Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions
Abstract
:1. Introduction
- (1)
- provides a background of blockchain technology to allow researchers from different fields to position their research activities appropriately,
- (2)
- summarizes existing research and developments concerning the implementation of blockchain technology toward sustainable FSCs by outlining the potentials and challenges and
- (3)
- identifies gaps in current research that highlights areas for further investigation.
2. Research Methodology
2.1. Planning the Review
2.2. Conducting the Review
3. Descriptive Results and Knowledge Domains
3.1. Publications by Year
3.2. Publications by Country
3.3. Publications by Journal
3.4. Bibliometric Analysis
3.4.1. Keyword Co-Occurrence
3.4.2. Knowledge Domains through Bibliographic Coupling
4. Discussion
4.1. Potentials of Blockchain Technology in the FSC
4.1.1. Food Traceability
4.1.2. FSC Collaboration
4.1.3. FSC Efficiencies
4.1.4. Food Trading
4.2. Challenges of Blockchain Technology in FSCs
4.2.1. Technical Challenges
4.2.2. Organizational Challenges
4.2.3. Regulatory Challenges
5. Discussion, Implications and Conclusions
5.1. General Discussion
5.2. Implications for Researchers and Practitioners
- This review highlights the potentials of blockchain for FSCs. However, insufficient attention has been paid to the role of blockchain in supporting internal activities within food organizations, namely, raw materials procurement, inventory management, document and credentials management, specification and recipe management, product life cycle management, quality management and the role of smart contracts.
- Additional studies on the role of blockchain in FSC collaboration are required to understand better the tensions and paradoxes that can arise from the technology’s integration and interoperability in complex and multi-tier FSCs.
- Empirical studies are required to test whether the technological capabilities of blockchain can enable and constrain FSC performance.
- Our findings illustrate that blockchain helps to improve FSC processes. However, exactly how blockchain can help to overcome problems and bottlenecks of organizational performance remains unknown. Another important research topic is examining the impact of blockchain on FSC resource sharing, decision synchronization and joint knowledge creation.
- Future research needs to provide a quantitative assessment of the impact of blockchain on FSC performance and provide clear guidelines on how to tailor blockchain characteristics to increase the efficiency of FSCs and respond to the needs of all stakeholders involved in the food industry. The framework that emerged from the literature analysis can be a starting tool to map the different needs of FSC partners and introduce appropriate blockchain solutions to respond to concerns in terms of food security, safety and convenience using technology.
- Future research needs to discern workable solutions to overcome the technical, organizational, and regulatory challenges facing blockchain implementation in FSCs.
- Future studies need to investigate the impact of blockchain on consumer purchasing habits and consumption of food products. Additionally, researchers should focus on the use of blockchain to design mechanisms for more sustainable and ethical food production, thereby improving consumer satisfaction and trust in food products.
- Future studies need to examine blockchain’s added value when used together with forensic testing methods to ensure food authenticity, provenance, and safety.
- Additional case studies need to be conducted to validate the diverse themes of our framework and highlight the applicability and suitability of blockchain to diverse areas in the FSC.
- Researchers are required to elaborate on blockchain’s role to foster FSC sustainability, detailing the impact of the technology on economic, social and environmental dimensions of FSC sustainability. Addressing this knowledge gap is necessary to grasp the transformational impact of technology on the economy and society.
5.3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Behnke, K.; Janssen, M.F.W.H.A. Boundary conditions for traceability in food supply chains using blockchain technology. Int. J. Inf. Manag. 2019, 52, 101969. [Google Scholar] [CrossRef]
- Ortmann, G.F.; King, R.P. Research on agri-food supply chains in Southern Africa involving small-scale farmers: Current status and future possibilities. Agrekon 2010, 49, 397–417. [Google Scholar] [CrossRef]
- Kumar, A.; Liu, R.; Shan, Z. Is Blockchain a Silver Bullet for Supply Chain Management? Technical Challenges and Research Opportunities—Kumar—2020—Decision Sciences—Wiley Online Library. Decis. Sci. 2020, 51, 8–37. [Google Scholar] [CrossRef]
- Alfaro, J.A.; Rábade, L.A. Traceability as a strategic tool to improve inventory management: A case study in the food industry. Int. J. Prod. Econ. 2009, 118, 104–110. [Google Scholar] [CrossRef]
- Charlebois, S.; Sterling, B.; Haratifar, S.; Naing, S.K. Comparison of Global Food Traceability Regulations and Requirements. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1104–1123. [Google Scholar] [CrossRef]
