Susceptibility to Bacteriocins in Biofilm-Forming, Variable Staphylococci Isolated from Local Slovak Ewes’ Milk Lump Cheeses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Isolation, and Identification of Staphylococci
2.2. API Staph Profile-Identity Strip System
2.3. Antimicrobial Phenotype Testing, Determination of Nuclease, and Hemolysis Activity
2.4. Virulence Profile (Slime Production)
2.5. Susceptibility to Bacteriocins
3. Results and Discussion
3.1. Microbial Characterization
3.2. Antimicrobial Phenotype Testing, Determination of Nuclease, and Hemolysis Activity
3.3. Biofilm Testing as Virulence Profile
3.4. Treatment with Bacteriocins
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uhrín, V.; Lauková, A.; Jančová, A.; Plintovič, V. Mlieko a mliečna žľaza Milk and Mammary Gland; Publ. No. 92; Faculty of Natural Sciences of the University Constantinus Philosophus: Nitra, Slovakia, 2002; pp. 5–167. ISBN 80-8050-511-X. (In Slovak) [Google Scholar]
- Vandera, E.; Tsirke, G.; Kokouri, A.; Koukkou, A.I.; Samelis, J. Approaches for enhancing in situ detection of enterocins genes in thermiyed milk and selective isolation of enterocin-producing Enterococcus faecium from Baird-Parker agar. Int. J. Food Microbiol. 2018, 81, 23–31. [Google Scholar] [CrossRef]
- Vataščinová, T.; Pipová, M.; Fraqueza, M.J.R.; Maľa, P.; Dudríková, E.; Drážovská, M.; Lauková, A. Antimicrobial potential of Lactobacillus plantarum strains isolated from Slovak raw sheep milk cheeses. J. Dairy Sci. 2020, 103, 6900–6903. [Google Scholar] [CrossRef]
- Grieger, C.; Burdová, O. Hygiene of Milk and Dairy Products; University of Veterinary Medicine, Nature: Bratislava, Slovak, 1978; Volume 64–200–78, pp. 103–23–8.2. [Google Scholar]
- Takashi, T.; Satoh, I.; Kikuchi, N. Phylogenetic relationship of 38 taxa of the genus. Staphylococcus based on 16S rRNA gene sequence analysis. Int. J. Syst. Bacteriol. 1999, 49, 725–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokunrotanak, S.; Jahid, I.K.; Ha, S.-A. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Parsek, M.R.; Singh, P.K. Bacterial biofilms:an emerging link to disease pathogenesis. Ann. Rev. Microbiol. 2003, 57, 677–701. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.H.M.A.P.; van Belkum, M.J.; Holzapfel, W.H.; Abriuel, H.; Gálvéz, A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 2007, 31, 293–310. [Google Scholar] [CrossRef]
- Ness, I.F.; Diep, D.B.; Moss, M.O. Enterococcal Bacteriocins and Antimicrobial Proteins that Contribute to Niche Control. Enterococci from Commensals to Leading of Drug Resistant Infection; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014; pp. 1–34. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190428/ (accessed on 25 August 2020).
