Health Effects of Particulate Uranium Exposure
Abstract
:1. Introduction
1.1. Sources of Particulate Uranium
1.2. Properties and Behaviour of Particulate Uranium
1.3. Biokinetics of Uranium Particles
2. Inhalation Damage of Particulate Uranium
2.1. Biological Effects of Particulate Uranium: In Vivo Studies
2.1.1. Respiratory System Damage by Uranium Particles
2.1.2. Central Nervous Damage by Uranium Particles
Object | Uranium Particle Types | Major Findings | References |
---|---|---|---|
Respiratory system damage | |||
Rats | Depleted uranium aerosol | Inhalation of depleted uranium aerosol in rats showed significant damaging effects on lung, kidney, and spleen tissues. | [51,52,53] |
Stimulat-ed lung fluid | Uranium powder (ADU, UO2, and U3O8) | The solubility of uranium powder in lung fluids is highly variable. The solubility of ammonium diuranate (ADU) varies directly and inversely with particle size. UO2 is almost insoluble. The solubility of U3O8 is highly variable and depends on the particle size. Hexavalent uranium compounds and ADU have the highest solubility. | [54] |
Monkey, dog, and rat | Natural UO2 dust | The lungs and tracheobronchial lymph nodes are the two main sites of uranium accumulation. | [55,56] |
Rats | Enriched UO2 particles | Enriched UO2 particles are highly insoluble, with the highest cumulative doses to the kidneys and very low doses to organs other than the lungs and lymph nodes. | [57] |
Male rats | Enriched uranium dioxide aerosol (UO2) | Inhalation of UO2 particles significantly increased the size of macrophages and type II cells, the number of macrophages and type I cells, and the size of lysosomal granules within macrophages. | [58] |
Rats | Yellowcake particles (ADU, U3O8) | The clearance of ADU in rat lung was approximated as a class D compound and U3O8 was approximated as a class Y compound. | [59] |
Male rats | Uranium dust | Chronic inhalation of natural uranium dust in rats alone produced a risk of lung tumor formation that was directly proportional to the dose rate. | [60] |
Male Sprague-Dawley rats | Uranium nanoparticles | About 27% of the inhaled uranium nanoparticles were deposited in the respiratory tract, and 20% were rapidly cleared from the lungs and transferred to extrathoracic organs. | [49] |
Rats | UO2 and UO4 aerosols | There may be synergistic effects in the toxicity of the two solubility uranium compounds, with exposure to insoluble uranium slightly interfering with the biokinetics of subsequently inhaled soluble uranium in rats. | [61] |
Central nervous damage | |||
Rats | Industrial UO2 powder | Depleted insoluble uranium can enter the brain and accumulate in brain regions in different ways that can produce behavioral changes in animals. | [62] |
Sprague-Dawley male rats | Industrial UO2 powder | Different intake pathways have different accumulation in brain regions. Heterogeneous brain accumulation of uranium can induce a number of local chemical or radiological effects, which result behavioral changes in rats. | [63] |
Sprague-Dawley male rats | Industrial UO4 powder | The direct transfer of inhaled uranium through the nasal turbinates to the olfactory bulb into the brain is responsible for the specific accumulation of inhaled uranium in the frontal part of the rat brain by the supplemental pathway. | [64] |
Sprague-Dawley male rats | UO4 powder | Inhaled uranium particles in a rat model with intranasal exposure are transferred directly to the brain. | [65] |
2.2. Biological Mechanisms of Particulate Uranium: In Vitro Studies
Cell Types | Uranium Particle Types | Major Findings | References |
---|---|---|---|
Alveolar macrophages | UO2 particles | Alveolar macrophages can phagocytose and eliminate uranium particles. | [66] |
Human lung cancer cells | Uranium ore dust | Uranium dust and silica significantly inhibited cell proliferation. Uranium dust had significant effects on lipid peroxidation and micronucleus formation in human lung cells. | [67] |
Alveolar macrophages | Standard uranium dust | Mineral dust-treated macrophages can release TNF and IL-6 to promote WI-38 cell proliferation and collagen synthesis. | [68] |
Broncho-alveolar lavage (BAL) cells | Industrial UO2 and UO4 powders | DNA damage is partly the result of two mechanisms, inflammatory processes and oxidative stress. The effects of genotoxicity appear to be dose and inhalant type related, independent of the solubility of the uranium compounds. | [19] |
