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2007, 14, 116–118. [Google Scholar] [CrossRef]
- Williams, D.; Davison, J. Pregnancy plus: Chronic Kidney Disease in Pregnancy. BMJ 2008, 336, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Zalups, R.K. Basolateral Uptake of Inorganic Mercury in the Kidney. Toxicol. Appl. Pharmacol. 1998, 151, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Gibb, H.; O’Leary, K.G. Mercury Exposure and Health Impacts among Individuals in the Artisanal and Small-Scale Gold Mining Community: A Comprehensive Review. Environ. Health Perspect. 2014, 122, 667–672. [Google Scholar] [CrossRef]
- Samir, A.M.; Aref, W.M. Impact of Occupational Exposure to Elemental Mercury on Some Antioxidative Enzymes among Dental Staff. Oxicol. Ind. Heal. 2011, 27, 779–786. [Google Scholar] [CrossRef]
- Mutter, J. Is Dental Amalgam Safe for Humans? The Opinion of the Scientific Committee of the European Commission. J. Occup. Med. Toxicol. 2011, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Nerentorp Mastromonaco, M.G.; Gårdfeldt, K.; Assmann, K.M.; Langer, S.; Delali, T.; Shlyapnikov, Y.M.; Zivkovic, I.; Horvat, M. Speciation of Mercury in the Waters of the Weddell, Amundsen and Ross Seas (Southern Ocean). Mar. Chem. 2017, 193, 20–33. [Google Scholar] [CrossRef]
- Ramasamy, E.V.; Jayasooryan, K.K.; Chandran, M.S.S.; Mohan, M. Total and Methyl Mercury in the Water, Sediment, and Fishes of Vembanad, a Tropical Backwater System in India. Environ. Monit. Assess. 2017, 189, 130. [Google Scholar] [CrossRef]
- Frieberg, L. Environmental Health Criteria; Inorganic Mercury. World Health Organization: Geneva, Switzerland, 1991. [Google Scholar]
- Staessen, J.A.; Lauwerys, R.R.; Buchet, J.-P.; Bulpitt, C.J.; Rondia, D.; Vanrenterghem, Y.; Amery, A. Impairment of Renal Function with Increasing Blood Lead Concentrations in the General Population. N. Engl. J. Med. 1992, 327, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Prüss-üstün, A.; Campbell-lendrum, D.; Corvalán, C.; Woodward, A.; Prüss-Ustün, A.; Mathers, C.; Fewtrell, L. Introduction and Methods: Assessing the Environmental Burden of Disease at National and Local Levels. Environ. Burd. Dis. Ser. 2003, 1, 1–73. [Google Scholar]
- Rimbaud, D.; Restrepo, M.; Louison, A.; Boukhari, R.; Ardillon, V.; Carles, G.; Lambert, V.; Jolivet, A. Blood Lead Levels and Risk Factors for Lead Exposure among Pregnant Women in Western French Guiana: The Role of Manioc Consumption. J. Toxicol. Environ. Health—Part A Curr. Issues 2017, 80, 382–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fachehoun, R.C.; Lévesque, B.; Dumas, P.; St-Louis, A.; Dubé, M.; Ayotte, P. Lead Exposure through Consumption of Big Game Meat in Quebec, Canada: Risk Assessment and Perception. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Poursafa, P.; Ataee, E.; Motlagh, M.E.; Ardalan, G.; Tajadini, M.H.; Yazdi, M.; Kelishadi, R. Association of Serum Lead and Mercury Level with Cardiometabolic Risk Factors and Liver Enzymes in a Nationally Representative Sample of Adolescents: The CASPIAN-III Study. Environ. Sci. Pollut. Res. 2014, 21, 13496–13502. [Google Scholar] [CrossRef]
- Cave, M.; Appana, S.; Patel, M.; Falkner, K.C.; McClain, C.J.; Brock, G. Polychlorinated Biphenyls, Lead, and Mercury Are Associated with Liver Disease in American Adults: NHANES 2003-2004. Environ. Health Perspect. 2010, 118, 1735–1742. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Ko, K.B.; Leem, J.H.; Ha, E.H.; Kim, J.H.; Hong, Y.C. Environmental Lead Exposure Affects Liver Function. Epidemiology 2006, 17, S429. [Google Scholar] [CrossRef]
- Ahmed, K.T.; Almashhrawi, A.A.; Rahman, R.N.; Hammoud, G.M.; Ibdah, J.A. Liver Diseases in Pregnancy: Diseases Unique to Pregnancy. World J. Gastroenterol. 2013, 19, 7639–7646. [Google Scholar] [CrossRef]
