Inorganic Arsenic Exposure and Children’s Neurodevelopment: A Review of the Evidence
Abstract
:1. Introduction
- Are there critical windows of vulnerability, i.e., do the nature and severity of the impacts of arsenic depend on the developmental stage at which exposure occurs?
- What is the dose-effect relationship for neurodevelopmental endpoints, i.e., the lowest adverse effect level, the functional form of the relationship, and the severity of the exposure-related deficits?
- What are the most sensitive neurodevelopmental endpoints?
- Are there effect modifiers, i.e., does the dose-effect relationship depend on host characteristics (e.g., sex, methylation efficiency) or co-exposures to other neurotoxicants?
- What are issues pertinent to modeling arsenic’s effects on neurodevelopment, i.e., what variables are critical for future studies to measure and incorporate into analytic models?
Ref no. | Publication year | Site | N | Age | Exposure |
---|---|---|---|---|---|
[29] | 2001 | Mexico | 80 | 6–9 years | UAs:Exposed group: 62.9 ± 0.03 μg/g Cr (range:27.5–186.2) |
Reference group: 40.2 ± 0.03 μg/g Cr (range: 18.2–70.8) | |||||
[30] | 2003 | Taiwan | 49 | 13 years | Water As:High exposure group: 185.0 ± 225.9 μg/L |
Low exposure group: 131.2 ± 343.7 μg/L | |||||
[31] | 2004 | Bangladesh | 201 | 10 years | Water As: 177.8 ± 145.2 μg/L (range: 0.094–790) |
UAs: 296.6 ± 277.2 μg/g Cr | |||||
[32] | 2006 | USA | 31 | 12–13 years | Hair As: 17.8 ± 14.1 μg/L (1.4–55.4) |
[33] | 2007 | Bangladesh | 301 | 6 years | Water As: 120.1 ± 134.4 μg/L (range: 0.10–864) |
UAs: 347.7 ± 352.7 μg/g Cr | |||||
[34] | 2007 | India | 351 | 5–15 years | Water As:Peak lifetime: 147 ± 322 μg/L (range: 1–2480) |
Average lifetime: 59 ± 133 μg/L (range: 1–870) | |||||
Pregnancy: 110 ± 243 μg/L (range: 1–2536) | |||||
Child UAs: 78 ± 61 μg/L (range: 2–375) | |||||
[35] | 2007 | China | 720 | 8–12 years | Water As:High exposure group: 190 ± 183 μg/L (range:14–502) |
Medium Exposure group: 142 ± 106 μg/L(range: 7–303) | |||||
Control group: 2 ± 3 μg/L (range: 1–10) | |||||
UAs:High exposure group: 73 ± 3 μg/L (range:17–595) | |||||
Medium exposure group: 46 ± 3 μg/L (range: 9–315) | |||||
Control group: 10 ± 2 μg/L (range: 3–47) | |||||
[36] | 2007 | Mexico | 602 | 6–8 years | UAs: 58.1 ± 33.2 μg/L (52.3% > 50; 9.8% > 100) |
[37] | 2009 | Bangladesh | 1799 | 7 months | Maternal pregnancy urine:GW 8: median 81 μg/L (IQR: 37–207) |
GW 30: median 84 μg/L (IQR: 42–230) | |||||
[38] | 2010 | Bangladesh | 2112 | 18 months | Maternal pregnancy urine:Mean of GW8 and GW30: 96.3 μg/L (IQR:46–219) |
Child urinary As at 18 months: 34.6 μg/L (IQR: 18–80.2) | |||||
[39] | 2011 | Bangladesh | ~1700 | 5 years | Maternal pregnancy urine As:GW8: median 81 μg/L (10th: 24, 90th: 380) |
GW30: median 84 μg/L (10th: 26, 90th: 415) | |||||
Child urinary As:1.5 years: median 34 μg/L (IQR: 12, 155) | |||||
5 years: median 51 μg/L (IQR: 20,238) | |||||
[40] | 2011 | Bangladesh | 299 | 8–11 years | Water As: 43.3 ± 73.65 μg/L |
Child UAs: 78.1 ± 72.2 μg/L | |||||
Child Blood As: 4.8 ± 3.2 μg/L | |||||
[41] | 2011 | Mexico | 526 | 6–7 years | UAs: median 55.2 μg/L (IQR: 39.7; range: 7.7–215.9) |
[42] | 2011 | Nepal | 100 | 1 day | Cord blood As: median 1.33 (range: 0.51–9.58) |
2. Critical Windows of Vulnerability
3. Dose-Effect/Response Relationships
4. Most Sensitive Endpoints
5. Potential Effect Modifiers
5.1. Host Characteristics
5.2. Co-exposures
6. Modeling Issues
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer. A Review of Human Carcinogens: Arsenic Metals, Fibres, and Dusts; World Health Organization: Geneva, Switzerland, 2012; Volume 100C.