Human bronchial fibroblasts (WTHBF-6 cells) | UO3 particles and uranyl acetate | Soluble particle is cytotoxic, but not teratogenic, uranium may directly target mitochondria, then mitochondrial damage leads to apoptosis. | [14] |
Human bronchial epithelial cells (BEP2D). | UO3 particles | Particulate UO3 made BEP2D tumor-transformative and exhibited chromosomal instability, including a sub-diploid phenotype. | [15] |
Human bronchial epithelial cells (BEP2D). | UO3 particles | Particulate UO3 would likely lead to genotoxicity through a molecular mechanism that induces DNA breaks after prolonged exposure. | [69] |
Human adenocarcinoma lung epithelial cells (A549) | Carbon-rich U-bearing particles | Uranium in solid particle form was more toxic than the same concentration of soluble uranium ions. Particulate uranium, but not soluble uranium, caused uranium toxicity in lung epithelial cells. | [22] |
2.3. Health Risks of Particulate Uranium Exposure: Epidemiological Studies
2.3.1. Uranium Miner and Miller Cohorts
2.3.2. Nuclear Fuel Cycle Worker Cohorts
2.3.3. Gulf War Veterans
Nature of Uranium Work | Occupational Populations | Correlation of Health RISKS with uranium Exposure | References |
---|---|---|---|
Miners | France CEA-COGEMA miners | Lung cancer vs. Low-density uranium radiation (2) *. | [71,72] |
Laryngeal cancer vs. Long-lived nuclide uranium exposure (0). | |||
Brain/CNS tumors vs. Uranium-expose (SMR = 1.71, 95% CI: 1.00, 2.74) (1). | |||
Circulatory disease (CSD) vs. Uranium exposure (1). | |||
Ischemic heart disease (IHD) vs. Uranium exposure (−1). | |||
Cerebrovascular disease (CeVD) vs. Uranium exposure (1). | |||
German Wismut miners | Extrathoracic airway cancer vs. Uranium exposure (−2). | [73,74,75,76] | |
Non-chronic lymphocytic leukemia (non-CLL) vs. Uranium exposure (1). | |||
Kidney cancers vs. Uranium exposure (1). | |||
CSD vs. Internal uranium exposure (−2). | |||
All cardiac endpoints vs. Uranium exposure (−2). | |||
CeVD vs. Uranium exposure (−2). | |||
Czechia miners | Leukemia mortality vs. Uranium exposure (2). | [77] | |
NHL vs. Uranium exposure (1). | |||
Millers | German millers | Lung cancer vs. Uranium mine exposure (−1). | [78,79,80] |
Laryngeal cancer vs. Uranium exposure (1). | |||
All malignancies of the lymphohematopoietic system vs. Uranium exposure (−1). | |||
Colon and rectal cancers vs. Uranium exposure (1). | |||
Kidney cancer vs. Uranium exposure (1). | |||
Gastric cancer vs. Uranium exposure (1). | |||
Prostate cancer vs. Uranium exposure (0). | |||
IHD and CeVD vs. Uranium dose (−1). | |||
Nuclear fuel cycle workers | USA Fernald | Lung cancer vs. Uranium dose (1). | [81] |
NHL vs. Uranium exposure (1). | |||
Small bowel and colon cancers vs. Uranium exposure (1). | |||
France AREVA NC | Lung cancer vs. Reprocessed uranium with different isotopic composition of M and S types (1). | [82,83,84] | |
CSD vs. Reprocessed M and S type uranium and S type natural uranium exposure (1). | |||
CeVD vs. Reprocessed uranium type S (2). CeVD vs. Reprocessed uranium type M (1). | |||
France TRACY | Non-cancerous respiratory disease and CSD mortality vs. Uranium exposure (1). | [85] | |
UK AEA | Nuclear workers’ SMR vs. Internal radiation exposure (SMR = 1.10; 95% CI: 0.89, 1.33; n = 103) (1). | [86,87] | |
USA Rochetdyne | Malignancy of the lymphohematopoietic system vs. Uranium exposure (1). | ||
Gulf War veterans | The levels of depleted uranium inhaled during the 1991 Gulf War fire accident may not cause long-term adverse effects on lung health (0). | [89] | |
Depleted uranium concentrations in the urine of those with embedded debris were consistently elevated, but no difference was found between high and low exposure (0). | [90] |
3. Dose Evaluation
4. Protection Processing
5. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNSCEAR. Sources, Effects and Risks of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2016 Report; UNSCEAR: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Keith, S.; Faroon, O.; Roney, N.; Scinicariello, F.; Wilbur, S.; Ingerman, L.; Llados, F.; Plewak, D.; Wohlers, D.; Diamond, G. Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles. In Toxicological Profile for Uranium; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2013. [Google Scholar]