- EU Regulation (EC). No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Communities 2002, 31, 1–24. [Google Scholar]
- Boselie, D.; Henson, S.; Weatherspoon, D. Supermarket Procurement Practices in Developing Countries: Redefining the Roles of the Public and Private Sectors. Am. J. Agric. Econ. 2003, 85, 1155–1161. [Google Scholar] [CrossRef]
- Marsden, T.; Murdoch, J.; Morgan, K. Sustainable agriculture, food supply chains and regional development: Editorial introduction. Int. Plan. Stud. 1999, 4, 295–301. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Liao, Y.-C. Bridging User Perception and Stickiness in Business Microblog Contexts: A Moderated Mediation Model. Future Internet 2019, 11, 134. [Google Scholar] [CrossRef] [Green Version]
- Grunow, M.; Piramuthu, S. RFID in highly perishable food supply chains—Remaining shelf life to supplant expiry date? Int. J. Prod. Econ. 2013, 146, 717–727. [Google Scholar] [CrossRef]
- Bernardi, P.; Gandino, F.; Lamberti, F.; Montrucchio, B.; Rebaudengo, M.; Sanchez, E.R. An anti-counterfeit mechanism for the application layer in low-cost RFID devices. In Proceedings of the 4th European Conference on Circuits and Systems for Communications, ECCSC ’08, Bucharest, Romania, 10–11 July 2008; pp. 227–231. [Google Scholar]
- Kelepouris, T.; Pramatari, K.; Doukidis, G. RFID-enabled traceability in the food supply chain. Ind. Manag. Data Syst. 2007, 107, 183–200. [Google Scholar] [CrossRef]
- Sarac, A.; Absi, N.; Dauzère-Pérès, S. A literature review on the impact of RFID technologies on supply chain management. Int. J. Prod. Econ. 2010, 128, 77–95. [Google Scholar] [CrossRef]
- Costa, C.; Antonucci, F.; Pallottino, F.; Aguzzi, J.; Sarriá, D.; Menesatti, P. A Review on Agri-food Supply Chain Traceability by Means of RFID Technology. Food Bioprocess Technol. 2013, 6, 353–366. [Google Scholar] [CrossRef]
- Vlachos, I.P. A hierarchical model of the impact of RFID practices on retail supply chain performance. Expert Syst. Appl. 2014, 41, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, P. RFID Application Strategy in Agri-Food Supply Chain Based on Safety and Benefit Analysis. Phys. Procedia 2012, 25, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Attaran, M. RFID: An enabler of supply chain operations. Supply Chain Manag. Int. J. 2007, 12, 249–257. [Google Scholar] [CrossRef]
- Bose, I.; Lam, C.W. Facing the Challenges of RFID Data Management. Int. J. Inf. Syst. Supply Chain Manag. 2008, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Fescioglu-Unver, N.; Choi, S.H.; Sheen, D.; Kumara, S. RFID in production and service systems: Technology, applications and issues. Inf. Syst. Front. 2015, 17, 1369–1380. [Google Scholar] [CrossRef]
- Shi, P.; Yan, B. Factors affecting RFID adoption in the agricultural product distribution industry: Empirical evidence from China. SpringerPlus 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Nychas, G.-J.E.; Panagou, E.Z.; Mohareb, F. Novel approaches for food safety management and communication. Curr. Opin. Food Sci. 2016, 12, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.S.; Wood, L.C. Cloud Computing to Improve Agri-Supply Chains in Developing Countries. In Encyclopedia of Information Science and Technology, 3rd ed.; IGI Global: Hershey, PA, USA, 2015; pp. 1059–1069. ISBN 978-1-4666-5888-2. [Google Scholar]
- Badia-Melis, R.; Mc Carthy, U.; Ruiz-Garcia, L.; Garcia-Hierro, J.; Robla Villalba, J.I. New trends in cold chain monitoring applications—A review. Food Control 2018, 86, 170–182. [Google Scholar] [CrossRef]
- Liu, L.; Liu, P.; Ren, W.; Zheng, Y.; Zhang, C.; Wang, J. The Traceability Information Management Platform of Duck Product Industry Chain. In Proceedings of the Cloud Computing and Security; Sun, X., Pan, Z., Bertino, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 144–153. [Google Scholar]
- Wang, Y.; Hungh, H.J.; Paul, B.-D. Understanding Blockchain technology for future supply chains a systematic literature Review and Research Agenda. Supply Chain Manag. Int. J. 2018, 24, 62–84. [Google Scholar] [CrossRef]
- Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [Google Scholar] [CrossRef]
- Treiblmaier, H. The impact of the blockchain on the supply chain: A theory-based research framework and a call for action. Supply Chain Manag. Int. J. 2018, 23, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Rejeb, A.; Süle, E.; Keogh, J.G. Exploring new technologies in procurement. Transp. Logist. Int. J. 2018, 18, 76–86. [Google Scholar]
- Rejeb, A.; Rejeb, K. Blockchain and supply chain sustainability. Logforum 2020, 16, 363–372. [Google Scholar] [CrossRef]
- Salah, K.; Rehman, M.H.; Nizamuddin, N.; Al-Fuqaha, A. Blockchain for AI: Review and Open Research Challenges. IEEE Access 2019, 7, 10127–10149. [Google Scholar] [CrossRef]
- Detwiler, D. One Nation’s Move to Increase Food Safety with Blockchain. Available online: https://www.ibm.com/blogs/blockchain/2018/02/one-nations-move-to-increase-food-safety-with-blockchain/ (accessed on 6 August 2020).