- Jack, R.W.; Bierbaum, G.; Sahl, H.G. Lantibiotics and Related Peptides; Springer: New York, NY, USA, 1998. [Google Scholar]
- Lauková, A.; Mareková, M.; Javorský, P. Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM 4231. Lett. Appl. Microbiol. 1993, 16, 257–260. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, M.; Strompfová, V.; Plachá, I.; Čobanová, K.; Formelová, Z.; Chrenková, M.; Ondruška, Ľ. Enterococcus faecium AL41: Its Enterocin M and their beneficial use in rabbits husbandry. Prob. Antimicrob. Prot. 2012, 4, 243–249. [Google Scholar] [CrossRef]
- Lauková, A.; Pogány Simonová, M.; Chrastinová, Ľ.; Gancarčíková, S.; Kandričáková, A.; Plachá, I.; Chrenková, M.; Formelová, Z.; Ondruška, Ľ.; Ščerbová, J.; et al. Assessment of lantibiotic type bacteriocin gallidermin application in model experiment with broiler rabbits. Int. J. Anim. Sci. 2018, 2, 1028. [Google Scholar]
- Lauková, A.; Styková, E.; Kubašová, I.; Gancarčíková, S.; Plachá, I.; Mudroňová, D.; Kandričáková, A.; Miltko, R.; Belzecki, G.; Valocký, I.; et al. Enterocin M and its beneficial effects in horses—A pilot experiment. Prob. Antimicrob. Prot. 2018, 10, 420–426. [Google Scholar] [CrossRef]
- Alatoom, A.A.; Cunningham, S.A.; Ihde, S.; Mandrekar, J.; Patel, R. Comparison of direct colony method versus extraction method for identification of Gram-positive cocci by use of Bruker Biotyper matrix-assissted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 2868–2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Clinical Laboratory Standard Institute Guideline. Performance Standards for Antimicrobial Susceptibility Testing M100S, 26th ed.; CLSI: Annapolis Junction, MD, USA, 2016. [Google Scholar]
- Semedo, T.; Santos, M.A.; Lopes, M.F.; Figueirdo Marques, J.J.; Barreto Crespo, M.T.; Tenreiro, R. Virulence factors in food, clinical and reference Enterococci: A common trait in the genus? Syst. Appl. Microbiol. 2003, 26, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase-negative staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaieb, K.; Chehab, O.; Zmanta, T.; Rouabhia, M.; Mahdouani, K.; Bakrhouf, A. In vitro effect of pH and ethanol on biofilm formation by clinical ica-positive Staphylococcus epidermidis strains. Ann. Microbiol. 2007, 57, 431–437. [Google Scholar] [CrossRef]
- Slížová, M.; Nemcová, R.; Maďar, M.; Hadryová, J.; Gancarčíková, S.; Popper, M.; Pistl, J. Analysis of biofilm formation by intestinal lactobacilli. Can. J. Microbiol. 2015, 61, 437–466. [Google Scholar] [CrossRef]
- Mareková, M.; Lauková, A.; De Vuyst, L.; Skaugen, M.; Nes, I.F. Partial characterization of bacteriocins produced by environmental strain Enterococcus faecium EK13. J. Appl. Microbiol. 2003, 94, 523–530. [Google Scholar] [CrossRef]
- Mareková, M.; Lauková, A.; Skaugen, M.; Nes, I.F. Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J. Ind. Microbiol. Biotechnol. 2007, 34, 533–537. [Google Scholar] [CrossRef]