- Gao, N.; Huang, Z.; Liu, H.; Hou, J.; Liu, X. Advances on the toxicity of uranium to different organisms. Chemosphere 2019, 237, 124548. [Google Scholar] [CrossRef] [PubMed]
- Bolt, H.M. The Janus face of uranium in toxicology. Arch. Toxicol. 2022, 96, 689–690. [Google Scholar] [CrossRef] [PubMed]
- Shaki, F.; Zamani, E.; Arjmand, A.; Pourahmad, J. A Review on Toxicodynamics of Depleted Uranium. Iran. J. Pharm. Res. 2019, 18, 90–100. [Google Scholar] [CrossRef]
- Aschner, M.; Jiang, G.C. Toxicity studies on depleted uranium in primary rat cortical neurons and in Caenorhabditis elegans: What have we learned? J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 525–539. [Google Scholar] [CrossRef]
- Ran, Y.; Wang, S.; Zhao, Y.; Li, J.; Ran, X.; Hao, Y. A review of biological effects and treatments of inhaled depleted uranium aerosol. J. Environ. Radioact. 2020, 222, 106357. [Google Scholar] [CrossRef] [PubMed]
- Asic, A.; Kurtovic-Kozaric, A.; Besic, L.; Mehinovic, L.; Hasic, A.; Kozaric, M.; Hukic, M.; Marjanovic, D. Chemical toxicity and radioactivity of depleted uranium: The evidence from in vivo and in vitro studies. Environ. Res. 2017, 156, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.C.; Li, M.H.; Wang, H.B.; Zhang, B.L.; He, W. The toxicological mechanisms and detoxification of depleted uranium exposure. Environ. Health Prev. Med. 2018, 23, 18. [Google Scholar] [CrossRef]
- Ma, M.; Wang, R.; Xu, L.; Xu, M.; Liu, S. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environ. Int. 2020, 145, 106107. [Google Scholar] [CrossRef]
- Periyakaruppan, A.; Kumar, F.; Sarkar, S.; Sharma, C.S.; Ramesh, G.T. Uranium induces oxidative stress in lung epithelial cells. Arch. Toxicol. 2007, 81, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Pourahmad, J.; Ghashang, M.; Ettehadi, H.A.; Ghalandari, R. A search for cellular and molecular mechanisms involved in depleted uranium (DU) toxicity. Environ. Toxicol. 2006, 21, 349–354. [Google Scholar] [CrossRef]
- Tasat, D.R.; Orona, N.S.; Mandalunis, P.M.; Cabrini, R.L.; Ubios, A.M. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate. Arch. Toxicol. 2007, 81, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.S.; Thompson, W.D.; Aboueissa, A.M.; Mason, M.D.; Wise, J.P., Sr. Particulate depleted uranium is cytotoxic and clastogenic to human lung cells. Chem. Res. Toxicol. 2007, 20, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; LaCerte, C.; Thompson, W.D.; Wise, J.P., Sr. Depleted uranium induces neoplastic transformation in human lung epithelial cells. Chem. Res. Toxicol. 2010, 23, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Camilleri, V.; Floriani, M.; Cavalie, I.; Garnier-Laplace, J.; Adam-Guillermin, C. Genotoxicity of uranium contamination in embryonic zebrafish cells. Aquat. Toxicol. 2012, 109, 11–16. [Google Scholar] [CrossRef]
- Lin, Y.W. Uranyl Binding to Proteins and Structural-Functional Impacts. Biomolecules 2020, 10, 457. [Google Scholar] [CrossRef]
- Periyakaruppan, A.; Sarkar, S.; Ravichandran, P.; Sadanandan, B.; Sharma, C.S.; Ramesh, V.; Hall, J.C.; Thomas, R.; Wilson, B.L.; Ramesh, G.T. Uranium induces apoptosis in lung epithelial cells. Arch. Toxicol. 2009, 83, 595–600. [Google Scholar] [CrossRef]
- Monleau, M.; De Meo, M.; Paquet, F.; Chazel, V.; Dumenil, G.; Donnadieu-Claraz, M. Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats. Toxicol. Sci. 2006, 89, 287–295. [Google Scholar] [CrossRef]
- Grison, S.; Kereselidze, D.; Cohen, D.; Gloaguen, C.; Elie, C.; Lestaevel, P.; Legendre, A.; Manens, L.; Habchi, B.; Benadjaoud, M.A.; et al. Applying a multiscale systems biology approach to study the effect of chronic low-dose exposure to uranium in rat kidneys. Int. J. Radiat. Biol. 2019, 95, 737–752. [Google Scholar] [CrossRef]
- Gueguen, Y.; Frerejacques, M. Review of Knowledge of Uranium-Induced Kidney Toxicity for the Development of an Adverse Outcome Pathway to Renal Impairment. Int. J. Mol. Sci. 2022, 23, 4397. [Google Scholar] [CrossRef]
- El Hayek, E.; Medina, S.; Guo, J.; Noureddine, A.; Zychowski, K.E.; Hunter, R.; Velasco, C.A.; Wiesse, M.; Maestas-Olguin, A.; Brinker, C.J.; et al. Uptake and Toxicity of Respirable Carbon-Rich Uranium-Bearing Particles: Insights into the Role of Particulates in Uranium Toxicity. Environ. Sci. Technol. 2021, 55, 9949–9957. [Google Scholar] [CrossRef]