- IBM. How Blockchain Can Help Bring Safer Food to China. Available online: www-03.ibm.com/press/us/en/photo/50818.wss (accessed on 6 August 2020).
- Kshetri, N. 5G in E-Commerce Activities. IT Prof. 2018, 20, 73–77. [Google Scholar] [CrossRef]
- Edwards, N. Blockchain meets the supply chain. MHD Supply Chain Solut. 2017, 47, 48. [Google Scholar]
- Fosso Wamba, S.; Kamdjoug, K.; Robert, J.; Bawack, R.; G Keogh, J. Bitcoin, Blockchain, and FinTech: A Systematic Review and Case Studies in the Supply Chain. Prod. Plan. Control 2020, 31, 115–142. [Google Scholar] [CrossRef]
- OriginTrail. OriginTrail Partners with BSI to Develop Blockchain-Enabled Solutions. Available online: https://medium.com/origintrail/origintrail-partners-with-bsi-to-develop-blockchain-enabled-solutions-d955a54d3371 (accessed on 24 August 2020).
- Iftekhar, A.; Cui, X.; Hassan, M.; Afzal, W. Application of Blockchain and Internet of Things to Ensure Tamper-Proof Data Availability for Food Safety. J. Food Qual. 2020, 2020, e5385207. [Google Scholar] [CrossRef]
- Cook, D.; Randolph, A.; Kernerman, P.; Cupido, C.; King, D.; Soukup, C.; Brun-Buisson, C. Central venous catheter replacement strategies: A systematic review of the literature. Crit. Care Med. 1997, 25, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Booth, A.; Clarke, M.; Dooley, G.; Ghersi, D.; Moher, D.; Petticrew, M.; Stewart, L. The nuts and bolts of PROSPERO: An international prospective register of systematic reviews. Syst. Rev. 2012, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Aguinis, H.; Ramani, R.S.; Alabduljader, N. What You See Is What You Get? Enhancing Methodological Transparency in Management Research. Acad. Manag. Ann. 2017, 12, 83–110. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Cardenas, J.A.; de Lamo-Sevilla, C.; Cabezas-Fernández, M.T.; Manzano-Agugliaro, F.; Martínez-Lirola, M. Global tuberculosis research and its future prospects. Tuberculosis 2020, 121, 101917. [Google Scholar] [CrossRef] [PubMed]
- Tavares, B.G.; da Silva, C.E.S.; de Souza, A.D. Risk Management in Scrum Projects: A Bibliometric Study. J. Commun. Softw. Syst. 2017, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tober, M. PubMed, ScienceDirect, Scopus or Google Scholar—Which is the best search engine for an effective literature research in laser medicine? Med. Laser Appl. 2011, 26, 139–144. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Chàfer, M.; Mata, É. Comparative Analysis of Web of Science and Scopus on the Energy Efficiency and Climate Impact of Buildings. Energies 2020, 13, 409. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Rodríguez, A.-R.; Ruíz-Navarro, J. Changes in the intellectual structure of strategic management research: A bibliometric study of the Strategic Management Journal, 1980–2000. Strateg. Manag. J. 2004, 25, 981–1004. [Google Scholar] [CrossRef]
- Longo, F.; Nicoletti, L.; Padovano, A. Estimating the Impact of Blockchain Adoption in the Food Processing Industry and Supply Chain. Int. J. Food Eng. 2019, 16, 5–6. [Google Scholar] [CrossRef]
- Khatoon, A. A Blockchain-Based Smart Contract System for Healthcare Management. Electronics 2020, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Zhao, J.; Shetty, S.; Liu, J.; Li, D. Integrating blockchain for data sharing and collaboration in mobile healthcare applications. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–5. [Google Scholar]
- Mettler, M. Blockchain technology in healthcare: The revolution starts here. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–3. [Google Scholar]
- Rejeb, A.; Bell, L. Potentials of Blockchain for Healthcare: Case of Tunisia. World Sci. News 2019, 136, 173–193. [Google Scholar] [CrossRef]
- Yue, X.; Wang, H.; Jin, D.; Li, M.; Jiang, W. Healthcare Data Gateways: Found Healthcare Intelligence on Blockchain with Novel Privacy Risk Control. J. Med. Syst. 2016, 40, 218. [Google Scholar] [CrossRef] [PubMed]
- Stafford, T.F.; Treiblmaier, H. Characteristics of a Blockchain Ecosystem for Secure and Sharable Electronic Medical Records. IEEE Trans. Eng. Manag. 2020, 1–23. [Google Scholar] [CrossRef]
- Cole, R.; Stevenson, M.; Aitken, J. Blockchain technology: Implications for operations and supply chain management. Supply Chain Manag. Int. J. 2019, 24, 469–483. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Treiblmaier, H. Leveraging the Internet of Things and Blockchain Technology in Supply Chain Management. Future Internet 2019, 11, 161. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Singgih, M.; Wang, J.; Rit, M. Making sense of blockchain technology: How will it transform supply chains? Int. J. Prod. Econ. 2019, 211, 221–236. [Google Scholar] [CrossRef]
