Towards a Sampling Rationale for African Swine Fever Virus Detection in Pork Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples for Evaluation
2.2. Processing of Meat Samples—Homogenisation
2.3. Extraction of ASFV DNA
2.4. ASFV qPCR Assays
2.5. Evaluation of the ASFV Detection Systems
2.6. Statistical Analysis
3. Results
3.1. Performance of ASFV Detection Systems on Raw Food Matrices
3.2. Performance of ASFV Detection System on Cooked Food Matrices
3.3. Detection Probability of ASFV qPCR Assays
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dixon, L.K.; Abrams, C.C.; Chapman, D.G.; Zhang, F. African swine fever virus. In Animal Viruses: Molecular Biology; Mettenleiter, T.C., Sobrino, F., Eds.; Caister Academic Press: Wymondham, UK, 2008; pp. 457–521. [Google Scholar]
- Gavier-Widen, D.; Stahl, K.; Dixon, L. No hasty solutions for African swine fever. Science 2020, 367, 622–624. [Google Scholar] [CrossRef]
- Sanchez-Vizcaino, J.M.; Mur, L.; Gomez-Villamandos, J.C.; Carrasco, L. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 2015, 152, 9–21. [Google Scholar] [CrossRef]
- Mazur-Panasiuk, N.; Żmudzki, J.; Woźniakowski, G. African swine fever Virus—Persistence in Different Environmental Conditions and the Possibility of its Indirect Transmission. J. Vet. Res. 2019, 63, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Beltran-Alcrudo, D.; Falco, J.R.; Raizman, E.; Dietze, K. Transboundary spread of pig diseases: The role of international trade and travel. BMC Vet. Res. 2019, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Rowlands, R.J.; Michaud, V.; Heath, L.; Hutchings, G.; Oura, C.; Vosloo, W.; Dwarka, R.; Onashvili, T.; Albina, E.; Dixon, L.K. African swine fever virus isolate, Georgia, 2007. Emerg. Infect. Dis. 2008, 14, 1870–1874. [Google Scholar] [CrossRef]
- Pan, C. African Swine Fever Affects China’s Pork Consumption. Available online: https://research.rabobank.com/far/en/sectors/animal-protein/african-swine-fever-affects-china-s-pork-consumption.html (accessed on 6 June 2020).
- Mason-D’Croz, D.; Bogard, J.R.; Herrero, M.; Robinson, S.; Sulser, T.B.; Wiebe, K.; Willenbockel, D.; Godfray, H.C.J. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food 2020, 1, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Arias, M.; de la Torre, A.; Dixon, L.; Gallardo, C.; Jori, F.; Laddomada, A.; Martins, C.; Parkhouse, R.M.; Revilla, Y.; Rodriguez, F.; et al. Approaches and Perspectives for Development of African swine fever virus Vaccines. Vaccines 2017, 5, 35. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Richt, J.A. Subunit vaccine approaches for African swine fever virus. Vaccines 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Borca, M.V.; Ramirez-Medina, E.; Silva, E.; Vuono, E.; Rai, A.; Pruitt, S.; Holinka, L.G.; Velazquez-Salinas, L.; Zhu, J.; Gladue, D.P. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J. Virol. 2020, 94, 15. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific opinion on African Swine Fever. EFSA J. 2014, 32, 3628. [Google Scholar]
- Cwynar, P.; Stojkov, J.; Wlazlak, K. African swine fever status in Europe. Viruses 2019, 11, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depner, K.; Gortazar, C.; Guberti, V.; Masiulis, M.; More, S.; Olsevskis, E.; Thulke, H.-H.; Viltrop, A.; Wozniakowski, G.; Cortinas Abrahantes, J.; et al. Epidemiological analyses of African swine fever in the Baltic States and Poland: (Update September 2016–September 2017). EFSA J. 2017, 15. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.A.; Condoleo, R.; Simons, R.R.L.; Gale, P.; Kelly, L.A.; Snary, E.L. The risk of infection by African swine fever virus in European swine through boar movement and legal trade of pigs and pig meat. Front. Vet. Sci. 2020, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogin, A.; Gerasimov, V.; Malogolovkin, A.; Kolbasov, D. African swine fever in the North Caucasus region and the Russian Federation in years 2007–2012. Virus Res. 2013, 173, 198–203. [Google Scholar] [CrossRef]
- Linden, A.; Licoppe, A.; Volpe, R.; Paternostre, J.; Lesenfants, C.; Cassart, D.; Garigliany, M.; Tignon, M.; van den Berg, T.; Desmecht, D.; et al. Summer 2018: African swine fever virus hits north-western Europe. Transbound Emerg. Dis. 2019, 66, 54–55. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Decision (EU) 2020/543 of 17 April 2020 Amending the Annex to Implementing Decision 2014/709/EU Concerning Animal Health Control Measures Relating to African Swine Fever in Certain Member States (Notified Under Document C(2020) 2538). Available online: https://eur-lex.europa.eu/eli/dec_impl/2020/543/oj (accessed on 30 June 2020).