- Rahman, M.M.; Ng, J.C.; Naidu, R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ. Geochem. Health 2009, 31, 189–200. [Google Scholar] [CrossRef]
- Moon, K.; Guallar, E.; Navas-Acien, A. Arsenic exposure and cardiovascular disease: An updated systematic review. Curr. Atheroscler. Rep. 2012, 14, 542–555. [Google Scholar] [CrossRef]
- Vahter, M. Effects of arsenic on maternal and fetal health. Annu. Rev. Nutr. 2009, 29, 381–399. [Google Scholar] [CrossRef]
- Benford, D.J.; Alexander, J.; Baines, J.; Bellinger, D.C.; Carrington, C.; Devesa, I.; Perez, V.A.; Duxbury, J.; Fawell, J.; Hailermariam, K.; et al. Safety Evaluation of Certain Contaminants in Food; WHO Food Additives Series: Geneva, Switzerland, 2011.
- Rahman, M.A.; Hasegawa, H. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci. Total Environ. 2011, 409, 4645–4655. [Google Scholar] [CrossRef]
- Davis, M.A.; Mackenzie, T.A.; Cottingham, K.L.; Gilbert-Diamond, D.; Punshon, T.; Karagas, M.R. Rice consumption and urinary arsenic concentrations in U.S. children. Environ. Health Perspect. 2012, 120, 1418–1424. [Google Scholar]
- Ahmad, S.A.; Sayed, M.H.S.U.; Barua, S.; Khan, M.H.; Faruquee, M.H.; Jalil, A.; Hadi, S.A.; Talukder, H.K. Arsenic in drinking water and pregnancy outcomes. Environ. Health Perspect. 2001, 109, 629–631. [Google Scholar] [CrossRef]
- Rahman, A.; Persson, L.-A.; Nermell, B.; Arifeen, S.E.; Ekstrom, E.-C.; Smith, A.H.; Vahter, M. Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 2010, 21, 797–804. [Google Scholar] [CrossRef]
- Gardner, R.M.; Kippler, M.; Tofail, F.; Bottai, M.; Hamadani, J.; Grander, M.; Nermell, B.; Palm, B.; Rasmussen, K.M.; Vahter, M. Environmental exposure to metals and children’s growth to age 5 years: A prospective cohort study. Am. J. Epidemiol. 2013, 177, 1356–1367. [Google Scholar] [CrossRef]
- Wu, J.; Chen, G.; Liao, Y.; Song, X.; Pei, L.; Wang, J.; Zheng, X. Arsenic levels in the soil and risk of birth defects: A population-based case-control study using GIS technology. J. Environ. Health 2011, 74, 20–25. [Google Scholar]
- Dwivedi, N.; Mehta, A.; Yadav, A.; Binukumar, B.K.; Gill, K.D.; Flora, S.J. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats. Toxicol. Appl. Pharmacol. 2011, 256, 241–248. [Google Scholar] [CrossRef]
- Yen, C.C.; Ho, T.J.; Wu, C.C.; Chang, C.F.; Su, C.C.; Chen, Y.W.; Jinn, T.R.; Lu, T.H.; Cheng, P.W.; Su, Y.C.; et al. Inorganic arsenic causes cell apoptosis in mouse cerebrum through an oxidative stress-regulated signaling pathway. Arch. Toxicol. 2011, 85, 565–575. [Google Scholar] [CrossRef]
- Liu, S.; Piao, F.; Sun, X.; Bai, L.; Peng, Y.; Zhong, Y.; Ma, N.; Sun, W. Arsenic-induced inhibition of hippocampal neurogenesis and its reversibility. Neurotoxicology 2012, 33, 1033–1039. [Google Scholar] [CrossRef]
- Goggin, S.L.; Labrecque, M.T.; Allan, A.M. Perinatal exposure to 50 ppb sodium arsenate induces hypothalamic-pituitary-adrenal axis dysregulation in male C57BL/6 mice. Neurotoxicology 2012, 33, 1338–1345. [Google Scholar] [CrossRef]
- Martinez-Finley, E.J.; Li, A.M.; Allan, A.M. Learning deficits in C57BL/6J mice following perinatal arsenic exposure: Consequence of lower corticosterone receptor levels? Pharmacol. Biochem. Behav. 2009, 94, 271–277. [Google Scholar] [CrossRef]
- Martinez, L.; Jimenez, V.; Garcia-Sepulveda, C.; Ceballos, F.; Delgado, J.M.; Nino-Moreno, P.; Doniz, L.; Saavedra-Alanis, V.; Castillo, C.G.; Santoyo, M.E.; et al. Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem. Int. 2011, 58, 574–581. [Google Scholar] [CrossRef]