- Walker, I.; Chappell, L.C.; Williamson, C. Abnormal Liver Function Tests in Pregnancy. BMJ 2013, 347, f6055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nzioka Mutua, D.; Nyaga, E.; Njagi, M.; Orinda, G.; Mutua, D.N. Liver Function Tests in Normal Pregnant Women. J. Liver 2018, 7, 2. [Google Scholar] [CrossRef]
- Burtis, C.A.; Ashwood, E.R.; Bruns, D.E.; Tietz, N.W. Tietz Fundamentals of Clinical Chemistry; Saunders Elsevier: Amsterdam, The Netherlands, 2008; ISBN 9780721638652. [Google Scholar]
- Hosten, A.O. BUN and Creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations; Butterworths: Boston, MA, USA, 1990; pp. 874–878. ISBN 040990077X. [Google Scholar]
- Onopiuk, A.; Tokarzewicz, A.; Gorodkiewicz, E. Cystatin C: A Kidney Function Biomarker. Adv. Clin. Chem. 2015, 68, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, J.; Yuan, E.; Li, Y.; Wang, Q.; Jia, L.; Wang, L.; Su, Y. Gestational Age-Specific Reference Intervals for 15 Biochemical Measurands during Normal Pregnancy in China. Ann. Clin. Biochem. 2018, 55, 446–452. [Google Scholar] [CrossRef] [PubMed]
- General Bureau of Statistic Studies in Suriname. Results Eighth Population and Housing Census in Suriname (Volume 1) Demographic and Social Characteristics and Migration; ABS: Paramaribo, Suriname, 2013. [Google Scholar]
- Zijlmans, W.; Wickliffe, J.; Hindori-Mohangoo, A.; MacDonald-Ottevanger, S.; Ouboter, P.; Landburg, G.; Codrington, J.; Roosblad, J.; Baldewsingh, G.K.; Ramjatan, R.; et al. Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Cohort Study: Influences of Complex Environmental Exposures on Maternal and Child Health in Suriname. BMJ Open 2020, 10, e034702. [Google Scholar] [CrossRef]
- Wickliffe, J.K.; Lichtveld, M.Y.; Zijlmans, C.W.; MacDonald-Ottevanger, S.; Shafer, M.; Dahman, C.; Harville, E.W.; Drury, S.; Landburg, G.; Ouboter, P. Exposure to Total and Methylmercury among Pregnant Women in Suriname: Sources and Public Health Implications. J. Expo. Sci. Environ. Epidemiol. 2020, 31, 117–125. [Google Scholar] [CrossRef]
- WHO. WHO|Lead Poisoning and Health. Available online: http://www.who.int/mediacentre/factsheets/fs379/en/ (accessed on 2 April 2018).
- Beckman Coulter. Synchron Systems Chemistry Information Sheet BUN Urea Nitrogen A18467 AJ; Beckman Coulter: Brea, CA, USA, 2014. [Google Scholar]
- Beckman Coulter. Synchron Systems Chemistry Information Sheet AST Aspartate Aminotransferase A18460 AP; Beckman Coulter: Brea, CA, USA, 2015. [Google Scholar]
- Beckman Coulter. Synchron Systems Chemistry Information Sheet GGT Y-Glutamyl Transferase A18493 AF; Beckman Coulter: Brea, CA, USA, 2010. [Google Scholar]
- Beckman Coulter. Synchron System Chemistry Information Sheet CR-S Creatinine A44573 AR; Beckman Coulter: Brea, CA, USA, 2020. [Google Scholar]
- Gentian AS. Gentian Cystatin C Immunoassay Op Beckman Coulter Synchron Unicel—Systeem; Gentian AS: Moss, Norway, 2021. [Google Scholar]
- Bernard, B.P.; Becker, C.E. Environmental Lead Exposure and the Kidney. J. Toxicol. Clin. Toxicol. 1988, 26, 1–34. [Google Scholar] [CrossRef]
- Helena Sánchez Rodríguez, L.; Andrea Rodríguez-Villamizar, L.; Fló rez-Vargas, O.; Vargas Fiallo, Y.; Ordoñez, A.; del Carmen Gutiérrez, M.; Andrea Rodriguez-Villamizar, L. No Effect of Mercury Exposure on Kidney Function during Ongoing Artisanal Gold Mining Activities in Colombia: A Cross-Sectional Study. Toxicol. Ind. Health 2017, 33, 67–78. [Google Scholar] [CrossRef]
- Ouboter, P.E.; Landburg, G.A.; Quik, J.H.M.; Mol, J.H.A.; Van Der Lugt, F. Mercury Levels in Pristine and Gold Mining Impacted Aquatic Ecosystems of Suriname, South America. Ambio 2012, 41, 873–882. [Google Scholar] [CrossRef]
- Kim, N.S.; Lee, B.K. National Estimates of Blood Lead, Cadmium, and Mercury Levels in the Korean General Adult Population. Int. Arch. Occup. Environ. Health 2011, 84, 53–63. [Google Scholar] [CrossRef]
- Jones, L.; Parker, J.D.; Mendola, P. Blood Lead and Mercury Levels in Pregnant Women in the United States 2003–2008; NCHS Data Brief No 52; NCHS: Hyattsville, MD, USA, 2010.