- Erceg, A.; Damoska Sekuloska, J.; Kelić, I. Blockchain in the Tourism Industry—A Review of the Situation in Croatia and Macedonia. Informatics 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.; Dutt, C.S.; Chathoth, P.; Khan, M.S. Blockchain technology for smart city and smart tourism: Latest trends and challenges. Asia Pac. J. Tour. Res. 2019, 1–15. [Google Scholar] [CrossRef]
- Önder, I.; Treiblmaier, H. Blockchain and tourism: Three research propositions. Ann. Tour. Res. 2018, 72, 180–182. [Google Scholar] [CrossRef]
- Ozdemir, A.I.; Ar, I.M.; Erol, I. Assessment of blockchain applications in travel and tourism industry. Qual. Quant. 2019, 1–15. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Treiblmaier, H. The impact of blockchain on medical tourism. In Proceedings of the WeB2019 Workshop on e-Business, Munich, Germany, 14 December 2019; pp. 1–12. [Google Scholar]
- Rejeb, A.; Rejeb, K. Blockchain Technology in Tourism: Applications and Possibilities. World Sci. News 2019, 137, 119–144. [Google Scholar]
- Dunphy, P.; Petitcolas, F.A.P. A First Look at Identity Management Schemes on the Blockchain. IEEE Secur. Priv. 2018, 16, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Zhu, F.; Qi, J.; Wang, J.; Sangaiah, A.K. Identity Management and Access Control Based on Blockchain under Edge Computing for the Industrial Internet of Things. Appl. Sci. 2019, 9, 2058. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Badr, Y. Identity Management Systems for the Internet of Things: A Survey towards Blockchain Solutions. Sensors 2018, 18, 4215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yli-Huumo, J.; Ko, D.; Choi, S.; Park, S.; Smolander, K. Where Is Current Research on Blockchain Technology? A Systematic Review Where Is Current Research on Blockchain Technology?—A Systematic Review. PLoS ONE 2016, 10, 0163477. [Google Scholar] [CrossRef]
- Ertemel, A.V. Implications of Blockchain Technology on Marketing. J. Int. Trade Logist. Law 2018, 4, 35–44. [Google Scholar]
- Rejeb, A.; Keogh, J.G.; Treiblmaier, H. How Blockchain Technology Can Benefit Marketing: Six Pending Research Areas. Front. Blockchain 2020, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Treiblmaier, H.; Rejeb, A.; Strebinger, A. Blockchain as a Driver for Smart City Development: Application Fields and a Comprehensive Research Agenda. Smart Cities 2020, 3, 853–872. [Google Scholar] [CrossRef]
- Kamath, R. Food traceability on blockchain: Walmart’s pork and mango pilots with IBM. J. Br. Blockchain Assoc. 2017, 1, 3712. [Google Scholar] [CrossRef]
- More, A.; Bhalerao, S.; Auti, K. Solar Based Irrigation System for Tribal Belt of India. In Techno-Societal 2018; Pawar, P.M., Ronge, B.P., Balasubramaniam, R., Vibhute, A.S., Apte, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 607–616. ISBN 978-3-030-16848-3. [Google Scholar]
- Foti, V.T.; Scuderi, A.; Timpanaro, G. The economy of the common good: The expression of a new sustainable economic model. Qual.-Access Success 2017, 18, 206–214. [Google Scholar]
- Scuderi, A.; Foti, V.T.; Timpanaro, G. The Supply Chain Value of Pod and Pgi Food Products through the Application of Blockchain. Qual.-Access Success 2019, 20, 580–587. [Google Scholar]
- Garfield, E. From the science of science to Scientometrics visualizing the history of science with HistCite software. J. Informetr. 2009, 3, 173–179. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Tran, B.X.; McIntyre, R.S.; Latkin, C.A.; Phan, H.T.; Vu, G.T.; Nguyen, H.L.T.; Gwee, K.K.; Ho, C.S.; Ho, R. The Current Research Landscape on the Artificial Intelligence Application in the Management of Depressive Disorders: A Bibliometric Analysis. Int. J. Environ. Res. Public. Health 2019, 16, 2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. ISBN 978-3-319-10377-8. [Google Scholar]
- Kamble, S.S.; Gunasekaran, A.; Sharma, R. Modeling the blockchain enabled traceability in agriculture supply chain. Int. J. Inf. Manag. 2019, in press. [Google Scholar] [CrossRef]
- Kosba, A.; Miller, A.; Shi, E.; Wen, Z.; Papamanthou, C. Hawk: The Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts. In Proceedings of the 2016 IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May 2016; pp. 839–858. [Google Scholar]