- Brugge, D.; de Lemos, J.L.; Oldmixon, B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review. Rev. Environ. Health 2005, 20, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, M. The overview of neutron-induced 56Mn radioactive microparticle effects in experimental animals and related studies. J. Radiat. Res. 2022, 63, i1–i7. [Google Scholar] [CrossRef] [PubMed]
- Bleise, A.; Danesi, P.R.; Burkart, W. Properties, use and health effects of depleted uranium (DU): A general overview. J. Environ. Radioact. 2003, 64, 93–112. [Google Scholar] [CrossRef]
- Bem, H.; Bou-Rabee, F. Environmental and health consequences of depleted uranium use in the 1991 Gulf War. Environ. Int. 2004, 30, 123–134. [Google Scholar] [CrossRef]
- Lind, O.C.; Salbu, B.; Skipperud, L.; Janssens, K.; Jaroszewicz, J.; De Nolf, W. Solid state speciation and potential bioavailability of depleted uranium particles from Kosovo and Kuwait. J. Environ. Radioact. 2009, 100, 301–307. [Google Scholar] [CrossRef]
- Salbu, B.; Janssens, K.; Lind, O.C.; Proost, K.; Gijsels, L.; Danesi, P.R. Oxidation states of uranium in depleted uranium particles from Kuwait. J. Environ. Radioact. 2005, 78, 125–135. [Google Scholar] [CrossRef]
- Steinhauser, G. Anthropogenic radioactive particles in the environment. J. Radioanal. Nucl. Chem. 2018, 318, 1629–1639. [Google Scholar] [CrossRef]
- Parkhurst, M.A.; Guilmette, R.A. Overview of the Capstone depleted uranium study of aerosols from impact with armored vehicles: Test setup and aerosol generation, characterization, and application in assessing dose and risk. Health Phys. 2009, 96, 207–220. [Google Scholar] [CrossRef]
- Chae, N.; Lee, M.H.; Choi, S.; Park, B.G.; Song, J.S. Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning. J. Hazard. Mater. 2019, 369, 727–745. [Google Scholar] [CrossRef]
- Mala, H.; Rulik, P.; Beckova, V.; Mihalik, J.; Slezakova, M. Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents. J. Environ. Radioact. 2013, 126, 92–98. [Google Scholar] [CrossRef]
- Kim, M.Y.; Bang, Y.S.; Park, T.K.; Lee, D.Y.; Lee, B.C.; Park, S.H. Containment aerosol characterization during nuclear power plant severe accident. Part. Sci. Technol. 2015, 34, 622–632. [Google Scholar] [CrossRef]
- Shimada, T.; Tanaka, T. Characterization on the radioactive aerosols dispersed during plasma arc cutting of radioactive metal piping. J. Radioanal. Nucl. Chem. 2014, 303, 1345–1349. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Kenoyer, J.L.; Guilmette, R.A.; Parkhurst, M.A. Physicochemical characterization of Capstone depleted uranium aerosols II: Particle size distributions as a function of time. Health Phys. 2009, 96, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Hansson, E.; Pettersson, H.B.L.; Yusuf, I.; Roos, P.; Lindahl, P.; Eriksson, M. Particle Size-dependent Dissolution of Uranium Aerosols in Simulated Lung Fluid: A Case Study in a Nuclear Fuel Fabrication Plant. Health Phys. 2022, 123, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Guilmette, R.A.; Cheng, Y.S. Physicochemical characterization of Capstone depleted uranium aerosols IV: In vitro solubility analysis. Health Phys. 2009, 96, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Krupka, K.M.; Parkhurst, M.A.; Gold, K.; Arey, B.W.; Jenson, E.D.; Guilmette, R.A. Physicochemical characterization of Capstone depleted uranium aerosols III: Morphologic and chemical oxide analyses. Health Phys. 2009, 96, 276–291. [Google Scholar] [CrossRef]
- Eidson, A.F.; Damon, E.G. Predicted deposition rates of uranium yellowcake aerosols sampled in uranium mills. Health Phys. 1984, 46, 165–176. [Google Scholar] [CrossRef]
- Parkhurst, M.A.; Cheng, Y.S.; Kenoyer, J.L.; Traub, R.J. Physicochemical characterization of Capstone depleted uranium aerosols I: Uranium concentration in aerosols as a function of time and particle size. Health Phys. 2009, 96, 251–265. [Google Scholar] [CrossRef]
- Mitsakou, C.; Eleftheriadis, K.; Housiadas, C.; Lazaridis, M. Modeling of the dispersion of depleted uranium aerosol. Health Phys. 2003, 84, 538–544. [Google Scholar] [CrossRef]
