A Decision Analysis Framework for the Identification and Performance Preservation of Strategic Products in the Supply Chain
Abstract
1. Introduction
2. Literature Review
2.1. Theoretical Background
2.2. Decision Considerations
2.2.1. Financial and Organizational Considerations
2.2.2. Operational Considerations
2.2.3. Strategic Considerations
3. Research Method
- Identifying the strategic products;
- Determining the improvements desired for performance preservation.
3.1. Identifying the Strategic Products
3.2. Determining the Desired Improvements for Performance Preservation
4. Results, Analysis, and Discussions
4.1. Data Collection and Preparation
4.2. Identifying Strategic Products
4.3. Analyzing the Required Improvements
4.4. Discussions and Practical Implications
5. Conclusions
5.1. Concluding Remarks
5.2. Limitations and Directions for Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Product ID | 1234-18 | 716-32 | 716-33 | 623-37 | 244-38 | 60-630 | 264-71 | 373-89 | 265-93 | 135-546 | 1115-147 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PMP | 0.4714338 | 0.77 | 0.65 | 0.1020175 | 0.2873065 | 0.3865137 | 0.5008133 | 0.1966998 | 0.2567563 | 0.7042465 | 0.2732151 | |
DP | 0.1597144 | 0.1530096 | 0.1498793 | 0.0922827 | 0.1192392 | 0.1362447 | 0.1760966 | 0.0899909 | 0.1304766 | 0.1696331 | 0.0653091 | |
Inverted DP | 626.11756 | 653.55378 | 667.20337 | 1083.6272 | 838.65059 | 733.97345 | 567.87027 | 1111.2238 | 766.42115 | 589.50752 | 1531.1809 | |
RP | 42 | 52 | 43 | 51 | 50 | 42 | 60 | 49 | 54 | 32 | 51 | |
RSI | 0.1974059 | 0.0696074 | 0.0663918 | 0.1807447 | 0.21581 | 0.2591833 | 0.1556852 | 0.1647173 | 0.2139683 | 0.1413837 | 0.153515 | |
Inverted RSI | 506.57037 | 1436.6286 | 1506.2111 | 553.2665 | 463.37046 | 385.82733 | 642.32177 | 607.10062 | 467.35899 | 707.29523 | 651.40206 | |
PSL | 76.77577 | 64.720089 | 71.515562 | 71.082632 | 65.807237 | 89.978749 | 65.894708 | 65.316561 | 68.835251 | 70.176182 | 108.7073 | |
Efficiency | 0.9086 | 1 | 0.9003 | 0.9992 | 1 | 0.9319 | 1 | 1 | 1 | 0.9508 | 1 | |
% | 91 | 100 | 90 | 100 | 100 | 93 | 100 | 100 | 100 | 95 | 100 | |
Desired PMP | 0.4988294 | 0.8222263 | 0.803285 | 0.4640161 | 0.3349958 | 0.4963888 | 0.5008133 | 0.3502279 | 0.3118905 | 0.7042465 | 0.4993131 | |
Desired DP | 1005.99 | 934.0157 | 1408.017 | 1083.627 | 856.2545 | 805.534 | 871.3993 | 1111.224 | 877.1237 | 703.5528 | 1531.181 | |
DP reduction | 0.099 | 0.107064 | 0.071 | 0.092 | 0.116 | 0.1362 | 0.1147 | 0.08999 | 0.114 | 0.142 | 0.06531 | |
Desired RP | 56 | 52 | 56 | 55 | 50 | 56 | 60 | 49 | 54 | 47 | 57 | |
Desired RSI | 531.89888 | 1508.46 | 1581.52 | 580.92983 | 486.53898 | 405.1187 | 674.43786 | 637.45566 | 490.72694 | 742.66 | 683.97217 | |
Desired PSL | 80.614559 | 67.956093 | 75.09134 | 74.636763 | 69.097599 | 94.477687 | 69.189443 | 68.582389 | 72.277014 | 73.684991 | 114.14266 | |
Product ID | 85-148 | 186-356 | 206-76 | 244-259 | 244-259 | 245-273 | 1105-309 | 319-330 | 348-82 | 413-358 | 413-360 | 630-363 |
PMP | 0.0167191 | 0.5 | 0.0849607 | 0.4643709 | 0.4643709 | 0.3398887 | 0.74 | 0.2400536 | 0.2717569 | 0.3459196 | 0.7002526 | 0.6403316 |
DP | 0.1423263 | 0.0901768 | 0.1881955 | 0.152252 | 0.152252 | 0.1379505 | 0.2252647 | 0.0157978 | 0.093248 | 0.1340094 | 0.1282188 | 0.1290777 |