- Rodriguez, V.M.; Limon-Pacheco, J.H.; Mendoza-Trejo, M.S.; Giordano, M. Chronic exposure to low levels of inorganic arsenic causes alterations in locomotor activity and in the expression of dopaminergic and antioxidant systems in the albino rat. Neurotoico. Teratol. 2010, 32, 640–647. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Zhao, L.; Hu, S.; Li, S.; Piao, F. Subchronic exposure to arsenic disturbed the biogenic amine neurotransmitter level and the mRNA expression of synthetase in mice brains. Neuroscience 2013, 241, 52–58. [Google Scholar] [CrossRef]
- Xi, S.; Guo, L.; Qi, R.; Sun, W.; Jin, Y.; Sun, G. Prenatal and early life arsenic exposure induced oxidative damage and altered activities and mRNA expressions of neurotransmitter metabolic enzymes in offspring rat brain. J. Biochem. Mol. Toxicol. 2010, 24, 368–378. [Google Scholar] [CrossRef]
- Liu, X.; Piao, F.; Li, Y. Protective effect of taurine on the decreased biogenic amine neurotransmitter levels in the brain of mice exposed to arsenic. Adv. Exp. Med. Biol. 2013, 776, 277–287. [Google Scholar] [CrossRef]
- Luo, J.H.; Qiu, Z.Q.; Zhang, L.; Shu, W.Q. Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. Toxicol. Lett. 2012, 211, 39–44. [Google Scholar] [CrossRef]
- Aung, K.H.; Kurihara, R.; Nakashima, S.; Mackawa, F.; Nohara, K.; Kobayashi, T.; Tsukahara, S. Inhibition of neurite outgrowth and alteration of cytoskeletal gene expression by sodium arsenite. Neurotoxicology 2013, 34, 226–235. [Google Scholar] [CrossRef]
- Zarazua, S.; Rios, R.; Delgado, J.M.; Santoyo, M.E.; Ortiz-Perez, D.; Jimenez-Capdeville, M.E. Decreased arginine methylation and myelin alterations in arsenic exposed rats. Neurotoxicology 2010, 31, 94–100. [Google Scholar] [CrossRef]
- Jing, J.; Zheng, G.; Liu, M.; Shen, X.; Zhao, F.; Wang, J.; Zhang, J.; Huang, G.; Dai, P.; Chen, Y.; et al. Changes in the synaptic structure of hippocampal neurons and impairment of spatial memory in a rat model caused by chronic arsenite exposure. Neurotoxicology 2012, 33, 1230–1238. [Google Scholar] [CrossRef]
- Wang, Y.; Piao, F.; Li, Y.; Wang, X.; Guang, H. Protective effect of taurine on down-regulated expression of thyroid hormone receptor genes in brains of mice exposed to arsenic. Adv. Exp. Med. Biol. 2013, 775, 155–166. [Google Scholar] [CrossRef]
- Lindberg, A.L.; Ekstrom, E.C.; Nermell, B.; Rahman, M.; Lonnerdahl, B.; Persson, A.; Vahter, M. Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ. Res. 2008, 106, 110–120. [Google Scholar] [CrossRef]
- Dakeishi, M.; Katsuyuki, M.; Grandjean, P. Long-term consequences of arsenic poisoning during infancy due to contaminated milk powder. Environ. Health: Glob. Access Sci. Source 2006, 5. [Google Scholar] [CrossRef][Green Version]
- Calderon, J.; Navarro, M.E.; Jimenez-Capdeville, M.E.; Santos-Diaz, M.A.; Golden, A.; Rodriguez-Leyva, I.; Borja-Aburto, V.; Diaz-Barriga, F. Exposure to arsenic and lead and neuropsychological development in children. Environ. Res. 2001, 85, 69–76. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Chou, H.-Y.; The, H.-W.; Chen, C.-M.; Chen, C.-J. The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 2003, 24, 747–753. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Factor-Litvak, P.; van Geen, A.; Slavkovich, V.; Lolacono, N.J.; Cheng, Z.; Hussain, I.; et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 2004, 112, 1329–1333. [Google Scholar] [CrossRef]