- Driscoll, C.T.; Han, Y.J.; Chen, C.Y.; Evers, D.C.; Lambert, K.F.; Holsen, T.M.; Kamman, N.C.; Munson, R.K. Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States. Bioscience 2007, 57, 17–28. [Google Scholar] [CrossRef]
- Mahaffey, K.R.; Clickner, R.P.; Jeffries, R.A. Adult Women’s Blood Mercury Concentrations Vary Regionally in the United States: Association with Patterns of Fish Consumption (NHANES 1999–2004). Environ. Health Perspect. 2009, 117, 47. [Google Scholar] [CrossRef] [PubMed]
- Kuraeiad, S.; Kotepui, M. Blood Lead Level and Renal Impairment among Adults: A Meta-Analysis. Public Health 2021, 18, 4174. [Google Scholar] [CrossRef] [PubMed]
- Jialun, F.; Liu, X.; Deng, Q.; Duan, Y.; Dai, H.; Li, Y.; Xiaohui, L.; Ning, X.; Fan, J.; Zhou, L.; et al. Continuous Lead Exposure Increases Blood Pressure but Does Not Alter Kidney Function in Adults 20-44 Years of Age in a Lead-Polluted Region of China. Kidney Blood Press. Res. 2015, 40, 207–214. [Google Scholar] [CrossRef]
- Nakhaee, S.; Amirabadizadeh, A.; Brent, J.; Mehrpour, O. Impact of Chronic Lead Exposure on Liver and Kidney Function and Haematologic Parameters. Basic Clin. Pharmacol. Toxicol. 2019, 124, 621–628. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services Fourth National Report on Human Exposure to Environmental Chemicals. Updated Tables, January 2019, Volume One. Fourth Natl. Rep. Hum. Expo. to Environ. Chem. 2019, 1, 1–529.
- Yazbeck, C.; Thiebaugeorges, O.; Moreau, T.; Goua, V.; Debotte, G.; Sahuquillo, J.; Forhan, A.; Foliguet, B.; Magnin, G.; Slama, R.; et al. Maternal Blood Lead Levels and the Risk of Pregnancy-Induced Hypertension: The EDEN Cohort Study. Environ. Health Perspect. 2009, 117, 1526–1530. [Google Scholar] [CrossRef] [Green Version]
- Forsyth, J.E.; Saiful Islam, M.; Parvez, S.M.; Raqib, R.; Sajjadur Rahman, M.; Marie Muehe, E.; Fendorf, S.; Luby, S.P. Prevalence of Elevated Blood Lead Levels among Pregnant Women and Sources of Lead Exposure in Rural Bangladesh: A Case Control Study. Environ. Res. 2018, 166, 1–9. [Google Scholar] [CrossRef]
- Barbosa, F.; Fillion, M.; Lemire, M.; Sousa Passos, C.J.; Lisboa Rodrigues, J.; Philibert, A.; Guimarães, J.R.; Mergler, D. Elevated Blood Lead Levels in a Riverside Population in the Brazilian Amazon. Environ. Res. 2009, 109, 594–599. [Google Scholar] [CrossRef]
- Carneiro, M.F.H.; Fabio, F.S.; Barbosa, F. Manioc Flour Consumption as a Risk Factor for Lead Poisoning in the Brazilian Amazon. J. Toxicol. Environ. Health—Part A Curr. Issues 2013, 76, 206–216. [Google Scholar] [CrossRef]
- Denic, A.; Glassock, R.J.; Rule, A.D. Structural and Functional Changes with the Aging Kidney. Adv. Chronic Kidney Dis. 2016, 23, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rule, A.D.; Amer, H.; Cornell, L.D.; Taler, S.J.; Cosio, F.G.; Kremers, W.K.; Textor, S.C.; Stegall, M.D. The Association Between Age and Nephrosclerosis on Renal Biopsy Among Healthy Adults. Yearb. Pediatr. 2012, 2012, 184–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Curhan, G.C. Kidney Function Decline and Physical Function in Women. Nephrol. Dial. Transpl. 2008, 23, 2827–2833. [Google Scholar] [CrossRef]