- Stewart, K. The modes of formation and properties of aerosol particles. Health Phys. 1964, 10, 889–897. [Google Scholar] [CrossRef]
- Talaat, K.; Xi, J.; Baldez, P.; Hecht, A. Radiation Dosimetry of Inhaled Radioactive Aerosols: CFPD and MCNP Transport Simulations of Radionuclides in the Lung. Sci. Rep. 2019, 9, 17450. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; Cheng, Y.S.; Traub, R.J.; Little, T.T.; Guilmette, R.A. Methods used to calculate doses resulting from inhalation of Capstone depleted uranium aerosols. Health Phys. 2009, 96, 306–327. [Google Scholar] [CrossRef] [PubMed]
- ICRP. Age-dependent doses to members of the public from intake of radionuclides: Part 4. Inhalation dose coefficients. Ann. ICRP 1995, 25, 1–405. [Google Scholar]
- Paquet, F.; Etherington, G.; Bailey, M.R.; Leggett, R.W.; Lipsztein, J.; Bolch, W.; Eckerman, K.F.; Harrison, J.D. ICRP Publication 130: Occupational Intakes of Radionuclides: Part 1. Ann. ICRP 2015, 44, 5–188. [Google Scholar] [CrossRef] [PubMed]
- Ansoborlo, E.; Chazel, V.; Henge-Napoli, M.H.; Pihet, P.; Rannou, A.; Bailey, M.R.; Stradling, N. Determination of the physical and chemical properties, biokinetics, and dose coefficients of uranium compounds handled during nuclear fuel fabrication in France. Health Phys. 2002, 82, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Duport, P.; Robertson, R.; Ho, K.W.; Horváth, F. Flow-Through Dissolution of Uranium-Thorium Ore Dust, Uranium Concentrate, Uranium Dioxide, and Thorium Alloy in Simulated Lung Fluid. Radiat. Prot. Dosim. 1991, 38, 121–133. [Google Scholar] [CrossRef]
- Petitot, F.; Lestaevel, P.; Tourlonias, E.; Mazzucco, C.; Jacquinot, S.; Dhieux, B.; Delissen, O.; Tournier, B.B.; Gensdarmes, F.; Beaunier, P.; et al. Inhalation of uranium nanoparticles: Respiratory tract deposition and translocation to secondary target organs in rats. Toxicol. Lett. 2013, 217, 217–225. [Google Scholar] [CrossRef]
- Keith, L.S.; Faroon, O.M.; Fowler, B.A. Chapter 59—Uranium. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 1307–1345. [Google Scholar]
- Cao, Z.; Zhu, M.; Yang, Z.; Xu, J.; Li, Y. Histopathological and morphometric alterations of rat lung induced by inhalation of depleted uranium aerosol. Chin. J. Somat. Image Anal. 2003, 8, 193–197. [Google Scholar]
- Cao, Z.; Zhu, M.; Yang, Z.; Sun, J.; Li, Y. Histopathological and morphometric alterations of rat kidneys induced by inhalation of depleted uranium aerosol. Chin. J. Somat. Image Anal. 2003, 8, 73–77. [Google Scholar]
- Cao, Z.; Zhu, M.; Yang, Z.; Pan, X.; Li, Y. Characteristic Pathological Changes of Main Organs of Rats after Inhalation of Depleted Uranium Aerosol. Chin. J. Radiat. Health 2005, 14, 81–84. [Google Scholar]
- Cooke, N.; Holt, F.B. The Solubility of Some Uranium Compounds in Simulated Lung Fluid. Health Phys. 1974, 27, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Leach, L.J.; Maynard, E.A.; Hodge, H.C.; Scott, J.K.; Yuile, C.L.; Sylvester, G.E.; Wilson, H.B. A five-year inhalation study with natural uranium dioxide (UO 2) dust. I. Retention and biologic effect in the monkey, dog and rat. Health Phys. 1970, 18, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Leach, L.J.; Yuile, C.L.; Hodge, H.C.; Sylvester, G.E.; Wilson, H.B. A five-year inhalation study with natural uranium dioxide (UO2) dust. II. Postexposure retention and biologic effects in the monkey, dog and rat. Health Phys. 1973, 25, 239–258. [Google Scholar] [CrossRef]
- Morris, K.J.; Khanna, P.; Batchelor, A.L. Long-term clearance of inhaled UO2 particles from the pulmonary region of the rat. Health Phys. 1990, 58, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Morris, K.J.; Townsend, K.M.; Batchelor, A.L. Studies of alveolar cell morphometry and mass clearance in the rat lung following inhalation of an enriched uranium dioxide aerosol. Radiat. Environ. Biophys. 1989, 28, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Damon, E.G.; Eidson, A.F.; Hahn, F.F.; Griffith, W.C.; Guilmette, R.A. Comparison of early lung clearance of yellowcake aerosols in rats with in vitro dissolution and IR analysis. Health Phys. 1984, 46, 859–866. [Google Scholar] [CrossRef]
- Mitchel, R.E.; Jackson, J.S.; Heinmiller, B. Inhaled uranium ore dust and lung cancer risk in rats. Health Phys. 1999, 76, 145–155. [Google Scholar] [CrossRef]