- Lauková, A.; Simonová, M.; Strompfová, V.; Štyriak, I.; Ouwehand, A.O.; Várady, M. Potential of enterococci isolated from horses. Anaerobe 2008, 14, 234–236. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Kandričáková, A.; Bino, E.; Plachá, I.; Gancarčíková, S.; Formelová, Z.; Kubašová, I.; Ondruška, Ľ.; Jurčík, R.; et al. Combinative Application of Two Enterocins, Ent M and Durancin ED26E/7 in Broiler Rabbits. In Proceedings of the International Conference “Hygiene Alimentorum XXXIX”, Štrbské pleso, Slovakia, 16–18 May 2018; p. 34, ISBN 978-80-8077-579-7. [Google Scholar]
- Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Kandričáková, A.; Szabóová, R.; Strompfová, V.; Chrenková, M.; Čobanová, K.; Žitňan, R. Beneficial effect if lantibiotic nisin in rabbits husbandry. Prob. Antimicrob. Prot. 2014, 6, 41–46. [Google Scholar] [CrossRef]
- De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of antagonistic activity of Lactobacillus amylovorus DCE471 and large-scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 19, 9–20. [Google Scholar] [CrossRef]
- Šimko, Š.; Bartko, P. Resistance to antibiotics in Staphylococcus aureus at ewe mastitis, in sheep milk and its products. Vet. Med. Czech. 1996, 41, 241–244. [Google Scholar]
- Vos, P.; Garrity, G.; Jones, P.; Krieg, N.P.; Ludwig, W.; Rainer, F.A.; Schleifer, K.H.; Whitmann, W. Bergey‘s Manual of Systematic Bacteriology: Volume 3: The Firmicutes; Springer: New York, NY, USA, 2011; ISBN 978-0-387-95041-9. [Google Scholar] [CrossRef]
- Kačániová, M.; Kunová, S.; Štefániková, J.; Felšociová, S.; Godočíková, L.; Horská, E.; Nagyová, Ľ.; Haščík, P.; Terentjeva, M. Microbiota of the traditional Slovak sheep cheese „Bryndza“. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 482–486. [Google Scholar] [CrossRef]
- Even, S.; Leroy, S.; Charlier, C.; Zakour, B.N.; Chacornac, J.P.; Lebert, I.; Jamet, E.; Desmonts, M.H.; Coton, E.; Pochet, S.; et al. Low occurrence of safety hazards in coagulase-negative staphylococci isolated from fermented foodstuffs. Int. J. Food Microbiol. 2010, 139, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Vengust, M.; Anderson, M.E.C.; Rousseau, J.; Weese, J.S. Methicillin-resistant staphylococcal colonization in clinically normal dogs and horses in the community. Lett. Appl. Microbiol. 2006, 43, 602–606. [Google Scholar] [CrossRef]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 2018, 4, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Hill, B.; Smythe, B.; Lindsay, D.; Shepherd, J. Microbiology of raw milk in New Zealand. Int. J. Food Microbiol. 2012, 157, 305–308. [Google Scholar] [CrossRef]
- Lauková, A.; Kandričáková, A.; Strompfová, V.; Chacornac, J.P.; Leroy, S.; Žitňan, R. Staphylococcal species detected in free-living trouts of east Slovakian water sources and their relation to antimicrobials. Bull. Vet. Inst. Pulawy 2013, 57, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Lauková, A.; Guba, P.; Nemcová, R.; Mareková, M. Inhibition of Salmonella enterica serovar Dusseldorf by enterocin A in gnotobiotic Japanese quails. Vet. Med. Czech. 2004, 49, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Delves-Broughton, J.; Blackburn, P.; Evans, R.J.; Hugenholtz, J. Applications of the bacteriocin, nisin. Ant. Leeuwenhoe. 1996, 69, 193–202. [Google Scholar] [CrossRef]