- Lin, Q.; Wang, H.; Pei, X.; Wang, J. Food Safety Traceability System Based on Blockchain and EPCIS. IEEE Access 2019, 7, 20698–20707. [Google Scholar] [CrossRef]
- Mao, D.; Hao, Z.; Wang, F.; Li, H. Novel Automatic Food Trading System Using Consortium Blockchain. Arab. J. Sci. Eng. 2019, 44, 3439–3455. [Google Scholar] [CrossRef]
- Astill, J.; Dara, R.A.; Campbell, M.; Farber, J.M.; Fraser, E.D.G.; Sharif, S.; Yada, R.Y. Transparency in food supply chains: A review of enabling technology solutions. Trends Food Sci. Technol. 2019, 91, 240–247. [Google Scholar] [CrossRef]
- Bierbaum, R.; Leonard, S.A.; Rejeski, D.; Whaley, C.; Barra, R.O.; Libre, C. Novel entities and technologies: Environmental benefits and risks. Environ. Sci. Policy 2019, 105, 134–143. [Google Scholar] [CrossRef]
- Bumblauskas, D.; Mann, A.; Dugan, B.; Rittmer, J. A blockchain use case in food distribution: Do you know where your food has been? Int. J. Inf. Manag. 2019, 52, 102008. [Google Scholar] [CrossRef]
- Chan, K.Y.; Abdullah, J.; Khan, A.S. A framework for traceable and transparent supply chain management for agri-food sector in malaysia using blockchain technology. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Creydt, M.; Fischer, M. Blockchain and more—Algorithm driven food traceability. Food Control 2019, 105, 45–51. [Google Scholar] [CrossRef]
- dos Santos, R.B.; Torrisi, N.M.; Yamada, E.R.K.; Pantoni, R.P. IGR Token-Raw Material and Ingredient Certification of Recipe Based Foods Using Smart Contracts. Informatics 2019, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- George, R.V.; Harsh, H.O.; Ray, P.; Babu, A.K. Food quality traceability prototype for restaurants using blockchain and food quality data index. J. Clean. Prod. 2019, 240. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int. J. Prod. Econ. 2019, 219, 179–194. [Google Scholar] [CrossRef]
- Khanna, T.; Nand, P.; Bali, V. Permissioned blockchain model for end-to-end trackability in supply chain management. Int. J. E-Collab. 2020, 16, 45–58. [Google Scholar] [CrossRef]
- Kittipanya-ngam, P.; Tan, K.H. A framework for food supply chain digitalization: Lessons from Thailand. Prod. Plan. Control 2019. [Google Scholar] [CrossRef]
- Knezevic, D. Impact of blockchain technology platform in changing the financial sector and other industries. Montenegrin J. Econ. 2018, 14, 109–120. [Google Scholar] [CrossRef]
- Kshetri, N.; Loukoianova, E. Blockchain Adoption in Supply Chain Networks in Asia. IT Prof. 2019, 21, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Leng, K.; Bi, Y.; Jing, L.; Fu, H.-C.; Van Nieuwenhuyse, I. Research on agricultural supply chain system with double chain architecture based on blockchain technology. Future Gener. Comput. Syst. 2018, 86, 641–649. [Google Scholar] [CrossRef]
- Rao, M.S.; Chakraborty, G.; Murthy, K.S. Market Drivers and Discovering Technologies in Meat Species Identification. Food Anal. Methods 2019, 12, 2416–2429. [Google Scholar] [CrossRef]
- van Hoek, R. Unblocking the chain—Findings from an executive workshop on blockchain in the supply chain. Supply Chain Manag. 2019, 25, 255–261. [Google Scholar] [CrossRef]
- Violino, S.; Pallottino, F.; Sperandio, G.; Figorilli, S.; Antonucci, F.; Ioannoni, V.; Fappiano, D.; Costa, C. Are the innovative electronic labels for extra virgin olive oil sustainable, traceable, and accepted by consumers? Foods 2019, 8, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Liu, S.; Lopez, C.; Lu, H.; Elgueta, S.; Chen, H.; Boshkoska, B.M. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Comput. Ind. 2019, 109, 83–99. [Google Scholar] [CrossRef]
- Alonso, R.S.; Sittón-Candanedo, I.; García, Ó.; Prieto, J.; Rodríguez-González, S. An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw. 2020, 98. [Google Scholar] [CrossRef]
- Cho, S.H.; Park, S.Y.; Lee, S.R. Blockchain consensus rule based dynamic blind voting for non-dependency transaction. Int. J. Grid Distrib. Comput. 2017, 10, 93–106. [Google Scholar] [CrossRef]
- Huh, J.-H.; Kim, S.-K. The blockchain consensus algorithm for viable management of new and renewable energies. Sustainability 2019, 11, 3184. [Google Scholar] [CrossRef] [Green Version]
- Kamran, M.; Khan, H.U.; Nisar, W.; Farooq, M.; Rehman, S.-U. Blockchain and Internet of Things: A bibliometric study. Comput. Electr. Eng. 2020, 81. [Google Scholar] [CrossRef]
- Low, K.F.K.; Mik, E. Pause the blockchain legal revolution. Int. Comp. Law Q. 2019, 69, 135–175. [Google Scholar] [CrossRef]