- Monleau, M.; De Meo, M.; Frelon, S.; Paquet, F.; Donnadieu-Claraz, M.; Dumenil, G.; Chazel, V. Distribution and genotoxic effects after successive exposure to different uranium oxide particles inhaled by rats. Inhal. Toxicol. 2006, 18, 885–894. [Google Scholar] [CrossRef]
- Monleau, M.; Bussy, C.; Lestaevel, P.; Houpert, P.; Paquet, F.; Chazel, V. Bioaccumulation and behavioural effects of depleted uranium in rats exposed to repeated inhalations. Neurosci. Lett. 2005, 390, 31–36. [Google Scholar] [CrossRef]
- Houpert, P.; Frelon, S.; Monleau, M.; Bussy, C.; Chazel, V.; Paquet, F. Heterogeneous accumulation of uranium in the brain of rats. Radiat. Prot. Dosim. 2007, 127, 86–89. [Google Scholar] [CrossRef]
- Tournier, B.B.; Frelon, S.; Tourlonias, E.; Agez, L.; Delissen, O.; Dublineau, I.; Paquet, F.; Petitot, F. Role of the olfactory receptor neurons in the direct transport of inhaled uranium to the rat brain. Toxicol. Lett. 2009, 190, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, C.; Suhard, D.; Elie, C.; Ebrahimian, T.; Lestaevel, P.; Roynette, A.; Dhieux-Lestaevel, B.; Gensdarmes, F.; Tack, K.; Tessier, C. Evaluation of the Nose-to-Brain Transport of Different Physicochemical Forms of Uranium after Exposure via Inhalation of a UO4 Aerosol in the Rat. Environ. Health Perspect. 2019, 127, 97010. [Google Scholar] [CrossRef] [PubMed]
- Tasat, D.R.; de Rey, B.M. Cytotoxic effect of uranium dioxide on rat alveolar macrophages. Environ. Res. 1987, 44, 71–81. [Google Scholar] [CrossRef]
- Ohshima, S.; Xu, Y.; Takahama, M. Effects of uranium ore dust on cultured human lung cells. Environ. Toxicol. Pharmacol. 1998, 5, 267–271. [Google Scholar] [CrossRef]
- Zhou, L.R.; Zhou, J.H.; Yang, J.C. Effects of cytokines induced by mineral dust on lung fibroblasts in vitro. J. Occup. Health 1999, 41, 144–148. [Google Scholar] [CrossRef]
- LaCerte, C.; Xie, H.; Aboueissa, A.M.; Wise, J.P., Sr. Particulate depleted uranium is cytotoxic and clastogenic to human lung epithelial cells. Mutat. Res. 2010, 697, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Chu, J.; Zhang, L.; Suo, Z.; Tang, W. Intracellular and extracellular untargeted metabolomics reveal the effect of acute uranium exposure in HK-2 cells. Toxicology 2022, 473, 153196. [Google Scholar] [CrossRef]
- Rage, E.; Caer-Lorho, S.; Drubay, D.; Ancelet, S.; Laroche, P.; Laurier, D. Mortality analyses in the updated French cohort of uranium miners (1946–2007). Int. Arch. Occup. Environ. Health 2015, 88, 717–730. [Google Scholar] [CrossRef]
- Drubay, D.; Caer-Lorho, S.; Laroche, P.; Laurier, D.; Rage, E. Mortality from Circulatory System Diseases among French Uranium Miners: A Nested Case-Control Study. Radiat. Res. 2015, 183, 550–562. [Google Scholar] [CrossRef]
- Kreuzer, M.; Dufey, F.; Marsh, J.W.; Nowak, D.; Schnelzer, M.; Walsh, L. Mortality from cancers of the extra-thoracic airways in relation to radon progeny in the Wismut cohort, 1946–2008. Int. J. Radiat. Biol. 2014, 90, 1030–1035. [Google Scholar] [CrossRef]
- Mohner, M.; Lindtner, M.; Otten, H.; Gille, H.G. Leukemia and exposure to ionizing radiation among German uranium miners. Am. J. Ind. Med. 2006, 49, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Drubay, D.; Ancelet, S.; Acker, A.; Kreuzer, M.; Laurier, D.; Rage, E. Kidney cancer mortality and ionizing radiation among French and German uranium miners. Radiat. Environ. Biophys 2014, 53, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, M.; Kreisheimer, M.; Kandel, M.; Schnelzer, M.; Tschense, A.; Grosche, B. Mortality from cardiovascular diseases in the German uranium miners cohort study, 1946–1998. Radiat. Environ. Biophys. 2006, 45, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Tomasek, L.; Malátová, I. Leukaemia and lymphoma among Czech uranium miners. In Proceedings of the Second European IRPA Congress on Radiation Protection—Radiation Protection: From Knowledge to Action, Paris, France, 15–19 May 2006. [Google Scholar]