- Wright, R.O.; Amarasiriwardena, C.; Woolf, A.D.; Jim, R.; Bellinger, D.C. Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 2006, 27, 210–216. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Factor-Litvak, P.; Kline, J.; van Geen, A.; Slavkovich, V.; Lolacono, N.J.; Levy, D.; et al. Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ. Health Perspect. 2007, 115, 285–289. [Google Scholar]
- Von Ehrenstein, O.S.; Poddar, S.; Yuan, Y.; Mazumder, D.G.; Eskenazi, B.; Basu, A.; Hira-Smith, M.; Ghosh, N.; Lahiri, S.; Haque, R.; et al. Children’s intellectual function in relation to arsenic exposure. Epidemiology 2007, 18, 44–51. [Google Scholar] [CrossRef]
- Wang, S-.X.; Wang, Z.-H.; Cheng, X.-T.; Li, J.; Sang, Z.-P.; Zhang, X.-D.; Han, L.-L.; Qiao, X.-Y.; Wu, Z.-M.; Wang, Z.-Q. Arsenic and fluoride exposure in drinking water: Children’s IQ and growth in Shanyin County, Shanxi Province, China. Environ. Health Perspect. 2007, 115, 643–647. [Google Scholar] [CrossRef]
- Rosado, J.L.; Ronquillo, D.; Kordas, K.; Rojas, O.; Alatorre, J.; Lopez, P.; Garcia-Vargas, G; del Carmen Caamano, M.; Cebrian, M.E.; Stoltfus, R.J. Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ. Health Perspect. 2007, 115, 1371–1375. [Google Scholar] [CrossRef]
- Tofail, F.; Vahter, M.; Hamadani, J.D.; Nermell, B.; Huda, S.N.; Yunus, M.; Eahman, M.; Grantham-McGregor, S.M. Effect of arsenic exposure during pregnancy on infant development at 7 months in rural Matlab, Bangladesh. Environ. Health Perspect. 2009, 117, 288–293. [Google Scholar]
- Hamadani, J.D.; Grantham-McGregor, S.M.; Tofail, F.; Nermell, B.; Fangstrom, B.; Huda, S.N.; Yesmin, S.; Rahman, M.; Vera-Hernandez, M.; Arifeen, S.E.; et al. Pre- and postnatal arsenic exposure and child development at 18 months of age: A cohort study in rural Bangladesh. Int. J. Epidemiol. 2010, 39, 1206–1216. [Google Scholar] [CrossRef]
- Hamadani, J.D.; Tofail, F.; Nermell, B.; Gardner, R.; Shiraji, S.; Bottai, M.; Arifeen, S.E.; Huda, S.N.; Vahter, M. Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: A population-based study. Int. J. Epidemiol. 2011, 40, 1593–1604. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Factor-Litvak, P.; Ahsan, H.; Levy, D.; Kline, J.; van Geen, A.; Mey, J.; Slavkovich, V.; et al. Arsenic and manganese exposure and children’s intellectual function. Neurotoxicology 2011, 32, 450–457. [Google Scholar] [CrossRef]
- Roy, A.; Kordas, K.; Lopez, P.; Rosado, J.L.; Cebrian, M.E; Garcia Vargas, G.; Ronquillo, D.; Stoltzfus, R.J. Association between arsenic exposure and behavior among first-graders from Torreon, Mexico. Environ. Res. 2011, 111, 670–676. [Google Scholar]
- Parajuli, R.P.; Fujiwara, T.; Umezaki, M.; Watanabe, C. Association of cord blood levels of lead, arsenic, and zinc with neurodevelopmental indicators in newborns: A birth cohort study in Chitwan Valley, Nepal. Environ. Res. 2013, 121, 45–51. [Google Scholar] [CrossRef]
- Bellinger, D.C. Lead. Pediatrics 2004, 113, 1016–1022. [Google Scholar]
- Gardner, R.M.; Nermell, B.; Kippler, M.; Grander, M.; Li, L.; Ekstrom, E.-C.; Rahman, A.; Lonnerdal, B.; Waheedul Hoque, A.M.; Vahter, M. Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status. Reprod. Toxicol. 2011, 31, 210–218. [Google Scholar] [CrossRef]
- McDermott, S.; Wu, J.; Cai, B.; Lawson, A.; Aelion, C.M. Probability of intellectual disability is associated with soil concentrations of arsenic and lead. Chemosphere 2011, 84, 31–38. [Google Scholar] [CrossRef]
- McDermott, S.; Bao, W.; Marjorie Aelion, C.; Cai, B.; Lawson, A. When are fetuses and young children most susceptible to soil metal concentrations of arsenic, lead and mercury? Spat. Spatiotemporal Epidemiol. 2012, 3, 266–272. [Google Scholar]