- Pag, U.; Sahl, H.G. Antimicrobial peptides:discovery, design and novel therapeutic strategies. Curr. Pharm. Des. 2002, 8, 815–833. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Kandričáková, A.; Pleva, P.; Buňková, L.; Ščerbová, J. Effect of lantibiotic gallidermin against biogenic amine-producing faecal staphylococci from ostriches and pheasants. Folia Microbiol. 2017, 62, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, J.S.; Ceotto, H.; Nascimento, S.B.; Giamiagi-deMarval, M.; Santos, K.R.N.; Bastos, M.C.F. Bacteriocins as alternative agents for control of multiresistant staphylococal strains. Lett. Appl. Microbiol. 2006, 42, 215–221. [Google Scholar] [CrossRef] [PubMed]
Strains | Score | Selected Parameters of API STAPH Profile | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mal | Lac | Tre | Xyl | Meli | Nit | Pal | VP | Xy | S | Nag | Adh | Urea | ||
SXOS7/2 | 2.309 | + | + | + | − | + | − | ± | + | + | − | + | − | + |
SXOS13/4 | 1.708 | + | + | + | − | − | ± | + | + | − | − | + | − | + |
SXOS2/3 | 1.870 | − | − | − | − | − | + | + | ± | − | − | − | + | − |
SciOS6/3 | 1.925 | + | + | + | − | + | + | + | + | + | − | + | − | + |
SciOS17/4 | 1.986 | + | + | + | − | − | ± | + | + | + | − | + | − | + |
SciOS8/1 | 1.962 | + | + | + | − | − | + | + | + | + | − | + | − | + |
SciOS18/1 | 1.832 | + | + | + | − | − | ± | + | + | + | − | + | − | + |
SciOS5/1 | 2.032 | + | + | + | − | ± | − | + | + | + | + | + | − | + |
SmiOS17/6 | 1.703 | + | + | + | − | − | + | + | + | − | − | + | − | + |
SmiOS14/1 | 2.000 | + | + | + | − | + | + | + | + | + | − | + | − | + |
SAOS1/1 | 2.050 | + | + | + | − | − | + | + | + | − | + | + | + | + |
SAOS2/1 | 2.054 | + | + | + | − | + | + | + | + | + | + | − | − | − |
SAOS6 | 2.162 | + | + | + | + | − | + | + | + | + | + | + | + | − |
SAOS5/2 | 2.185 | + | + | + | + | − | + | + | + | + | + | + | + | − |
SqOS54 | 2.000 | + | + | + | − | − | + | + | + | + | + | + | ± | + |
Strains | Da | Ox | N | L | H | DNase |
---|---|---|---|---|---|---|
SXOS7/2 | 20 | 12 | R | 18 | γ | ng |
SXOS13/4 | 26 | 18 | 18 | 18 | γ | ng |
SXOS2/3 | R | R | 20 | R | γ | ng |
SciOS6/3 | 25 | 16 | 20 | 11 | γ | ng |
SciOS17/4 | 25 | 18 | 21 | 15 | γ | ng |
SciOS8/1 | 26 | 17 | 23 | 13 | γ | ng |
SciOS5/1 | 24 | 18 | 22 | 18 | γ | ng |
SciOS18/1 | 30 | 15 | 18 | R | γ | ng |
SmiOS17/6 | 22 | 20 | 21 | 18 | γ | ng |
SmiOS14/1 | 20 | 18 | 12 | 18 | γ | ng |
SmiOS18/4 | 26 | 22 | 16 | 18 | γ | ng |
SAOS1/1 | 20 | 20 | 23 | 18 | β | + |
SAOS2/1 | 25 | R | R | 18 | γ | ng |
SAOS6 | 25 | 18 | 18 | R | γ | ng |
SAOS5/2 | 24 | 16 | 21 | 12 | γ | + |
SAOS51/3 | 24 | 19 | 15 | 18 | γ | + |
SqOS54 | 24 | 23 | 23 | 18 | γ | ng |
Strains | 72h | PA | M | A/P | 412 | 26E/7 |
---|---|---|---|---|---|---|