- Kreuzer, M.; Dufey, F.; Laurier, D.; Nowak, D.; Marsh, J.W.; Schnelzer, M.; Sogl, M.; Walsh, L. Mortality from internal and external radiation exposure in a cohort of male German uranium millers, 1946–2008. Int. Arch. Occup. Environ. Health 2015, 88, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Möhner, M.; Lindtner, M.; Otten, H. Ionizing radiation and risk of laryngeal cancer among German uranium miners. Health Phys. 2008, 95, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, M.; Straif, K.; Marsh, J.W.; Dufey, F.; Grosche, B.; Nosske, D.; Sogl, M. Occupational dust and radiation exposure and mortality from stomach cancer among German uranium miners, 1946–2003. Occup. Environ. Med. 2012, 69, 217–223. [Google Scholar] [CrossRef]
- Silver, S.R.; Bertke, S.J.; Hein, M.J.; Daniels, R.D.; Fleming, D.A.; Anderson, J.L.; Pinney, S.M.; Hornung, R.W.; Tseng, C.Y. Mortality and ionising radiation exposures among workers employed at the Fernald Feed Materials Production Center (1951–1985). Occup. Environ. Med. 2013, 70, 453–463. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Cardis, E.; Metz-Flamant, C.; Caer-Lorho, S.; Auriol, B.; Wild, P.; Laurier, D.; Tirmarche, M. French cohort of the uranium processing workers: Mortality pattern after 30-year follow-up. Int. Arch. Occup. Environ. Health 2010, 83, 301–308. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Jacob, S.; Cardis, E.; Wild, P.; Caer, S.; Auriol, B.; Garsi, J.P.; Tirmarche, M.; Laurier, D. Uranium carcinogenicity in humans might depend on the physical and chemical nature of uranium and its isotopic composition: Results from pilot epidemiological study of French nuclear workers. Cancer Causes Control 2011, 22, 1563–1573. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Garsi, J.P.; Caer-Lorho, S.; Jacob, S.; Collomb, P.; Acker, A.; Laurier, D. Does uranium induce circulatory diseases? First results from a French cohort of uranium workers. Occup. Environ. Med. 2012, 69, 404–409. [Google Scholar] [CrossRef]
- Samson, E.; Piot, I.; Zhivin, S.; Richardson, D.B.; Laroche, P.; Serond, A.P.; Laurier, D.; Laurent, O. Cancer and non-cancer mortality among French uranium cycle workers: The TRACY cohort. BMJ Open 2016, 6, e010316. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, W.D.; Law, D.V.; Bromley, K.J.; Inskip, H.M. Mortality of employees of the United Kingdom Atomic Energy Authority, 1946–1997. Occup. Environ. Med. 2004, 61, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Boice, J.D., Jr.; Cohen, S.S.; Mumma, M.T.; Ellis, E.D.; Eckerman, K.F.; Leggett, R.W.; Boecker, B.B.; Brill, A.B.; Henderson, B.E. Updated mortality analysis of radiation workers at Rocketdyne (Atomics International), 1948–2008. Radiat. Res. 2011, 176, 244–258. [Google Scholar] [CrossRef] [Green Version]
- Hahn, F.F.; Roszell, L.E.; Daxon, E.G.; Guilmette, R.A.; Parkhurst, M.A. Radiological risk assessment of Capstone depleted uranium aerosols. Health Phys. 2009, 96, 352–362. [Google Scholar] [CrossRef]
- Hines, S.E.; Gucer, P.; Kligerman, S.; Breyer, R.; Centeno, J.; Gaitens, J.; Oliver, M.; Engelhardt, S.; Squibb, K.; McDiarmid, M. Pulmonary health effects in Gulf War I service members exposed to depleted uranium. J. Occup. Environ. Med. 2013, 55, 937–944. [Google Scholar] [CrossRef]
- McDiarmid, M.A.; Gaitens, J.M.; Hines, S.; Breyer, R.; Wong-You-Cheong, J.J.; Engelhardt, S.M.; Oliver, M.; Gucer, P.; Kane, R.; Cernich, A.; et al. The Gulf War depleted uranium cohort at 20 years: Bioassay results and novel approaches to fragment surveillance. Health Phys. 2013, 104, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Parrish, R.R.; Haley, R.W. Resolving whether inhalation of depleted uranium contributed to Gulf War Illness using high-sensitivity mass spectrometry. Sci. Rep. 2021, 11, 3218. [Google Scholar] [CrossRef]
- Bjorklund, G.; Pivina, L.; Dadar, M.; Semenova, Y.; Rahman, M.M.; Chirumbolo, S.; Aaseth, J. Depleted uranium and Gulf War Illness: Updates and comments on possible mechanisms behind the syndrome. Environ. Res. 2020, 181, 108927. [Google Scholar] [CrossRef]
- Parkhurst, M.A.; Guilmette, R.A. Conclusions of the Capstone depleted uranium aerosol characterization and risk assessment study. Health Phys. 2009, 96, 393–409. [Google Scholar] [CrossRef]
- Parrish, R.R.; Horstwood, M.; Arnason, J.G.; Chenery, S.; Brewer, T.; Lloyd, N.S.; Carpenter, D.O. Depleted uranium contamination by inhalation exposure and its detection after approximately 20 years: Implications for human health assessment. Sci. Total Environ. 2008, 390, 58–68. [Google Scholar] [CrossRef]