- Rodríguez-Barranco, M.; Lacasaña, M.; Aguilar-Garduño, C.; Alguacil, J.; Gil, F.; González-Alzaga, B.; Rojas-García, A. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis. Sci. Total Environ. 2013, 454–455, 562–577. [Google Scholar] [CrossRef]
- Dong, J.; Su, S.-Y. The association between arsenic and children’s intelligence: A meta-analysis. Biol. Trace Elem. Res. 2009, 129, 88–93. [Google Scholar] [CrossRef]
- Parvez, F.; Wasserman, G.A.; Factor-Litvak, P.; Liu, X.; Slavkovich, V.; Siddique, A.B.; Sultana, R.; Sultana, R.; Islam, T.; Levy, D.; et al. Arsenic exposure and motor function among children in Bangladesh. Health Perspect. 2011, 119, 1665–1670. [Google Scholar] [CrossRef]
- Rice, D.; Barone, S. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 2000, 108, 511–533. [Google Scholar]
- Vahter, M. Health effects of early life exposure to arsenic. Basic Clin. Pharmacol. Toxicol. 2008, 102, 204–211. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, F.; Liu, M.; Parvez, F.; Slavkovich, V.; Eunus, M.; Ahmed, A.; Argos, M.; Islam, T.; Rakibuz-Zaman, M.; et al. A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in Bangladesh. Environ. Health Perspect. 2013, 121, 832–838. [Google Scholar] [CrossRef]
- Mejia, J.J.; Diaz-Barriga, F.; Calderon, J.; Rios, C.; Jimenez-Capdeville, M.E. Effects of lead-arsenic combined exposure on central monoaminergic systems. Neurotoxicol. Teratol. 1997, 19, 489–497. [Google Scholar] [CrossRef]
- Rodriguez, V.M.; Dufour, L.; Carrizales, L.; Diaz-Barriga, F.; Jimenez-Capdeville, M.E. Effects of oral exposure to mining waste on in vivo dopamine release from rat striatum. Environ. Health Perspect. 1998, 106, 487–491. [Google Scholar] [CrossRef]
- Andrade, V.; Mateus, M.L.; Batoreu, M.C.; Aschner, M.; Dos Santos, A.P. Urinary delta-ALA: A potential biomarker of exposure and neurotoxic effect in rats co-treated with a mixture of lead, arsenic, and manganese. Neurotoxicology 2013, 38, 33–41. [Google Scholar] [CrossRef]
- Rai, N.K.; Ashok, A.; Rai, A.; Tripathi, S.; Nagar, G.K.; Mitra, K.; Bandyopadhay, S. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat, brain, optic nerve and retina. Toxicol. Appl. Pharmacol. 2013, in press. [Google Scholar]
- Rai, A.; Maurya, S.K.; Khare, P.; Srivastava, A.; Bandyopadhyay, S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: Synergistic action of metal mixture in glial and neuronal functions. Toxicol. Sci. 2010, 118, 586–601. [Google Scholar] [CrossRef]
- Bellinger, D.C. Interpreting epidemiologic studies of developmental neurotoxicity: Conceptual and analytic issues. Neurobehav. Toxicol. Teratol. 2009, 31, 267–274. [Google Scholar] [CrossRef]
- Bellinger, D.C. A strategy for comparing the contributions of environmental chemicals and other risk factors to neurodevelopment of children. Environ. Health Perspect. 2012, 120, 501–507. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bellinger, D.C. Inorganic Arsenic Exposure and Children’s Neurodevelopment: A Review of the Evidence. Toxics 2013, 1, 2-17. https://doi.org/10.3390/toxics1010002
Bellinger DC. Inorganic Arsenic Exposure and Children’s Neurodevelopment: A Review of the Evidence. Toxics. 2013; 1(1):2-17. https://doi.org/10.3390/toxics1010002
Chicago/Turabian StyleBellinger, David C. 2013. "Inorganic Arsenic Exposure and Children’s Neurodevelopment: A Review of the Evidence" Toxics 1, no. 1: 2-17. https://doi.org/10.3390/toxics1010002