Inverted DP | 702.61096 | 1108.9331 | 531.36225 | 656.80562 | 656.80562 | 724.8975 | 443.92218 | 6329.9879 | 1072.4091 | 746.21627 | 779.91673 | 774.72687 |
RP | 43 | 32 | 59 | 48 | 48 | 33 | 55 | 32 | 51 | 31 | 30 | 60 |
RSI | 0.236919 | 0.099537 | 0.0892873 | 0.1145141 | 0.1145141 | 0.2608634 | 0.1108067 | 0.044427 | 0.1904218 | 0.2536149 | 0.1877069 | 0.2427429 |
Inverted RSI | 422.08512 | 1004.6513 | 1119.9807 | 873.25453 | 873.25453 | 383.3424 | 902.47282 | 2250.8812 | 525.15008 | 394.29866 | 532.74535 | 411.95848 |
PSL | 60.323559 | 68.264671 | 71.944103 | 61.608367 | 61.608367 | 71.463313 | 77.045319 | 147.78954 | 73.011754 | 63.213032 | 79.839305 | 126.07212 |
Efficiency | 0.9336 | 1 | 0.9007 | 0.9295 | 0.9295 | 0.934 | 0.9382 | 1 | 1 | 0.9779 | 1 | 1 |
% | 93 | 100 | 90 | 93 | 93 | 93 | 94 | 100 | 100 | 98 | 100 | 100 |
Desired PMP | 0.386396 | 0.5346243 | 0.648445 | 0.5070797 | 0.5070797 | 0.41533 | 0.74 | 0.3262579 | 0.3472792 | 0.3642733 | 0.7002526 | 0.6723482 |
Desired DP | 804.9194 | 1227.718 | 1455.68 | 1181.379 | 1181.379 | 771.4559 | 938.2002 | 6329.988 | 1072.409 | 746.2163 | 837.7375 | 813.4632 |
DP reduction | 0.124 | 0.081 | 0.068 | 0.084 | 0.084 | 0.129 | 0.106 | 0.0157 | 0.093 | 0.134 | 0.119 | 0.122 |
Desired RP | 45 | 51 | 60 | 50 | 50 | 48 | 63 | 39 | 51 | 43 | 34 | 63 |
Desired RSI | 443.18938 | 1054.8839 | 1175.9798 | 916.91726 | 916.91726 | 402.50952 | 947.59646 | 2363.4253 | 551.40759 | 414.01359 | 559.38261 | 432.5564 |
Desired PSL | 63.339737 | 71.677904 | 75.541308 | 64.688786 | 64.688786 | 75.036479 | 80.897585 | 155.17902 | 76.662342 | 66.373683 | 83.83127 | 132.37573 |
Product ID | 648-1199 | 648-1209 | 1174-1240 | 738-1319 | 81-1367 | 1374-472 | 78-1376 |
---|---|---|---|---|---|---|---|
PMP | 0.6550928 | 0.6722643 | 0.5766641 | 0.6275491 | 0.2411534 | 0.4730618 | 0.5161176 |
DP | 0.2201723 | 0.2200313 | 0.0734696 | 0.1481295 | 0.104122 | 0.1777075 | 0.1178655 |
Inverted DP | 454.18971 | 454.48086 | 1361.1074 | 675.08498 | 960.4116 | 562.72246 | 848.42435 |
RP | 54 | 31 | 41 | 37 | 55 | 59 | 55 |
RSI | 0.3436098 | 0.4038535 | 0.2406963 | 0.2488288 | 0.424168 | 0.9993664 | 0.4906097 |
Inverted RSI | 291.02782 | 247.61457 | 415.46132 | 401.88272 | 235.75563 | 100.0634 | 203.82801 |
PSL | 69.910712 | 60.870631 | 105.51085 | 71.786394 | 63.318017 | 67.871372 | 69.653102 |
Efficiency | 1 | 1 | 0.9356 | 1 | 1 | 1 | 1 |
% | 100 | 100 | 94 | 100 | 100 | 100 | 100 |
Desired PMP | 0.6550928 | 0.6722643 | 0.8733067 | 0.6275491 | 0.3110994 | 0.4967149 | 0.5419235 |
Desired DP | 641.8698 | 520.8073 | 1435.593 | 828.5881 | 960.4116 | 590.8586 | 890.8456 |
DP reduction | 0.1557948 | 0.1920096 | 0.0696576 | 0.1206872 | 0.104122 | 0.1692452 | 0.1122529 |
Desired RP | 54 | 35 | 93 | 52 | 56 | 62 | 58 |
Desired RSI | 305.57921 | 259.9953 | 436.23439 | 421.97686 | 247.54342 | 105.06657 | 214.01942 |
Desired PSL | 73.406248 | 63.914162 | 110.78639 | 75.375714 | 66.483918 | 71.264941 | 73.135757 |
ID | 169-398 | 169-399 | 169-404 | 255-492 | 246-524 | 596-1251 | 1251-606 | 174-634 | 714-169 | 351-791 |
---|---|---|---|---|---|---|---|---|---|---|
PMP | 0.590277 | 0.6101062 | 0.5488435 | 0.1972755 | 0.6652117 | 0.2793242 | 0.1841263 | 0.5089858 | 0.5875618 | 0.0577707 |