- Valdes, M. Estimating the lung burden from exposure to aerosols of depleted uranium. Radiat. Prot. Dosim. 2009, 134, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Szrom, F.; Falo, G.A.; Lodde, G.M.; Parkhurst, M.A.; Daxon, E.G. Inhalation and ingestion intakes with associated dose estimates for level II and level III personnel using Capstone study data. Health Phys. 2009, 96, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Canepa, C. A model study on the absorbed dose of radiation following respiratory intake of 238U3O8 aerosols. Radiat. Prot. Dosim. 2014, 162, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.B.; Gerstmann, U.C.; Hollriegl, V.; Szymczak, W.; Roth, P.; Hoeschen, C.; Oeh, U. Radiation dose assessment of exposure to depleted uranium. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Paquet, F.; Bailey, M.R.; Leggett, R.W.; Etherington, G.; Blanchardon, E.; Smith, T.; Ratia, G.; Melo, D.; Fell, T.P.; Berkovski, V.; et al. ICRP Publication 141: Occupational Intakes of Radionuclides: Part 4. Ann. ICRP 2019, 48, 9–501. [Google Scholar] [CrossRef]
- Holmes, T.D.; Guilmette, R.A.; Cheng, Y.S.; Parkhurst, M.A.; Hoover, M.D. Aerosol sampling system for collection of Capstone depleted uranium particles in a high-energy environment. Health Phys. 2009, 96, 221–237. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, F.; Xi, C.; Chen, X.; Luo, D. Research on the treatment of simulated radioactive aerosol using atomization technology. Environ. Eng. 2016, 34, 535–537+617. [Google Scholar]
- Ren, J.; Hao, Y.; Gao, R.; Zhang, Y.; Ran, Y.; Liu, J.; Dai, X.; Xiong, W.; Su, Y.; Li, R. Effect of a novel polyethylene glycol compound on lung lavage in dogs after the inhalation of depleted uranium dust. Int. J. Radiat. Biol. 2018, 94, 462–471. [Google Scholar] [CrossRef]
- Fu, W.; Xiao, Y.; Zeng, F.; Chen, X.; Zhu, Y.; Tian, Z.; Liang, Y.; Li, R.; Liu, M. Effect of early whole lung lavage at different time-points for promoting the removal of depleted uranium from the lung. Int. J. Radiat. Biol. 2021, 97, 968–976. [Google Scholar] [CrossRef]
- Gueguen, Y.; Roy, L.; Hornhardt, S.; Badie, C.; Hall, J.; Baatout, S.; Pernot, E.; Tomasek, L.; Laurent, O.; Ebrahimian, T.; et al. Biomarkers for Uranium Risk Assessment for the Development of the CURE (Concerted Uranium Research in Europe) Molecular Epidemiological Protocol. Radiat. Res. 2017, 187, 107–127. [Google Scholar] [CrossRef]
Effective Dose Coefficients (Sv Bq−1) * | |||||
---|---|---|---|---|---|
Nuclide | T1/2 (Year) | Type | f1 | 1 μm AMAD | 5 μm AMAD |
U-234 | 2.44 × 105 | F | 2.0 × 10−2 | 3.0 × 10−7 | 2.5 × 10−7 |
M | 4.0 × 10−3 | 2.2 × 10−6 | 1.4 × 10−6 | ||
S | 2.0 × 10−4 | 2.3 × 10−5 | 1.3 × 10−5 | ||
Intermediate Type F/M | 1.6 × 10−2 | 6.4 × 10−7 | 4.1 × 10−7 | ||
Intermediate Type M/S | 6.0 × 10−4 | 8.5 × 10−6 | 5.5 × 10−6 | ||
Uranium aluminide UAlX | 2.0 × 10−3 | 4.6 × 10−6 | 3.0 × 10−6 | ||
U-235 | 7.04 × 108 | F | 2.0 × 10−2 | 2.7 × 10−7 | 2.3 × 10−7 |
M | 4.0 × 10−3 | 2.0 × 10−6 | 1.3 × 10−6 | ||
S | 2.0 × 10−4 | 2.1 × 10−5 | 1.2 × 10−5 | ||
Intermediate Type F/M | 1.6 × 10−2 | 5.8 × 10−7 | 3.8 × 10−7 | ||
Intermediate Type M/S | 6.0 × 10−4 | 7.8 × 10−6 | 5.1 × 10−6 | ||
Uranium aluminide UAlX | 2.0 × 10−3 | 4.2 × 10−6 | 2.8 × 10−6 | ||
U-238 | 4.47 × 109 | F | 2.0 × 10−2 | 2.6 × 10−7 | 2.2 × 10−7 |
M | 4.0 × 10−3 | 1.9 × 10−6 | 1.2 × 10−6 | ||
S | 2.0 × 10−4 | 2.0 × 10−5 | 1.2 × 10−5 | ||
Intermediate Type F/M | 1.6 × 10−2 | 5.5 × 10−7 | 3.6 × 10−7 | ||
Intermediate Type M/S | 6.0 × 10−4 | 7.4 × 10−6 | 4.8 × 10−6 | ||
Uranium aluminide UAlX | 2.0 × 10−3 | 4.0 × 10−6 | 2.6 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Chu, J.; Xia, B.; Xiong, Z.; Zhang, S.; Tang, W. Health Effects of Particulate Uranium Exposure. Toxics 2022, 10, 575. https://doi.org/10.3390/toxics10100575
Zhang L, Chu J, Xia B, Xiong Z, Zhang S, Tang W. Health Effects of Particulate Uranium Exposure. Toxics. 2022; 10(10):575. https://doi.org/10.3390/toxics10100575
Chicago/Turabian StyleZhang, Liandong, Jian Chu, Binyuan Xia, Zhonghua Xiong, Shaoyu Zhang, and Wei Tang. 2022. "Health Effects of Particulate Uranium Exposure" Toxics 10, no. 10: 575. https://doi.org/10.3390/toxics10100575
APA StyleZhang, L., Chu, J., Xia, B., Xiong, Z., Zhang, S., & Tang, W. (2022). Health Effects of Particulate Uranium Exposure. Toxics, 10(10), 575. https://doi.org/10.3390/toxics10100575