- Nicholas, S.B.; Kalantar-Zadeh, K.; Norris, K.C. Racial Disparities in Kidney Disease Outcomes. Semin. Nephrol. 2013, 33, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.P.; Goyder, E.C.; Rigby, J.E.; El Nahas, M. CKD and Poverty: A Growing Global Challenge. Am. J. Kidney Dis. 2009, 53, 166–174. [Google Scholar] [CrossRef]
- Niskar, A.S.; Paschal, D.C.; Kieszak, S.M.; Flegal, K.M.; Bowman, B.; Gunter, E.W.; Pirkle, J.L.; Rubin, C.; Sampson, E.J.; McGeehin, M. Serum Creatinine Levels in the US Population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 1998, 32, 992–999. [Google Scholar] [CrossRef]
- Rhee, S.Y.; Hwang, Y.-C.; Woo, J.; Sinn, D.H.; Chin, S.O.; Chon, S.; Kim, Y.S. Blood Lead Is Significantly Associated with Metabolic Syndrome in Korean Adults: An Analysis Based on the Korea National Health and Nutrition Examination Survey (KNHANES), 2008. Cardiovasc. Diabetol. 2013, 12, 9. [Google Scholar] [CrossRef]
Variable | N (%) | Bl Cr | Bl Ur | CysC | AST | ALT | GGT | Bl Hg (µg/L) | Bl Pb (µg/dL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | IQR | Median | IQR | Median | IQR | Median | IQR | Median | IQR | Median | IQR | Median | IQR | Median | IQR | ||
Age | N (%) | ||||||||||||||||
16–24 years | 124 (30.4) | 47 | 11 | 2.3 | 0.7 | 0.6 | 0.2 | 12 | 6 | 9 | 5 | 10 | 8 | 2.39 | 2.64 | 1.92 | 1.56 |
25–29 years | 109 (26.7) | 47.5 | 14 | 2.5 | 0.8 | 0.61 | 0.16 | 12 | 4 | 10 | 3 | 9.5 | 8 | 2.46 | 2.81 | 2.01 | 1.71 |
30–34 years | 108 (26.5) | 51 | 15 | 2.5 | 0.8 | 0.65 | 0.14 | 11 | 4 | 9 | 4 | 11 | 8 | 3.48 | 3.66 | 2.19 | 3.48 |
35+ years | 59 (14.5) | 50 | 15 | 2.7 | 0.9 | 0.67 | 0.2 | 11 | 5 | 9 | 4 | 12 | 9 | 3.31 | 2.72 | 2.14 | 1.65 |
Ethnicity | N (%) | ||||||||||||||||
Creole | 103 (26) | 53 | 13 | 2.4 | 0.9 | 0.605 | 0.17 | 11.5 | 4 | 9 | 4 | 12.5 | 8 | 2.39 | 1.93 | 1.86 | 1.73 |
Hindustani | 84 (21.2) | 43 | 14 | 2.6 | 0.6 | 0.63 | 0.18 | 11 | 5 | 9 | 3 | 8 | 6 | 2.97 | 2.22 | 1.75 | 1.17 |
Indigenous | 29 (7.3) | 43 | 9 | 2.3 | 0.6 | 0.6 | 0.78 | 14 | 8 | 12 | 7 | 9 | 11 | 7.92 | 20.23 | 5.65 | 4.77 |
Javanese | 32 (8.1) | 51 | 11 | 2.6 | 0.6 | 0.68 | 0.15 | 11 | 6 | 10 | 3 | 10 | 6 | 3.44 | 2.61 | 1.98 | 1.54 |
Tribal | 94 (23.7) | 49 | 11 | 2.3 | 0.9 | 0.6 | 0.2 | 12 | 4 | 8 | 4 | 11 | 11 | 4.25 | 8.96 | 2.94 | 3.87 |
Mixed | 54 (13.6) | 47 | 13 | 2.5 | 0.8 | 0.63 | 0.14 | 11 | 5 | 9 | 3 | 11 | 7 | 2.25 | 2.57 | 1.62 | 1.2 |
Region | |||||||||||||||||
Urban | 296 (74.7) | 50 | 14 | 2.5 | 0.8 | 0.62 | 0.19 | 11 | 4 | 9 | 4 | 11 | 8 | 2.55 | 2.34 | 1.81 | 1.34 |