DP | 0.0113104 | 0.0094519 | 0.0091593 | 0.1232145 | 0.0597522 | 0.1968091 | 0.1952087 | 0.0970596 | 0.0907861 | 0.0092508 |
Inverted DP | 8841.3868 | 10579.893 | 10917.831 | 811.59291 | 1673.5774 | 508.10658 | 512.27235 | 1030.2952 | 1101.4898 | 10809.893 |
RP | 36 | 46 | 35 | 60 | 54 | 31 | 45 | 46 | 60 | 59 |
RSI | 0.3543042 | 0.1757992 | 0.1634305 | 0.182069 | 0.0477723 | 1.7607794 | 1.3057178 | 0.1889098 | 0.1983619 | 0.1177936 |
Inverted RSI | 282.24331 | 568.83078 | 611.88097 | 549.24223 | 2093.2617 | 56.793032 | 76.586229 | 529.35315 | 504.1291 | 848.94244 |
PSL | 83.985664 | 84.396408 | 85.324448 | 66.685322 | 72.651435 | 67.850133 | 62.511818 | 62.046509 | 74.312521 | 71.481412 |
Efficiency | 1 | 1 | 0.9793 | 1 | 0.9591 | 1 | 1 | 1 | 1 | 0.9906 |
% | 100 | 100 | 98 | 100 | 96 | 100 | 100 | 100 | 100 | 99 |
Desired PMP | 0.6197909 | 0.6101062 | 0.6060687 | 0.3683287 | 0.6652117 | 0.2828152 | 0.2069604 | 0.5089858 | 0.5875618 | 0.365653 |
Desired DP | 9283.456 | 11150.25 | 11969.66 | 3179.833 | 6622.85 | 616.4374 | 658.5212 | 6439.996 | 3243.085 | 10809.89 |
DP reduction | 0.0107719 | 0.0089684 | 0.0083545 | 0.0314482 | 0.0150992 | 0.1622225 | 0.1518554 | 0.015528 | 0.0308348 | 0.0092508 |
Desired RP | 38 | 53 | 60 | 60 | 63 | 31 | 45 | 46 | 60 | 59 |
Desired RSI | 296.35547 | 597.27232 | 642.47502 | 576.70434 | 2197.9248 | 59.632683 | 80.415541 | 555.82081 | 529.33556 | 891.38956 |
Desired PSL | 88.184947 | 88.616228 | 89.59067 | 70.019588 | 76.284007 | 71.24264 | 65.637409 | 65.148834 | 78.028147 | 75.055482 |
ID | 391-831 | 348-833 | 1280-934 | 1004-1143 | 157-1025 | 806-1047 | ||||
PMP | 0.5101029 | 0.1085002 | 0.0787637 | 0.1524006 | 0.6374297 | 0.6835808 | ||||
DP | 0.0089864 | 0.0220366 | 0.0066481 | 0.010391 | 0.0689454 | 0.1329772 | ||||
Inverted DP | 11127.894 | 4537.895 | 15041.804 | 9623.6744 | 1450.423 | 752.00834 | ||||
RP | 50 | 50 | 57 | 58 | 60 | 41 | ||||
RSI | 0.1856374 | 0.2759317 | 0.112798 | 0.1904151 | 0.1207778 | 0.1175707 | ||||
Inverted RSI | 538.68454 | 362.40854 | 886.54038 | 525.16843 | 827.96654 | 850.55203 | ||||
PSL | 80.319772 | 63.731724 | 72.435693 | 84.158652 | 60.45458 | 60.890943 | ||||
Efficiency | 1 | 1 | 1 | 1 | 1 | 1 | ||||
% | 100 | 100 | 100 | 100 | 100 | 100 | ||||
Desired PMP | 0.5356081 | 0.2868995 | 0.1399804 | 0.5538798 | 0.6374297 | 0.6835808 | ||||
Desired DP | 11684.29 | 4537.895 | 15041.8 | 9739.889 | 2406.766 | 1478.377 | ||||
DP reduction | 0.0085585 | 0.0220366 | 0.0066481 | 0.0102671 | 0.0415495 | 0.0676417 | ||||
Desired RP | 52 | 50 | 58 | 58 | 60 | 56 | ||||
Desired RSI | 565.61876 | 380.52897 | 930.8674 | 551.42685 | 869.36487 | 893.07963 | ||||
Desired PSL | 84.33576 | 66.91831 | 76.057478 | 88.366584 | 63.477308 | 63.93549 |
References
- Thakur, P.; Kathuria, K.; Kumari, N. Females’ consumer engagement with fast moving consumer goods (FMCG) retail businesses in North-Western India. Int. J. Retail. Distrib. Manag. 2024, 52, 1190–1207. [Google Scholar] [CrossRef]
- Gramberg, T.; Bauernhansl, T.; Eggert, A. Disruptive Factors in Product Portfolio Management: An Exploratory Study in B2B Manufacturing for Sustainable Transition. Sustainability 2024, 16, 4402. [Google Scholar] [CrossRef]