- Makhdoom, I.; Zhou, I.; Abolhasan, M.; Lipman, J.; Ni, W. PrivySharing: A blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. Secur. 2020, 88. [Google Scholar] [CrossRef]
- Manski, S. Building the blockchain world: Technological commonwealth or just more of the same? Strateg. Chang. 2017, 26, 511–522. [Google Scholar] [CrossRef]
- Mistry, I.; Tanwar, S.; Tyagi, S.; Kumar, N. Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mech. Syst. Signal Process. 2020, 135. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Jena, D.; Satapathy, U. Trust management in IOT enable healthcare system using ethereum based smart contract. Int. J. Sci. Technol. Res. 2019, 8, 758–763. [Google Scholar]
- Mondal, S.; Wijewardena, K.P.; Karuppuswami, S.; Kriti, N.; Kumar, D.; Chahal, P. Blockchain inspired RFID-based information architecture for food supply chain. IEEE Internet Things J. 2019, 6, 5803–5813. [Google Scholar] [CrossRef]
- Munir, M.S.; Bajwa, I.S.; Cheema, S.M. An intelligent and secure smart watering system using fuzzy logic and blockchain. Comput. Electr. Eng. 2019, 77, 109–119. [Google Scholar] [CrossRef]
- Shih, D.-H.; Lu, K.-C.; Shih, Y.-T.; Shih, P.-Y. A simulated organic vegetable production and marketing environment by using ethereum. Electronics 2019, 8, 1341. [Google Scholar] [CrossRef] [Green Version]
- Waldo, J. A hitchhiker’s guide to the blockchain universe. Commun. ACM 2019, 62, 38–42. [Google Scholar] [CrossRef]
- Wu, M.; Wang, K.; Cai, X.; Guo, S.; Guo, M.; Rong, C. A Comprehensive Survey of Blockchain: From Theory to IoT Applications and beyond. IEEE Internet Things J. 2019, 6, 8114–8154. [Google Scholar] [CrossRef]
- Mao, D.; Wang, F.; Wang, Y.; Hao, Z. Visual and User-Defined Smart Contract Designing System Based on Automatic Coding. IEEE Access 2019, 7, 73131–73143. [Google Scholar] [CrossRef]
- Antonucci, F.; Figorilli, S.; Costa, C.; Pallottino, F.; Raso, L.; Menesatti, P. A review on blockchain applications in the agri-food sector. J. Sci. Food Agric. 2019, 99, 6129–6138. [Google Scholar] [CrossRef]
- Hao, J.; Sun, Y.; Luo, H. A safe and efficient storage scheme based on blockchain and IPFs for agricultural products tracking. J. Comput. Taiwan 2018, 29, 158–167. [Google Scholar] [CrossRef]
- He, X.; Chen, X.; Li, K. A decentralized and non-reversible traceability system for storing commodity data. KSII Trans. Internet Inf. Syst. 2018, 13, 619–634. [Google Scholar] [CrossRef]
- Kshetri, N. Blockchain and the Economics of Food Safety. IT Prof. 2019, 21, 63–66. [Google Scholar] [CrossRef]
- Perboli, G.; Musso, S.; Rosano, M. Blockchain in Logistics and Supply Chain: A Lean approach for designing real-world use cases. IEEE Access 2018, 6, 62018–62028. [Google Scholar] [CrossRef]
- Razzaq, A.; Khan, M.M.; Talib, R.; Butt, A.D.; Hanif, N.; Afzal, S.; Raouf, M.R. Use of Blockchain in governance: A systematic literature review. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 685–691. [Google Scholar] [CrossRef]
- Salah, K.; Nizamuddin, N.; Jayaraman, R.; Omar, M. Blockchain-Based Soybean Traceability in Agricultural Supply Chain. IEEE Access 2019, 7, 73295–73305. [Google Scholar] [CrossRef]
- Tao, Q.; Cui, X.; Huang, X.; Leigh, A.M.; Gu, H. Food safety supervision system based on hierarchical multi-domain blockchain network. IEEE Access 2019, 7, 51817–51826. [Google Scholar] [CrossRef]
- Mao, D.; Wang, F.; Hao, Z.; Li, H. Credit evaluation system based on blockchain for multiple stakeholders in the food supply chain. Int. J. Environ. Res. Public. Health 2018, 15, 1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, D.; Hao, Z.; Wang, F.; Li, H. Innovative blockchain-based approach for sustainable and credible environment in food trade: A case study in Shandong Province, China. Sustainability 2018, 10, 3149. [Google Scholar] [CrossRef] [Green Version]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Zhang, J.; Bhatt, T. A Guidance Document on the Best Practices in Food Traceability. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1074–1103. [Google Scholar] [CrossRef]
- Baffi, C.; Trincherini, P.R. Food traceability using the 87Sr/86Sr isotopic ratio mass spectrometry. Eur. Food Res. Technol. 2016, 242, 1411–1439. [Google Scholar] [CrossRef]
- Bosona, T.; Gebresenbet, G. Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control 2013, 33, 32–48. [Google Scholar] [CrossRef]