Rural | 53 (13.4) | 42 | 8 | 2.6 | 0.5 | 0.64 | 0.13 | 14 | 7 | 11 | 5 | 7 | 7 | 2.63 | 2.64 | 2.01 | 1.75 |
Interior | 47 (11.9) | 46 | 9 | 2.3 | 0.7 | 0.6 | 0.18 | 12 | 4 | 9 | 4 | 11.5 | 11 | 9.7 | 8.92 | 5.08 | 6.13 |
Education | |||||||||||||||||
None or primary | 73 (18.4) | 47 | 12 | 2.4 | 0.7 | 0.615 | 0.17 | 12 | 4 | 9 | 4 | 9 | 12 | 4.41 | 10.85 | 3.97 | 5.79 |
Secondary | 259 (65.4) | 47 | 12 | 2.5 | 0.8 | 0.61 | 0.22 | 11 | 5 | 9 | 4 | 11 | 9 | 3.44 | 3.42 | 2.19 | 1.46 |
Tertiary | 64 (16.2) | 50 | 13 | 2.5 | 0.7 | 0.63 | 0.14 | 11 | 5 | 9 | 3 | 10 | 7 | 2.19 | 2 | 1.51 | 1.1 |
Valid | ||||||
---|---|---|---|---|---|---|
N | Missing | Mean | Median | Min | Max | |
Mercury (μg/L) | 400 | 8 | 4.42 | 2.96 | 0.18 | 39.18 |
Lead (μg/dL) | 400 | 8 | 2.99 | 1.99 | 0.39 | 33.88 |
Creat (μmol/L | 341 | 67 | 49.40 | 49.00 | 27 | 113 |
Ureum (mmol/L) | 341 | 67 | 2.539 | 2.500 | 0.9 | 7.7 |
CysC (μg/L) | 332 | 76 | 0.5945 | 0.6200 | 0.00 | 1.46 |
ASAT (U/L) | 340 | 68 | 12.42 | 11.00 | 3 | 68 |
ALAT (U/L) | 340 | 68 | 10.15 | 9.00 | 4 | 77 |
GGT (U/L) | 340 | 68 | 12.70 | 10.00 | 1 | 47 |
Variable | KW a | p-Value | KW | p-Value | KW | p-Value | |
---|---|---|---|---|---|---|---|
Creatinine | Urea | CysC | |||||
Kidney function | Education | 7.69 | 0.021 | 0.60 | 0.745 | 0.90 | 0.638 |
Ethnicity | 33.52 | <0.001 | 12.68 | 0.027 | 6.00 | 0.306 | |
Region | 23.61 | <0.001 | 3.92 | 0.141 | 1.62 | 0.446 | |
Age | 8.97 | 0.03 | 8.19 | 0.042 | 12.63 | 0.006 | |
AST | ALT | GGT | |||||
Liver function | Education | 2.45 | 0.293 | 3.74 | 0.154 | 2.60 | 0.273 |
Ethnicity | 6.99 | 0.221 | 17.50 | 0.004 | 35.64 | <0.001 | |
Region | 17.94 | <0.001 | 9.98 | 0.007 | 14.41 | <0.001 | |
Age | 4.02 | 0.259 | 4.56 | 0.207 | 4.01 | 0.261 | |
Hg | Pb | ||||||
Heavy metals | Education | 45.36 | <0.001 | 72.80 | <0.001 | ||
Ethnicity | 57.80 | <0.001 | 72.35 | <0.001 | |||
Region | 72.71 | <0.001 | 75.15 | <0.001 | |||
Age | 18.95 | <0.001 | 1.10 | 0.78 |
Variable | Dunn Pairwise | Adjusted p-Value | |
---|---|---|---|
Hg | Pb | ||
Education | Tertiary–Secondary | 0.017 | 0.019 |
Tertiary–None or Primary | 0 | 0 | |
Secondary–None or Primary | 0 | 0 | |
Ethnicity | Mixed–Tribal | 0 | 0 |
Mixed–Indigenous | 0.0007 | 0 | |
Hindustani–Tribal | 0 | 0 | |
Hindustani–Indigenous | 0.028 | 0.001 | |
Javanese–Tribal | - | 0.01 | |
Javanese (1.98)–Indigenous | - | 0.029 | |
Creole–Tribal | 0 | 0 | |
Creole–Indigenous | 0.003 | 0.012 | |
Region | Rural (2.63)–Urban (2.55) | 1 | 1 |
Rural (2.63)–Interior (9.70) | 0 | 0 | |
Urban (2.55)–Interior (9.70) | 0 | 0 | |
Maternal age | 16–24 years–30–34 years | 0.003 | - |
16–24 years–35+ years | 0.002 | - |
Unstandardized Coefficients | 95.0% Confidence Interval for B | |||
---|---|---|---|---|
B | Lower Bound | Upper Bound | ||
Bl Cr | maternal age at delivery | 1.382 * | 0.386 | 2.377 |
district at intake | −3.577 * | −5.157 | −1.998 | |