- Department for Food and Rural Affairs. Qualitative Risk Assessment for the Risk of Introducing African Swine Fever (ASF) to the UK Pig Population from European Member States via Human-Mediated Routess? 2018. Available online: https://www.gov.uk/government/publications/qualitative-risk-assessment-risk-of-introducing-african-swine-fever-to-the-uk-pig-population (accessed on 30 June 2020).
- European Commission. 2003/422/EC: Commission Decision of 26 May 2003 Approving an African Swine Fever Diagnostic Manual (Text with EEA Relevance) (Notified under Document Number C(2003). Available online: http://data.europa.eu/eli/dec/2003/422/oj (accessed on 30 June 2020).
- Guinat, C.; Gogin, A.; Blome, S.; Keil, G.; Pollin, R.; Pfeiffer, D.U.; Dixon, L. Transmission routes of African swine fever virus to domestic pigs: Current knowledge and future research directions. Vet. Rec. 2016, 178, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, C.; Nieto, R.; Soler, A.; Pelayo, V.; Fernandez-Pinero, J.; Markowska-Daniel, I.; Pridotkas, G.; Nurmoja, I.; Granta, R.; Simon, A.; et al. Assessment of African swine fever Diagnostic Techniques as a Response to the Epidemic Outbreaks in Eastern European Union Countries: How to Improve Surveillance and Control Programs. J. Clin. Microbiol. 2015, 53, 2555–2565. [Google Scholar] [CrossRef] [Green Version]
- The Products Containing Meat etc. (England) Regulations 2014. Available online: http://www.legislation.gov.uk/uksi/2014/3001/contents/made (accessed on 23 June 2020).
- King, D.P.; Reid, S.M.; Hutchings, G.H.; Grierson, S.S.; Wilkinson, P.J.; Dixon, L.K.; Bastos, A.D.S.; Drew, T.W. Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. J. Virol. Methods 2003, 107, 53–61. [Google Scholar] [CrossRef]
- Fernandez-Pinero, J.; Gallardo, C.; Elizalde, M.; Robles, A.; Gomez, C.; Bishop, R.; Heath, L.; Couacy-Hymann, E.; Fasina, F.O.; Pelayo, V.; et al. Molecular diagnosis of African swine fever by a new real-time PCR using universal probe library. Transbound Emerg. Dis. 2013, 60, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Team, R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011; Available online: https://www.R-project.org (accessed on 30 June 2020).
- Organisation for Economic Co-Operation and Development (FAO). OECD-FAO Agricultural Outlook 2019–2028; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Petrini, S.; Feliziani, F.; Casciari, C.; Giammarioli, M.; Torresi, C.; De Mia, G.M. Survival of African swine fever virus (ASFV) in various traditional Italian dry-cured meat products. Prev. Vet. Med. 2019, 162, 126–130. [Google Scholar] [CrossRef]
- Codex Alimentarius. Code of Hygienic Practice for Meat; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; Available online: http://www.fao.org/input/download/standards/10196/CXP_058e.pdf (accessed on 23 June 2020).
