A Systematic Literature Review on the Application of Automation in Logistics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. PRISMA Protocol
2.3. Content Analysis Technique
3. Results
3.1. Artificial Intelligence
3.1.1. Machine Learning
3.1.2. Deep Learning
3.2. Robot-Driven Logistics
4. Conclusions
4.1. Theoretical and Managerial Contributions
4.2. Research Limitations and Suggestions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iyer, L.S. AI-enabled applications towards intelligent transportation. Transp. Eng. 2021, 5, 100083. [Google Scholar] [CrossRef]
- Chowdhury, M.; Sadek, A.W. Advantages and limitations of artificial intelligence. Artif. Intell. Appl. Crit. Transp. Issues 2012, 6, 360–375. [Google Scholar]
- Sudhakar, M.; Priya, R. Computer vision-based machine learning and deep learning approaches for identification of nutrient deficiency in crops: A survey. Nat. Environ. Pollut. Technol. 2023, 22, 1387–1399. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueño, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Jančařík, A.; Michal, J.; Novotná, J. Using AI Chatbot for Math Tutoring. J. Educ. Cult. Soc. 2023, 14, 285–296. [Google Scholar] [CrossRef]
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef]
- Woschank, M.; Rauch, E.; Zsifkovits, H. A review of further directions for artificial intelligence, machine learning, and deep learning in smart logistics. Sustainability 2020, 12, 3760. [Google Scholar] [CrossRef]
- Issaoui, Y.; Khiat, A.; Bahnasse, A.; Ouajji, H. Smart logistics: Study of the application of blockchain technology. Procedia Comput. Sci. 2019, 160, 266–271. [Google Scholar] [CrossRef]
- Jung, J.; Kim, H. Big data governance for smart logistics: A value-added perspective. In Proceedings of the Conference on Internet of Things and Smart Spaces, St. Petersburg, Russia, 26–28 August 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 95–103. [Google Scholar]
- Cimini, C.; Lagorio, A.; Romero, D.; Cavalieri, S.; Stahre, J. Smart logistics and the logistics operator 4.0. IFAC-PapersOnLine 2020, 53, 10615–10620. [Google Scholar] [CrossRef]
- Issaoui, Y.; Khiat, A.; Bahnasse, A.; Ouajji, H. Toward smart logistics: Engineering insights and emerging trends. Arch. Comput. Methods Eng. 2021, 28, 3183–3210. [Google Scholar] [CrossRef]
- Feng, B.; Ye, Q. Operations management of smart logistics: A literature review and future research. Front. Eng. Manag. 2021, 8, 344–355. [Google Scholar] [CrossRef]
- Shee, H.K.; Miah, S.J.; De Vass, T. Impact of smart logistics on smart city sustainable performance: An empirical investigation. Int. J. Logist. Manag. 2021, 32, 821–845. [Google Scholar] [CrossRef]
- Nitsche, B. Exploring the Potentials of automation in logistics and supply chain management: Paving the way for autonomous supply chains. Logistics 2021, 5, 51. [Google Scholar] [CrossRef]
- Machała, S.; Chamier-Gliszczyński, N.; Królikowski, T. Application of AR/VR Technology in Industry 4.0. Procedia Comput. Sci. 2022, 207, 2990–2998. [Google Scholar] [CrossRef]
- Fahimnia, B.; Pournader, M.; Siemsen, E.; Bendoly, E.; Wang, C. Behavioral operations, and supply chain management—A review and literature mapping. Decis. Sci. 2019, 50, 1127–1183. [Google Scholar] [CrossRef]