- Liu, H.; Kerr, W.A.; Hobbs, J.E. A review of Chinese food safety strategies implemented after several food safety incidents involving export of Chinese aquatic products. Br. Food J. 2012, 114, 372–386. [Google Scholar] [CrossRef]
- Resende-Filho, M.A.; Hurley, T.M. Information asymmetry and traceability incentives for food safety. Int. J. Prod. Econ. 2012, 139, 596–603. [Google Scholar] [CrossRef]
- Aung, M.M.; Chang, Y.S. Traceability in a food supply chain: Safety and quality perspectives. Food Control 2014, 39, 172–184. [Google Scholar] [CrossRef]
- Espiñeira, M.; Santaclara, F.J. 1—What Is Food Traceability? In Advances in Food Traceability Techniques and Technologies; Espiñeira, M., Santaclara, F.J., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2016; pp. 3–8. ISBN 978-0-08-100310-7. [Google Scholar]
- Hayashi, Y. Scientific basis for risk analysis of food-related substances with particular reference to health effects on children. J. Toxicol. Sci. 2009, 34, SP201–SP207. [Google Scholar] [CrossRef] [Green Version]
- Elliott, C. Elliott Review into the Integrity and Assurance of Food Supply Networks-Final Report: A National Food Crime Prevention Framework; rafa2015.eu; Food Standards Agency: London, UK, 2014. [Google Scholar]
- Latouche, K.; Rainelli, P.; Vermersch, D. Food safety issues and the BSE scare: Some lessons from the French case. Food Policy 1998, 23, 347–356. [Google Scholar] [CrossRef]
- Chrysochou, P.; Chryssochoidis, G.; Kehagia, O. Traceability information carriers. The technology backgrounds and consumers’ perceptions of the technological solutions. Appetite 2009, 53, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhou, L. Consumer interest in information provided by food traceability systems in Japan. Food Qual. Prefer. 2014, 36, 144–152. [Google Scholar] [CrossRef]
- Menozzi, D.; Halawany-Darson, R.; Mora, C.; Giraud, G. Motives towards traceable food choice: A comparison between French and Italian consumers. Food Control 2015, 49, 40–48. [Google Scholar] [CrossRef]
- Rijswijk, W.V.; Frewer, L.J. Consumer needs and requirements for food and ingredient traceability information. Int. J. Consum. Stud. 2012, 36, 282–290. [Google Scholar] [CrossRef]
- Voordouw, J.; Cornelisse-Vermaat, J.R.; Pfaff, S.; Antonides, G.; Niemietz, D.; Linardakis, M.; Kehagia, O.; Frewer, L.J. Preferred information strategies for food allergic consumers. A study in Germany, Greece, and The Netherlands. Food Qual. Prefer. 2011, 22, 384–390. [Google Scholar] [CrossRef]
- Accenture Tracing the Supply Chain: How Blockchain Can Enable Traceability in the Food Industry; Accenture: Dublin, Ireland, 2018.
- Gartner Gartner Predicts 20% of Top Global Grocers Will Use Blockchain for Food Safety and Traceability by 2025. Available online: https://www.gartner.com/en/newsroom/press-releases/2019-04-30-gartner-predicts-20-percent-of-top-global-grocers-wil (accessed on 10 August 2020).
- Hobbs, J.E. Traceability in the agri-food sector: Issues, insights and implications. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2006, 1, 1. [Google Scholar] [CrossRef]
- Wallace, C.A.; Manning, L. Food Provenance: Assuring product integrity and identity. CAB Rev. 2020, 15, 1–21. [Google Scholar] [CrossRef]
- Keogh, J.G.; Rejeb, A.; Khan, N.; Dean, K.; Hand, K.J. Blockchain and GS1 Standards in the Food Chain: A Review of the Possibilities and Challenges. In Building the Future of Food Safety Technology; Detwiler, D., Ed.; Elsevier: London, UK; Oxford, UK; San Diego, CA, USA; Cambridge, MA, USA, 2020. [Google Scholar]
- Kim, M.; Chai, S. The impact of supplier innovativeness, information sharing and strategic sourcing on improving supply chain agility: Global supply chain perspective. Int. J. Prod. Econ. 2017, 187, 42–52. [Google Scholar] [CrossRef]
- Fisher, M.; Hammond, J.; Obermeyer, W.; Raman, A. Configuring a Supply Chain to Reduce the Cost of Demand Uncertainty. Prod. Oper. Manag. 1997, 6, 211–225. [Google Scholar] [CrossRef]
- Um, K.-H.; Kim, S.-M. The effects of supply chain collaboration on performance and transaction cost advantage: The moderation and nonlinear effects of governance mechanisms. Int. J. Prod. Econ. 2019, 217, 97–111. [Google Scholar] [CrossRef]
- GS1. GS1 US, FoodLogiQ, IBM Food Trust, Ripe.io and SAP Complete Food Traceability Proof-of-Concept. Available online: https://www.gs1us.org/what-we-do/about-gs1-us/media-center/press-releases/detail/articleid/1940/gs1-us-foodlogiq-ibm-food-trust-ripe-io-and-sap-complete-food-traceability-proof-of-concept (accessed on 24 August 2020).