ethnicity | −0.419 | −0.98 | 0.142 | |
education | 0.178 | −1.89 | 2.246 | |
blood mercury level | 0.311 * | 0.046 | 0.576 | |
blood lead level | 0.07 | −0.309 | 0.449 | |
Bl Ur | maternal age at delivery | 0.102 * | 0.033 | 0.172 |
district at intake | −0.11 * | −0.213 | −0.006 | |
ethnicity | −0.02 | −0.056 | 0.017 | |
education | −0.082 | −0.222 | 0.057 | |
blood mercury level | 0.03 * | 0.014 | 0.046 | |
blood lead level | −0.042 * | −0.075 | −0.008 | |
CysC | maternal age at delivery | 0.04 * | 0.018 | 0.063 |
district at intake | −0.019 | −0.068 | 0.03 | |
ethnicity | −0.003 | −0.015 | 0.009 | |
education | 0.017 | −0.029 | 0.062 | |
blood mercury level | −0.002 | −0.008 | 0.005 | |
blood lead level | 0.003 | −0.007 | 0.014 | |
AST | maternal age at delivery | −0.429 | −1.012 | 0.153 |
district at intake | 0.981 | −0.174 | 2.136 | |
ethnicity | −0.029 | −0.341 | 0.283 | |
education | 0.266 | −0.891 | 1.422 | |
blood mercury level | 0.118 | −0.057 | 0.293 | |
blood lead level | −0.123 | −0.332 | 0.086 | |
ALT | maternal age at delivery | −0.483 * | −0.943 | −0.022 |
district at intake | 0.393 | −0.432 | 1.217 | |
ethnicity | −0.046 | −0.301 | 0.208 | |
education | 0.347 | −0.438 | 1.131 | |
blood mercury level | 0.171 | −0.005 | 0.348 | |
blood lead level | −0.136 * | −0.185 | −0.087 | |
GGT | maternal age at delivery | 0.037 | −0.751 | 0.825 |
district at intake | −1.155 | −2.791 | 0.481 | |
ethnicity | 0.192 | −0.213 | 0.598 | |
education | −0.594 | −2.106 | 0.918 | |
blood mercury level | 0.158 | −0.092 | 0.408 | |
blood lead level | 0.007 | −0.143 | 0.158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kort, S.A.R.; Wickliffe, J.; Shankar, A.; Shafer, M.; Hindori-Mohangoo, A.D.; Covert, H.H.; Lichtveld, M.; Zijlmans, W. The Association between Mercury and Lead Exposure and Liver and Kidney Function in Pregnant Surinamese Women Enrolled in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Environmental Epidemiologic Cohort Study. Toxics 2022, 10, 584. https://doi.org/10.3390/toxics10100584
Kort SAR, Wickliffe J, Shankar A, Shafer M, Hindori-Mohangoo AD, Covert HH, Lichtveld M, Zijlmans W. The Association between Mercury and Lead Exposure and Liver and Kidney Function in Pregnant Surinamese Women Enrolled in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Environmental Epidemiologic Cohort Study. Toxics. 2022; 10(10):584. https://doi.org/10.3390/toxics10100584
Chicago/Turabian StyleKort, Sheila A. R., Jeffrey Wickliffe, Arti Shankar, Martin Shafer, Ashna D. Hindori-Mohangoo, Hannah H. Covert, Maureen Lichtveld, and Wilco Zijlmans. 2022. "The Association between Mercury and Lead Exposure and Liver and Kidney Function in Pregnant Surinamese Women Enrolled in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Environmental Epidemiologic Cohort Study" Toxics 10, no. 10: 584. https://doi.org/10.3390/toxics10100584