- Pournader, M.; Kach, A.; Talluri, S. A review of the existing and emerging topics in the supply chain risk management literature. Decis. Sci. 2020, 51, 867–919. [Google Scholar] [CrossRef] [PubMed]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; López-Cózar, E.D. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Tsolakis, N.; Zissis, D.; Papaefthimiou, S.; Korfiatis, N. Towards AI-driven environmental sustainability: An application of automated logistics in container port terminals. Int. J. Prod. Res. 2022, 60, 4508–4528. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Elo, S.; Kääriäinen, M.; Kanste, O.; Pölkki, T.; Utriainen, K.; Kyngäs, H. Qualitative content analysis: A focus on trustworthiness. SAGE Open 2014, 4, 2158244014522633. [Google Scholar] [CrossRef]
- Hsieh, H.; Shannon, S. Three approaches to qualitative content analysis. Qual. Health Res. 2005, 15, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Graneheim, U.; Lindgren, B.; Lundman, B. Methodological challenges in qualitative content analysis: A discussion paper. Nurse Educ. Today 2017, 56, 29–34. [Google Scholar] [CrossRef]
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag. 2006, 27, 12. [Google Scholar]
- Reebadiya, D.; Rathod, T.; Gupta, R.; Tanwar, S.; Kumar, N. Blockchain-based secure and intelligent sensing scheme for autonomous vehicles activity tracking beyond 5g networks. Peer-to-Peer Netw. Appl. 2021, 14, 2757–2774. [Google Scholar] [CrossRef]
- Matt, D.T.; Riedl, M.; Rauch, E. Die Natur als Inspiration. Z. Wirtsch. Fabr. 2020, 115, 158–161. [Google Scholar] [CrossRef]
- AI EdgeLabs. Edge Cybersecurity in Transportation and Logistics. Available online: https://edgelabs.ai/industries/transportation-and-logistics/ (accessed on 6 July 2023).
- McKinsey & Company. Tackling Bias in Artificial Intelligence (and in Humans). Available online: https://www.mckinsey.com/featured-insights/artificial-intelligence/tackling-bias-in-artificial-intelligence-and-in-humans (accessed on 8 July 2023).
- Fuel Transport. Challenging an Unconscious Bias in Logistics. Available online: https://fueltransport.com/challenging-unconscious-bias/ (accessed on 8 July 2023).
- Ai, Q.; Zhang, Y.; Bi, K.; Croft, W.B. Explainable product search with a dynamic relation embedding model. ACM Trans. Inf. Syst. TOIS 2019, 38, 4. [Google Scholar] [CrossRef]
- Zdravković, M.; Panetto, H.; Weichhart, G. AI-enabled enterprise information systems for manufacturing. Enterp. Inf. Syst. 2022, 16, 668–720. [Google Scholar] [CrossRef]
- DHL Research. Digital Twins in Logistics. A DHL Perspective on the Impact of Digital Twins on the Logistics Industry. Available online: https://www.dhl.com/content/dam/dhl/global/core/documents/pdf/glo-core-digital-twins-in-logistics.pdf (accessed on 16 March 2023).
- Paul, S.K.; Azeem, A. An artificial neural network model for optimization of finished goods inventory. Int. J. Ind. Eng. Comput. 2011, 2, 431–438. [Google Scholar] [CrossRef]
- Bansalk, V.S. Guptaa. Neural Networks Based Forecasting Techniques for Inventory Control Applications. Int. J. Agil. Manuf. 1998, 2, 97–102. [Google Scholar]
- Ceyhun, G.Ç. Recent developments of artificial intelligence in business logistics: A maritime industry case. In Digital Business Strategies in Blockchain Ecosystems: Transformational Design and Future of Global Business; Springer: Berlin/Heidelberg, Germany, 2020; pp. 343–353. [Google Scholar]
- Lu, Y. Cyber physical system (CPS)-based industry 4.0: A survey. J. Ind. Integr. Manag. 2017, 2, 1750014. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Dias, R.; Rebello, C.M.; Martins, M.A.; Rodrigues, A.E.; Ribeiro, A.M.; Nogueira, I.B. Artificial intelligence and cyber-physical systems: A review and perspectives for the future in the chemical industry. AI 2021, 2, 27. [Google Scholar] [CrossRef]
- RMIT University. Intelligent Automation & Autonomy for Aerospace, Transport and Defence. Available online: https://sites.rmit.edu.au/cyber-physical-systems/ (accessed on 5 July 2023).