- Kabir, M.A.; Khan, S.A.; Gunasekaran, A.; Mubarik, M.S. Multi-criteria decision making to explore the relationship between supply chain mapping and performance. Decis. Anal. J. 2025, 15, 100577. [Google Scholar] [CrossRef]
- Pech, J.; Nelms, L.; Yuen, K.; Bolton, T. Retail Trade Industry Profile; Australian Fair Pay Commission: Sydney, Australia, 2009. [Google Scholar]
- Zhu, Q.; Martins, R.A.; Shah, P.; Sarkis, J. A Bibliometric Review of Brand and Product Deletion Research: Setting a Research Agenda. IEEE Trans. Eng. Manag. 2021, 70, 554–575. [Google Scholar] [CrossRef]
- Schiavone, F. Strategic reactions to technology competition. Manag. Decis. 2011, 49, 801–809. [Google Scholar] [CrossRef]
- Pourhejazy, P.; Sarkis, J.; Zhu, Q. Product deletion as an operational strategic decision: Exploring the sequential effect of prominent criteria on decision-making. Comput. Ind. Eng. 2020, 140, 106274. [Google Scholar] [CrossRef]
- Cheng, C.-C.; Wei, C.-C.; Chu, T.-J.; Lin, H.-H. AI Predicted Product Portfolio for Profit Maximization. Appl. Artif. Intell. 2022, 36, 2083799. [Google Scholar] [CrossRef]
- Bai, C.; Shah, P.; Zhu, Q.; Sarkis, J. Green product deletion decisions. Ind. Manag. Data Syst. 2018, 118, 349–389. [Google Scholar] [CrossRef]
- Golrizgashti, S.; Dahaghin, M.; Pourhejazy, P. Product Deletion Decisions for Adjusting Supply Chain Strategy: A Case Study From the Food Industry. IEEE Eng. Manag. Rev. 2021, 49, 182–198. [Google Scholar] [CrossRef]
- Pourhejazy, P.; Thamchutha, P.; Namthip, T. A DEA-based decision analytics framework for product deletion in the luxury goods and fashion industry. Decis. Anal. J. 2021, 2, 100019. [Google Scholar] [CrossRef]
- Ghiyasi, M. An inverse data envelopment analysis model for solving time substitution problems. Decis. Anal. J. 2024, 11, 100467. [Google Scholar] [CrossRef]
- Wu, Y.; Li, K.; Fu, X. An integrated zero-sum game and data envelopment analysis model for efficiency analysis and regional carbon emission allocation. Decis. Anal. J. 2024, 10, 100387. [Google Scholar] [CrossRef]
- Shamohammadi, M.; Kwon, O.K.; Lee, S.Y. Evaluation of the efficiency and returns to scale of Korean logistics companies. Res. Transp. Bus. Manag. 2025, 60, 101354. [Google Scholar] [CrossRef]
- Alexander, R.S. The Death and Burial of “Sick” Products. J. Mark. 1964, 28, 1–7. [Google Scholar] [CrossRef]
- Avlonitis, G.; Argouslidis, P. Tracking the evolution of theory on product elimination: Past, present, and future. Mark. Rev. 2012, 12, 345–379. [Google Scholar] [CrossRef]
- Corsten, D.; Gruen, T. Desperately Seeking Shelf Availability: An Examination of the Extent, the Causes, and the Efforts to Address Retail Out-of-Stocks. Int. J. Retail. Distrib. Manag. 2003, 31, 605–617. [Google Scholar] [CrossRef]
- Muir, J.; Reynolds, N. Product Deletion: A Critical Overview and Empirical Insight into this Process. J. Gen. Manag. 2011, 37, 5–30. [Google Scholar] [CrossRef]
- Bae, S.H.; Zhu, Q.; Sarkis, J. Supply chain interactions and strategic product deletion Decisions: A Game-Theoretic analysis. Transp. Res. E Logist. Transp. Rev. 2024, 186, 103522. [Google Scholar] [CrossRef]