- Li, Y.; Salman, M.; Shen, C.; Yang, H.; Wang, Y.; Jiang, Z.; Edwards, J.; Huang, B. African swine fever in a commercial pig farm: Outbreak investigation and an approach for identifying the source of infection. Transbound Emerg. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Cordon, P.J.; Montoya, M.; Reis, A.L.; Dixon, L.K. African swine fever: A re-emerging viral disease threatening the global pig industry. Vet. J. 2018, 233, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Lin, C.Y.; Ishcol, M.R.C.; Urbina, A.N.; Assavalapsakul, W.; Thitithanyanont, A.; Lu, P.L.; Chen, Y.H.; Wang, S.F. Detection of African swine fever virus in pork products brought to Taiwan by travellers. Emerg. Microbes Infect. 2019, 8, 1000–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Lee, M.J.; Lee, S.K.; Kim, D.Y.; Seo, S.J.; Kang, H.E.; Nam, H.M. African swine fever virus in pork brought into South Korea by travelers from China, August 2018. Emerg. Infect. Dis. 2019, 25, 1231–1233. [Google Scholar] [CrossRef] [PubMed]
- Loeb, J. Defra taking action to prevent African swine fever in the UK. Vet. Rec. 2019, 185, 124–125. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M. Preventing exotic disease introduction into Australia. Aust. Vet. J. 2019, 97. [Google Scholar] [CrossRef] [Green Version]
- James, H.E.; Ebert, K.; McGonigle, R.; Reid, S.M.; Boonham, N.; Tomlinson, J.A.; Hutchings, G.H.; Denyer, M.; Oura, C.A.L.; Dukes, J.P.; et al. Detection of African swine fever virus by loop-mediated isothermal amplification. J. Virol. Methods 2010, 164, 68–74. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 854/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Off. J. Eur. Union 2004, 226, 83–127. [Google Scholar]
- International Organization for Standardization. ISO 15216-1:2017 Microbiology of the Food Chain—Horizontal Method for Determination of Hepatitis a Virus and Norovirus Using Real-Time RT-PCR—Part 1: Method for Quantification. 2017. Available online: https://www.iso.org/standard/65681.html (accessed on 30 June 2020).
Testing Matrix and Mean CT Value (Range) | |||||
---|---|---|---|---|---|
qPCR Assay | A (Sausage + Cell Culture Isolate) | B (Sausage + Pork Loin) | C (Sausage + Meat Juice) | D (Sausage + Bone Marrow) | Mean CT |
VetMAX | 32.48 (32.43–32.52) | 34.63 (34.13–34.90) | 35.03 (34.59–35.37) | 32.52 (32.17–32.73) | 33.66 |
King | 33.82 (33.26–34.34) | 36.23 (35.24–36.71) | 36.86 (35.86–37.43) | 34.23 (33.64–34.74) | 35.29 |
UPL | 34.20 (34.19–34.21) | 36.44 (35.41–37.01) | 35.66 (35.09–36.45) | 34.01 (33.78–34.25) | 35.08 |
Testing Matrix and Mean CT Value (Range) | ||||
---|---|---|---|---|
A (Sausage + Cell Culture Isolate) | B (Sausage + Pork Loin) | C (Sausage + Meat Juice) | D (Sausage + Bone Marrow) | |