- Amiri, Z.; Heidari, A.; Navimipour, N.J.; Unal, M.; Mousavi, A. Adventures in data analysis: A systematic review of Deep Learning techniques for pattern recognition in cyber-physical-social systems. Multimed. Tools Appl. 2023, 1–65. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Heidari, A.; Navimipour, N.J.; Unal, M. Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review. Sustain. Cities Soc. 2022, 85, 104089. [Google Scholar] [CrossRef]
- Seo, S.; Seo, D.; Jang, M.; Jeong, J.; Kang, P. Unusual customer response identification and visualization based on text mining and anomaly detection. Expert Syst. Appl. 2020, 144, 113111. [Google Scholar] [CrossRef]
- Singh, A.; Wiktorsson, M.; Hauge, J.B. Trends in machine learning to solve problems in logistics. Procedia CIRP 2021, 103, 67–72.1. [Google Scholar] [CrossRef]
- Russell, S.J. Artificial Intelligence a Modern Approach; Pearson Education, Inc.: London, UK, 2010. [Google Scholar]
- Yoon, G.; Chow, J.Y. Contextual bandit-based sequential transit route design under demand uncertainty. Transp. Res. Rec. 2020, 2674, 613–625. [Google Scholar] [CrossRef]
- Ong, C.J.; Orfanoudaki, A.; Zhang, R.; Caprasse, F.P.M.; Hutch, M.; Ma, L.; Fard, D.; Balogun, O.; Miller, M.I.; Minnig, M.; et al. Machine learning and natural language processing methods to identify ischemic stroke, acuity and location from radiology reports. PLoS ONE 2020, 15, e0234908. [Google Scholar] [CrossRef] [PubMed]
- Kerdprasop, N.; Chansilp, K.; Kerdprasop, K.; Chuaybamroong, P. Anomaly detection with machine learning technique to support smart logistics. In Proceedings of the Computational Science and Its Applications—ICCSA 2019: 19th International Conference, St. Petersburg, Russia, 1–4 July 2019; Proceedings, Part I. Springer International Publishing: Cham, Switzerland, 2019; pp. 461–472. [Google Scholar]
- Hajek, P.; Abedin, M.Z. A profit function-maximizing inventory backorder prediction system using big data analytics. IEEE Access 2020, 8, 58982–58994. [Google Scholar] [CrossRef]
- Li, B.Y.S.; Yeung, L.F.; Tsang, K.F. Analysing traffic condition based on IoT technique. In Proceedings of the 2014 IEEE International Conference on Consumer Electronics-China, Shenzhen, China, 9–13 April 2014; IEEE: New York, NY, USA, 2014; pp. 1–4. [Google Scholar]
- Edelstein, R. Smarter transportation management through its. In Proceedings of the 21st World Congress on Intelligent Transport Systems, ITSWC 2014: Reinventing Transportation in Our Connected World, Detroit, MI, USA, 7–11 September 2014; pp. 1–4. [Google Scholar]
- Sanchez, M.; Exposito, E.; Aguilar, J. Autonomic computing in manufacturing process coordination in industry 4.0 context. J. Ind. Inf. Integr. 2020, 19, 100159. [Google Scholar] [CrossRef]
- Diez-Olivan, A.; Del Ser, J.; Galar, D.; Sierra, B. Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Inf. Fusion 2019, 50, 92–111. [Google Scholar] [CrossRef]
- Subakti, H.; Jiang, J.R. Indoor augmented reality using deep learning for industry 4.0 smart factories. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; IEEE: New York, NY, USA, 2018; Volume 2, pp. 63–68. [Google Scholar]
- Wang, K.; Wang, Y. How AI affects the future predictive maintenance: A primer of deep learning. In Advanced Manufacturing and Automation; Springer: Singapore, 2018; Volume VII 7, pp. 1–9. [Google Scholar]
- Liu, K.; Li, Q.; Ma, J.; Zhou, Z.; Sun, M.; Deng, Y.; Tu, W.; Wang, Y.; Fan, L.; Xia, C.; et al. Evaluating a fully automated pulmonary nodule detection approach and its impact on radiologist performance. Radiol. Artif. Intell. 2019, 1, e180084. [Google Scholar] [CrossRef]
- Causey, J.L.; Zhang, J.; Ma, S.; Jiang, B.; Qualls, J.A.; Politte, D.G.; Prior, F.; Zhang, S.; Huang, X. Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci. Rep. 2018, 8, 9286. [Google Scholar] [CrossRef]