- Bai, C.; Ma, X.; Zhu, Q. Product portfolio decarbonization: Deleting hot products for a cooler supply chain. Bus. Strategy Environ. 2024, 33, 9161–9180. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Y.; Xu, X.; Sarkis, J. How loud is consumer voice in product deletion decisions? Retail analytic insights. J. Retail. Consum. Serv. 2025, 82, 104110. [Google Scholar] [CrossRef]
- Gad, E.; Pham, L.; Lee, J.; Amirsardari, A. Product performance—A review of construction product conformity assessment. Aust. J. Struct. Eng. 2021, 22, 140–146. [Google Scholar] [CrossRef]
- Cropley, D.H. A Review of Approaches to the Assessment of Product Creativity. PsyArXiv 2023. preprint. [Google Scholar] [CrossRef]
- Fadara, T.G.; Wong, K.Y. A decision support system for sustainable textile product assessment. Text. Res. J. 2023, 93, 1971–1989. [Google Scholar] [CrossRef]
- Harness, D.R. Product elimination. Int. J. Bank Mark. 2004, 22, 161–179. [Google Scholar] [CrossRef]
- Chopra, S.; Meindl, P. Supply Chain Management Strategy and Operation; Pearson: San Antonio, TX, USA, 2015; pp. 13–17. [Google Scholar]
- Zhu, Q.; Shah, P.; Sarkis, J. Addition by subtraction: Integrating product deletion with lean and sustainable supply chain management. Int. J. Prod. Econ. 2018, 205, 201–214. [Google Scholar] [CrossRef]
- Pourhejazy, P.; Sarkis, J.; Zhu, Q. A fuzzy-based decision aid method for product deletion of fast moving consumer goods. Expert Syst. Appl. 2019, 119, 272–288. [Google Scholar] [CrossRef]
- Wei, N.; Chen, D.; Wang, D. Improving Strategy of Agricultural Products Logistics on the Basis of Supply Chain. In Proceedings of the 2021 International conference on Smart Technologies and Systems for Internet of Things (STS-IOT 2021), Online, 19 December 2021; Atlantis Press: Paris, France, 2022. [Google Scholar] [CrossRef]
- Zhu, Q.; Golrizgashti, S.; Sarkis, J. Product deletion and supply chain repercussions: Risk management using FMEA. Benchmarking: Int. J. 2020, 28, 409–437. [Google Scholar] [CrossRef]
- Shabani, A.; Maroti, G.; de Leeuw, S.; Dullaert, W. Inventory record inaccuracy and store-level performance. Int. J. Prod. Econ. 2021, 235, 108111. [Google Scholar] [CrossRef]
- Porter, M.E. The five competitive forces that shape strategy. Harv. Bus. Rev. 2008, 86, 78. [Google Scholar]
- Shams, S.M.R.; Brown, D.M.; Hardcastle, K. Pricing Strategy for People, Planet, and Profit. In Sustainable Marketing; Springer: Berlin/Heidelberg, Germany, 2025; pp. 169–225. [Google Scholar] [CrossRef]
- Shah, P. Culling the brand portfolio: Brand deletion outcomes and success factors. Manag. Res. Rev. 2017, 40, 370–377. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Arabjazi, N.; Pourhejazy, P.; Rostamy-Malkhalifeh, M. An exploration of the concept of constrained improvement in data envelopment analysis. Decis. Anal. J. 2024, 12, 100514. [Google Scholar] [CrossRef]
- Pande, S.; Sangar, R.; Chaudhary, N. Evaluating performance of apparel retail stores using data envelopment analysis. Int. J. Bus. Excell. 2020, 22, 19. [Google Scholar] [CrossRef]
- Lertworasirikul, S.; Charnsethikul, P.; Fang, S.-C. Inverse data envelopment analysis model to preserve relative efficiency values: The case of variable returns to scale. Comput. Ind. Eng. 2011, 61, 1017–1023. [Google Scholar] [CrossRef]