- Surasak, T.; Wattanavichean, N.; Preuksakarn, C.; Huang, S.C.-H. Thai agriculture products traceability system using blockchain and Internet of Things. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 578–583. [Google Scholar] [CrossRef]
- IBM. Blockchain Technology in the Food Industry. Available online: https://www.ibm.com/uk-en/blockchain/solutions/food-trust/food-industry-technology (accessed on 7 March 2020).
- Daxböck, C.; Kröber, J.; Bergmann, M. Digitized Performance Management along the Supply Chain. In Performance Management in Retail and the Consumer Goods Industry: Best Practices and Case Studies; Buttkus, M., Eberenz, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 405–423. ISBN 978-3-030-12730-5. [Google Scholar]
- Brom, F.W.A. WTO, Public Reason and Food Public Reasoning in the ‘Trade Conflict’ on GM-Food. Ethical Theory Moral Pract. 2004, 7, 417–431. [Google Scholar] [CrossRef]
- Ali, T.; Huang, J.; Wang, J.; Xie, W. Global footprints of water and land resources through China’s food trade. Glob. Food Secur. 2017, 12, 139–145. [Google Scholar] [CrossRef]
- Kummu, M.; Kinnunen, P.; Lehikoinen, E.; Porkka, M.; Queiroz, C.; Röös, E.; Troell, M.; Weil, C. Interplay of trade and food system resilience: Gains on supply diversity over time at the cost of trade independency. Glob. Food Secur. 2020, 24, 100360. [Google Scholar] [CrossRef]
- Hughes, L.; Dwivedi, Y.K.; Misra, S.K.; Rana, N.P.; Raghavan, V.; Akella, V. Blockchain research, practice and policy: Applications, benefits, limitations, emerging research themes and research agenda. Int. J. Inf. Manag. 2019, 49, 114–129. [Google Scholar] [CrossRef]
- van den Hoven, J.; Pouwelse, J.; Helbing, D.; Klauser, S. The Blockchain Age: Awareness, Empowerment and Coordination. In Towards Digital Enlightenment: Essays on the Dark and Light Sides of the Digital Revolution; Helbing, D., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 163–166. ISBN 978-3-319-90869-4. [Google Scholar]
- Verhoeven, P.; Sinn, F.; Herden, T. Examples from Blockchain Implementations in Logistics and Supply Chain Management: Exploring the Mindful Use of a New Technology. Logistics 2018, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Tijan, E.; Aksentijević, S.; Ivanić, K.; Jardas, M. Blockchain Technology Implementation in Logistics. Sustainability 2019, 11, 1185. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, R. How Blockchain Will Change Supply Chain Sustainability. Available online: https://www.thebalancesmb.com/blockchain-and-supply-chain-sustainability-4129740 (accessed on 8 July 2020).
- Francisco, K.; Swanson, D. The Supply Chain Has No Clothes: Technology Adoption of Blockchain for Supply Chain Transparency. Logistics 2018, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Dobrovnik, M.; Herold, D.; Fürst, E.; Kummer, S. Blockchain for and in Logistics: What to Adopt and Where to Start. Logistics 2018, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Treiblmaier, H. Combining Blockchain Technology and the Physical Internet to Achieve Triple Bottom Line Sustainability: A Comprehensive Research Agenda for Modern Logistics and Supply Chain Management. Logistics 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Litke, A.; Anagnostopoulos, D.; Varvarigou, T. Blockchains for Supply Chain Management: Architectural Elements and Challenges towards a Global Scale Deployment. Logistics 2019, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.E.; Chen, Y.-C.; Lu, M.-F. Supply chain re-engineering using blockchain technology: A case of smart contract based tracking process. Technol. Forecast. Soc. Chang. 2019, 144, 1–11. [Google Scholar] [CrossRef]
- Hald, K.S.; Kinra, A. How the blockchain enables and constrains supply chain performance. Int. J. Phys. Distrib. Logist. Manag. 2019, 49, 376–397. [Google Scholar] [CrossRef]
- Kouhizadeh, M.; Saberi, S.; Sarkis, J. Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. Int. J. Prod. Econ. 2021, 231, 107831. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Blockchain tokens and the potential democratization of entrepreneurship and innovation. Bus. Horiz. 2018, 61, 567–575. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejeb, A.; Keogh, J.G.; Zailani, S.; Treiblmaier, H.; Rejeb, K. Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions. Logistics 2020, 4, 27. https://doi.org/10.3390/logistics4040027
Rejeb A, Keogh JG, Zailani S, Treiblmaier H, Rejeb K. Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions. Logistics. 2020; 4(4):27. https://doi.org/10.3390/logistics4040027
Chicago/Turabian StyleRejeb, Abderahman, John G. Keogh, Suhaiza Zailani, Horst Treiblmaier, and Karim Rejeb. 2020. "Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions" Logistics 4, no. 4: 27. https://doi.org/10.3390/logistics4040027