VetMAX | 35.85 (35.56–36.14) | 37.12 (36.43–37.80) | 36.80 (36.43–37.10) | 34.25 (34.22–34.28) |
King | 36.24 (36.10–36.37) | 36.84 (n.d.) | Undet. (n.d.) | 35.49 (35.39–35.60) |
UPL | 37.44 (37.23–37.66) | 37.60 (37.22–37.98) | 36.40 (35.76–37.04) | 35.49 (35.41–35.57) |
Spiking Material | Assay (Neat CT Value) | Detection Probability % at Each log10 Dilution | |||||
---|---|---|---|---|---|---|---|
−1 | −2 | −3 | −4 | −5 | −6 | ||
ASFV isolate | King (18.91) | 100 | 100 | 100 | 99.9 | 95.8 | 42.5 |
UPL (17.71) | 100 | 100 | 100 | 99.9 | 97.3 | 53.8 | |
VetMAX (18.98) | 100 | 100 | 100 | 100 | 99.7 | 90.9 | |
Pork loin | King (28.77) | 99.9 | 97.7 | 57.9 | 4.3 | 0.1 | 0 |
UPL (26.78) | 100 | 98.5 | 68.4 | 6.6 | 0.2 | 0 | |
VetMAX (28.28) | 100 | 99.8 | 94.9 | 37.7 | 1.9 | 0.1 | |
Meat juice | King (23.79) | 100 | 100 | 98.8 | 72.6 | 8 | 0.3 |
UPL (22.59) | 100 | 100 | 99.2 | 80.7 | 12 | 0.4 | |
VetMAX (23.83) | 100 | 100 | 99.9 | 97.3 | 53.9 | 3.7 | |
Bone marrow | King (20.71) | 100 | 100 | 100 | 98.8 | 72.6 | 8 |
UPL (19.42) | 100 | 100 | 100 | 99.2 | 80.7 | 12 | |
VetMAX (20.49) | 100 | 100 | 100 | 99.9 | 97.3 | 53.9 |
Spiking Material | Assay | Log Diluted Component and Minimum Sample Size for Detection (95% CI) | |||||
---|---|---|---|---|---|---|---|
−1 | −2 | −3 | −4 | −5 | −6 | ||
Pork loin | King | 1 | 1 | 4 | 69 | 2995 | n.d. |
UPL | 1 | 1 | 3 | 44 | 1497 | n.d. | |
VetMAX | 1 | 1 | 2 | 7 | 157 | 2995 | |
Meat juice | King | 1 | 1 | 1 | 3 | 36 | 998 |
UP | 1 | 1 | 1 | 2 | 24 | 748 | |
VetMAX | 1 | 1 | 1 | 1 | 4 | 80 | |
Bone marrow | King | 1 | 1 | 1 | 1 | 3 | 36 |
UPL | 1 | 1 | 1 | 1 | 2 | 24 | |
VetMAX | 1 | 1 | 1 | 1 | 1 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flannery, J.; Moore, R.; Marsella, L.; Harris, K.; Ashby, M.; Rajko-Nenow, P.; Roberts, H.; Gubbins, S.; Batten, C. Towards a Sampling Rationale for African Swine Fever Virus Detection in Pork Products. Foods 2020, 9, 1148. https://doi.org/10.3390/foods9091148
Flannery J, Moore R, Marsella L, Harris K, Ashby M, Rajko-Nenow P, Roberts H, Gubbins S, Batten C. Towards a Sampling Rationale for African Swine Fever Virus Detection in Pork Products. Foods. 2020; 9(9):1148. https://doi.org/10.3390/foods9091148
Chicago/Turabian StyleFlannery, John, Rebecca Moore, Laura Marsella, Katie Harris, Martin Ashby, Paulina Rajko-Nenow, Helen Roberts, Simon Gubbins, and Carrie Batten. 2020. "Towards a Sampling Rationale for African Swine Fever Virus Detection in Pork Products" Foods 9, no. 9: 1148. https://doi.org/10.3390/foods9091148
APA StyleFlannery, J., Moore, R., Marsella, L., Harris, K., Ashby, M., Rajko-Nenow, P., Roberts, H., Gubbins, S., & Batten, C. (2020). Towards a Sampling Rationale for African Swine Fever Virus Detection in Pork Products. Foods, 9(9), 1148. https://doi.org/10.3390/foods9091148