- Andersson, T.; Warell, A.; Ölvander, J.; Wever, R. Product portfolio management in industrial design: A model of design strategies for mature portfolios. Int. J. Prod. Dev. 2021, 25, 343. [Google Scholar] [CrossRef]
Classification 1 | |
---|---|
Dependent Variables (Indirectly Decided) | Independent Variables (Directly Decided) |
Product Shelf Life (PSL) | Profit Margin Percentage (PMP) |
Ratio of Sales to Inventory (RSI) | Discount Percentage (DP) |
Repayment Period (RP) | |
Classification 2 | |
Input Variables () | Output Variables () |
Product Shelf Life (PSL) | Ratio of Sales to Inventory (RSI) |
Discount Percentage (DP) | Profit Margin Percentage (PMP) |
Repayment Period (RP) |
Factor | Source |
---|---|
Profit Margin Percentage (PMP) | |
Discount Percentage (DP) | |
Repayment Period (RP) | From the contract with the supplier |
Product Shelf Life (PSL) | From the product information |
Ratio of Sales to Inventory (RSI) |
Product ID | 393-4 | 393-6 | 393-7 | 393-8 | 724-12 | |
---|---|---|---|---|---|---|
Output | Profit Margin Percentage (PMP) | 0.30 | 0.23 | 0.26 | 0.19 | 0.37 |
Discount percentage (DP) | 0.26 | 0.26 | 0.27 | 0.27 | 0.09 | |
Repayment period (days) | 51 | 49 | 58 | 46 | 47 | |
Input | Average ratio of sales to inventory | 0.11 | 0.14 | 0.14 | 0.15 | 0.18 |
Durability (days) | 80 | 67 | 63 | 61 | 100 | |
Results | Efficiency | 0.7501 | 0.8532 | 1 | 0.8973 | 1 |
Efficiency percentage | 75 | 85 | 100 | 90 | 100 |
ID | Efficiency | Efficiency Percentage | Minimum Entry | Desired Entry |
---|---|---|---|---|
393-7 | 1 | 100 | 765 | (Minimum average ratio of sales to inventory) |
724-12 | 1 | 100 | 587 | 66 |
Product ID | 393-7 | 724-12 | |
---|---|---|---|
Output | Profit margin Percentage | 0.26 | 0.37 |
Discount Percentage | 0.27 | 0.09 | |
Repayment Period (Days) | 58 | 47 | |
Input | The Average Ratio of Sales to Inventory | 728 | 559 |
Product Shelf Life (Days) | 62.64 | 100.17 | |
Desired Improvements | Efficiency | 1 | 1 |
Efficiency Percentage | 100 | 100 | |
Profit Margin Percentage (PMP) | 0.27 | 0.39 | |
Discount Percentage (DP) | 0.23 | 0.09 | |
Repayment Period (RP) | 58 | 50 | |
Minimum Product Shelf Life (PSL) | 66 | 105 | |
Minimum Ratio of Sales to Inventory (RSI) | 765 | 587 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasnia, F.; Zandieh, M.; Bahrami, F.; Pourhejazy, P. A Decision Analysis Framework for the Identification and Performance Preservation of Strategic Products in the Supply Chain. Logistics 2025, 9, 89. https://doi.org/10.3390/logistics9030089
Abbasnia F, Zandieh M, Bahrami F, Pourhejazy P. A Decision Analysis Framework for the Identification and Performance Preservation of Strategic Products in the Supply Chain. Logistics. 2025; 9(3):89. https://doi.org/10.3390/logistics9030089
Chicago/Turabian StyleAbbasnia, Fatemeh, Mostafa Zandieh, Farzad Bahrami, and Pourya Pourhejazy. 2025. "A Decision Analysis Framework for the Identification and Performance Preservation of Strategic Products in the Supply Chain" Logistics 9, no. 3: 89. https://doi.org/10.3390/logistics9030089
APA StyleAbbasnia, F., Zandieh, M., Bahrami, F., & Pourhejazy, P. (2025). A Decision Analysis Framework for the Identification and Performance Preservation of Strategic Products in the Supply Chain. Logistics, 9(3), 89. https://doi.org/10.3390/logistics9030089