- Ciompi, F.; Chung, K.; Van Riel, S.J.; Setio, A.A.A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.; Wille, M.M.W.; Marchianò, A.; et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci. Rep. 2017, 7, 46479. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [Google Scholar] [CrossRef]
- Mallik, A.; Chaudhury, S. Acquisition of multimedia ontology: An application in preservation of cultural heritage. Int. J. Multimed. Inf. Retr. 2012, 1, 249–262. [Google Scholar] [CrossRef]
- Coleman, G.B.; Andrews, H.C. Image segmentation by clustering. Proc. IEEE 1979, 67, 773–785. [Google Scholar] [CrossRef]
- Huang, G.B.; Lee, H.; Learned-Miller, E. Learning hierarchical representations for face verification with convolutional deep belief networks. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 30 November–1 December 2012; IEEE: New York, NY, USA, 2012; pp. 2518–2525. [Google Scholar]
- Fischler, M.A.; Elschlager, R.A. The representation and matching of pictorial structures. IEEE Trans. Comput. 1973, 100, 67–92. [Google Scholar] [CrossRef]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst. 2016, 29. [Google Scholar] [CrossRef]
- Alnahas, J. Application of Process Mining in Logistic Processes of Manufacturing Organizations: A Systematic Review. Sustainability 2023, 15, 11783. [Google Scholar] [CrossRef]
- Höft, N.; Schulz, H.; Behnke, S. Fast semantic segmentation of RGB-D scenes with GPU-accelerated deep neural networks. In Proceedings of the KI 2014: Advances in Artificial Intelligence: 37th Annual German Conference on AI, Stuttgart, Germany, 22–26 September 2014; Proceedings 37. Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 80–85. [Google Scholar]
- Shin Yoon, J.; Rameau, F.; Kim, J.; Lee, S.; Shin, S.; So Kweon, I. Pixel-level matching for video object segmentation using convolutional neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2167–2176. [Google Scholar]
- Goel, V.; Weng, J.; Poupart, P. Unsupervised video object segmentation for deep reinforcement learning. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar] [CrossRef]
- Javed, S.; Oh, S.H.; Sobral, A.; Bouwmans, T.; Jung, S.K. OR-PCA with MRF for robust foreground detection in highly dynamic backgrounds. In Proceedings of the Asian Conference on Computer Vision, Singapore, 1–5 November 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 284–299. [Google Scholar]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply chain risk management and artificial intelligence: State of the art and future research directions. Int. J. Prod. Res. 2019, 57, 2179–2202. [Google Scholar] [CrossRef]
- Pernestål, A.; Engholm, A.; Bemler, M.; Gidofalvi, G. How will digitalization change road freight transport? Scenarios tested in Sweden. Sustainability 2020, 13, 304. [Google Scholar] [CrossRef]
- Minovski, D.; Åhlund, C.; Mitra, K.; Zhohov, R. Defining quality of experience for the Internet of things. IT Prof. 2020, 22, 62–70. [Google Scholar] [CrossRef]
- Sado, F.; Loo, C.K.; Liew, W.S.; Kerzel, M.; Wermter, S. Explainable Goal-driven Agents, and Robots—A Comprehensive Review. ACM Comput. Surv. 2023, 55, 1–41. [Google Scholar] [CrossRef]
- Tussyadiah, I. A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on Artificial Intelligence and Robotics in Tourism. Ann. Tour. Res. 2020, 81, 102883. [Google Scholar] [CrossRef]
- Geigl, F.; Moik, C.; Hintereggerz, S.; Goller, M. Using machine learning and RFID localization for advanced logistic applications. In Proceedings of the 2017 IEEE International Conference on RFID (RFID), Phoenix, AZ, USA, 9–11 May 2017; pp. 73–74. [Google Scholar]
- Pavlović, M.; Nikolić, V.; Simonović, M.; Mitrović, V.; Ćirić, I. Edge detection parameter optimization based on the genetic algorithm for rail track detection. Facta Univ. Ser. Mech. Eng. 2019, 17, 333–344. [Google Scholar] [CrossRef]
- Confidex. Smart Industries. Available online: https://www.confidex.com/smart-industries/applications/logistics/ (accessed on 3 June 2023).