SXOS7/2 | ng | 0.103 (0.32) | 51,200 | 12,800 | 25,600 | 12,800 |
SXOS13/4 | ng | 0.106 (0.32) | ng | 100 | 100 | ng |
SXOS2/3 | ng | 0.170 (0.41) | 6400 | 6400 | 800 | 800 |
SciOS6/3 | ng | 0.143 (0.38) | 6400 | 25,600 | 100 | 12,800 |
SciOS17/4 | ng | 0.137 (0.37) | ng | 100 | 100 | 100 |
SciOS8/1 | ng | 0.084 (0.03) | ng | 100 | 100 | 200 |
SciOS5/1 | ng | 0.073 (0.03) | 12,800 | 25,600 | 6400 | 12,800 |
SciOS18/1 | ng | 0.089 (0.03) | 6400 | 12,800 | 25,600 | 12,800 |
SmiOS17/6 | ng | 0.104 (0.32) | 12,800 | 25,600 | 25,600 | 6400 |
SmiOS14/1 | ng | 0.080 (0.02) | 12,800 | 25,600 | 12,800 | 25,600 |
SmiOS18/4 | ng | 0.109 (0.33) | ng | 100 | 100 | 100 |
SAOS1/1 | + | 0.167 (0.40) | ng | ng | ng | ng |
SAOS2/1 | ng | 0.190 (0.43) | 800 | 12,800 | 12,800 | 6400 |
SAOS6 | ng | 0.097 (0.03) | ng | ng | ng | ng |
SAOS5/2 | ng | 0.171 (0.41) | ng | ng | ng | ng |
SAOS51/3 | + | 0.155 (0.39) | 100 | 100 | 100 | ng |
SqOS54 | ng | 0.141 (0.37) | 100 | 100 | 100 | 100 |
Strains | Nis | NisMIC | Gall | GallMIC |
---|---|---|---|---|
SXOS7/2 | 102,400 | 0.005 | 102,400 | 0.005 |
SXOS13/4 | 102,400 | 0.005 | 102,400 | 0.005 |
SXOS2/3 | 51,200 | 0.019 | 51,200 | 0.019 |
SciOS6/3 | 51,200 | 0.019 | 51,200 | 0.019 |
SciOS17/4 | 102,400 | 0.005 | 102,400 | 0.005 |
SciOS8/1 | 102,400 | 0.005 | 102,400 | 0.005 |
SciOS5/1 | 102,400 | 0.005 | 51,200 | 0.019 |
SciOS18/1 | 51,200 | 0.019 | 102,400 | 0.005 |
SmiOS17/6 | 51,200 | 0.019 | 102,400 | 0.005 |
SmiOS14/1 | 102,400 | 0.005 | 51,200 | 0.019 |
SmiOS18/4 | 6400 | 0.0156 | 102,400 | 0.005 |
SAOS1/1 | 102,400 | 0.005 | 102,400 | 0.005 |
SAOS2/1 | 25,600 | 0.0039 | 1600 | 0.0625 |
SAOS6 | 6400 | 0.0156 | 51,200 | 0.019 |
SAOS5/2 | 12,800 | 0.0078 | 51,200 | 0.019 |
SAOS51/3 | 6400 | 0.0156 | 102,400 | 0.005 |
SqOS54 | 6400 | 0.0156 | 102,400 | 0.005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauková, A.; Pogány Simonová, M.; Focková, V.; Kološta, M.; Tomáška, M.; Dvorožňáková, E. Susceptibility to Bacteriocins in Biofilm-Forming, Variable Staphylococci Isolated from Local Slovak Ewes’ Milk Lump Cheeses. Foods 2020, 9, 1335. https://doi.org/10.3390/foods9091335
Lauková A, Pogány Simonová M, Focková V, Kološta M, Tomáška M, Dvorožňáková E. Susceptibility to Bacteriocins in Biofilm-Forming, Variable Staphylococci Isolated from Local Slovak Ewes’ Milk Lump Cheeses. Foods. 2020; 9(9):1335. https://doi.org/10.3390/foods9091335
Chicago/Turabian StyleLauková, Andrea, Monika Pogány Simonová, Valentína Focková, Miroslav Kološta, Martin Tomáška, and Emília Dvorožňáková. 2020. "Susceptibility to Bacteriocins in Biofilm-Forming, Variable Staphylococci Isolated from Local Slovak Ewes’ Milk Lump Cheeses" Foods 9, no. 9: 1335. https://doi.org/10.3390/foods9091335
APA StyleLauková, A., Pogány Simonová, M., Focková, V., Kološta, M., Tomáška, M., & Dvorožňáková, E. (2020). Susceptibility to Bacteriocins in Biofilm-Forming, Variable Staphylococci Isolated from Local Slovak Ewes’ Milk Lump Cheeses. Foods, 9(9), 1335. https://doi.org/10.3390/foods9091335