- Senta, Y.; Kimuro, Y.; Takarabe, S.; Hasegawa, T. Machine learning approach to self-localization of mobile robots using RFID tag. In Proceedings of the 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland, 4–7 September 2007; IEEE: New York, NY, USA, 2007; pp. 1–6. [Google Scholar]
- Garibotto, G.; Masciangelo, S.; Bassino, P.; Coelho, C.; Pavan, A.; Marson, M. Industrial exploitation of computer vision in logistic automation: Autonomous control of an intelligent forklift truck. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), Leuven, Belgium, 20 May 1998; IEEE: New York, NY, USA, 1998; Volume 2, pp. 1459–1464. [Google Scholar]
- DHL. Insights & Innovation. Available online: https://www.dhl.com/global-en/home/insights-and-innovation/thought-leadership/trend-reports/computer-vision-logistics.html (accessed on 6 May 2023).
- Oliff, H.; Liu, Y.; Kumar, M.; Williams, M.; Ryan, M. Reinforcement learning for facilitating human-robot interaction in manufacturing. J. Manuf. Syst. 2020, 56, 326–340. [Google Scholar] [CrossRef]
- Kiangala, K.S.; Wang, Z. An experimental safety response mechanism for an autonomous moving robot in a smart manufacturing environment using q-learning algorithm and speech recognition. Sensors 2022, 22, 941. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Spiel, K. Robots Beyond Science Fiction: Mutual learning in Human–robot interaction on the way to participatory approaches. AI Soc. 2022, 37, 501–515. [Google Scholar] [CrossRef]
- Heinrich, H.; Deutschländer, A.; Zoghlami, F.; Sen, O.K. The long journey from standardization to fully fab automation and more. IEEE Trans. Semicond. Manuf. 2019, 32, 408–414. [Google Scholar] [CrossRef]
- Knight, H. How Humans Respond to Robots: Building Public Policy through Good Design; Brookings: Washington, DC, USA, 2014. [Google Scholar]
- Honig, S.; Oron-Gilad, T. Expect the unexpected: Leveraging the human-robot ecosystem to handle unexpected robot failures. Front. Robot. AI 2021, 8, 656385. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.; Marques, P.A.; Marques, P.C. Where are smart cities heading? A meta-review and guidelines for future research. Appl. Sci. 2022, 12, 8328. [Google Scholar] [CrossRef]
- Reis, J. Politics, power, and influence: Defense industries in the post-cold war. Soc. Sci. 2021, 10, 10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, B.; Reis, J. A Systematic Literature Review on the Application of Automation in Logistics. Logistics 2023, 7, 80. https://doi.org/10.3390/logistics7040080
Ferreira B, Reis J. A Systematic Literature Review on the Application of Automation in Logistics. Logistics. 2023; 7(4):80. https://doi.org/10.3390/logistics7040080
Chicago/Turabian StyleFerreira, Bárbara, and João Reis. 2023. "A Systematic Literature Review on the Application of Automation in Logistics" Logistics 7, no. 4: 80. https://doi.org/10.3390/logistics7040080
APA StyleFerreira, B., & Reis, J. (2023). A Systematic Literature Review on the Application of Automation in Logistics. Logistics, 7(4), 80. https://doi.org/10.3390/logistics7040080