Detection of Histamine Based on Gold Nanoparticles with Dual Sensor System of Colorimetric and Fluorescence
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instrumentation
2.3. Preparation of Citrate-Capped Au-NPs
2.4. Detection of Histamine
2.5. Detection of Histamine In Salmon Muscle
2.6. Statistical Analysis
3. Results and Discussion
3.1. Sensing Mechanism of Au-NPs Probe
3.2. Analytical Performance of Au-NPs Probe
3.3. Selectivity of Au-NPs Probe
3.4. Detection of Histamine in Salmon Muscle
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heerthana, V.R.; Preetha, R. Biosensors: A potential tool for quality assurance and food safety pertaining to biogenic amines/volatile amines formation in aquaculture systems/products. Rev. Aquacult. 2019, 11, 220–233. [Google Scholar] [CrossRef]
- Sørensen, K.M.; Aru, V.; Khakimov, B.; Aunskjær, U.; Engelsen, S.B. Biogenic Amines: A key freshness parameter of animal protein products in the coming circular economy. Curr. Opin. Food Sci. 2018, 22, 167–173. [Google Scholar] [CrossRef]
- Del, R.B.; Redruello, B.; Linares, D.M.; Ladero, V.; Fernandez, M.; Martin, M.C.; Ruas-Madiedo, P.; Alvarez, M.A. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chem. 2017, 218, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yoon, M.; Um, M.Y.; Lee, J.; Jung, J.; Lee, C.; Kim, Y.T.; Kwon, S.; Kim, B.; Cho, S. Sleep-Promoting Effects and Possible Mechanisms of Action Associated with a Standardized Rice Bran Supplement. Nutrients 2017, 9, 512. [Google Scholar] [CrossRef] [PubMed]
- Altieri, I.; Semeraro, A.; Scalise, F.; Calderari, I.; Stacchini, P. European official control of food: Determination of histamine in fish products by a HPLC–UV-DAD method. Food Chem. 2016, 211, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Adams, F.; Nolte, F.; Colton, J.; De, B.J.; Weddig, L. Precooking as a Control for Histamine Formation during the Processing of Tuna: An Industrial Process Validation. J. Food Protect. 2018, 81, 444–455. [Google Scholar] [CrossRef]
- Xinna, W.; Liang, Y.; Wang, Y.; Fan, M.; Sun, Y.; Liu, J.; Zhang, N. Simultaneous determination of ten kinds of biogenic amines in rat plasma using high-performance liquid chromatography coupled with fluorescence detection. Biomed. Chromatogr. 2018, 32, e4211. [Google Scholar]
- Hui, Y.; Zhuang, D.; Hu, X.; Shuang, Z.; Zhiyong, H.E.; Zeng, M.; Fang, X.; Chen, J.; Chen, X. Rapid determination of histamine in fish by thin-layer chromatography-image analysis method using diazotized visualization reagent prepared with p-nitroaniline. Anal. Methods-UK 2018, 10, 3386–3392. [Google Scholar]
- Kamankesh, M.; Mohammadi, A.; Mollahosseini, A.; Seidi, S. Application of a novel electromembrane extraction and microextraction method followed by gas chromatography-mass spectrometry to determine biogenic amines in canned fish. Anal. Methods-UK 2019, 11, 1898–1907. [Google Scholar] [CrossRef]
- Selnihhin, D.; Sparvath, S.M.; Preus, S.; Birkedal, V.; Andersen, E.S. Multi-Fluorophore DNA Origami Beacon as a Biosensing Platform. ACS Nano 2018, 12, 5699–5708. [Google Scholar] [CrossRef]
- Han, L.; Liao, J.D.; Sivashanmugan, K.; Liu, B.; Fu, W.; Chen, C.C.; Chen, G.D.; Juang, Y.D. Gold Nanoparticle-Coated ZrO2-Nanofiber Surface as a SERS-Active Substrate for Trace Detection of Pesticide Residue. Nanomaterials 2018, 8, 402–413. [Google Scholar]
- Rong, Y.; Shou, Z.; Chen, J.; Wu, H.; Zhao, Y.; Qiu, L.; Jiang, P.; Mou, X.Z.; Wang, J.; Li, Y.Q. On–Off–On Gold Nanocluster-Based Fluorescent Probe for Rapid Escherichia coli Differentiation, Detection and Bactericide Screening. ACS Sustain. Chem. Eng. 2018, 6, 4504–4509. [Google Scholar]
- Rkr, G.; Palathedath, S.K. Cu@Pd core-shell nanostructures for highly sensitive and selective amperometric analysis of histamine. Biosens. Bioelectron. 2018, 102, 242–246. [Google Scholar]
- Toloza, C.A.T.; Khan, S.; Silva, R.L.D.; Romani, E.C.; Larrude, D.G.; Louro, S.R.W.; Júnior, F.L.F.; Aucélio, R.Q. Photoluminescence suppression effect caused by histamine on amino-functionalized graphene quantum dots with the mediation of Fe 3+, Cu 2+, Eu 3+: Application in the analysis of spoiled tuna fish. Microchem. J. 2017, 133, 448–459. [Google Scholar] [CrossRef]
- Kumar, N.; Goyal, R.N. Silver nanoparticles decorated graphene nanoribbon modified pyrolytic graphite sensor for determination of Histamine. Sens. Actuators B-Chem. 2018, 268, 383–391. [Google Scholar] [CrossRef]
- Kuo, P.C.; Lien, C.W.; Mao, J.Y.; Unnikrishnan, B.; Chang, H.T.; Lin, H.J.; Huang, C.C. Detection of urinary spermine by using silver-gold/silver chloride nanozymes. Anal. Chim. Acta 2018, 1009, 89–97. [Google Scholar] [CrossRef]
- Beibei, L.; Hang, G.; Wang, Y.; Zhang, X.; Pan, L.; Qiu, Y.; Wang, L.; Hua, X.; Guo, Y.; Wang, M.; et al. A gold immunochromatographic assay for simultaneous detection of parathion and triazophos in agricultural products. Anal. Methods-UK 2018, 10, 422–428. [Google Scholar]
- Shehata, D.M.; Hadi, S. Applications of gold nanoparticles in virus detection. Theranostics 2018, 8, 1985–2017. [Google Scholar]
- Baetsen-Young, A.M.; Vasher, M.; Matta, L.L.; Colgan, P.; Alocilja, E.C.; Day, B. Direct colorimetric detection of unamplified pathogen DNA by dextrin-capped gold nanoparticles. Biosens. Bioelectron. 2018, 101, 29–36. [Google Scholar] [CrossRef]
- Yan, L.; Ding, D.; Zhen, Y.; Guo, R. Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 2017, 92, 140–146. [Google Scholar]
- Ping, S.; Wang, G.; Kang, B.; Guo, W.; Liang, S. High-Efficiency and High-Color-Rendering-Index Semitransparent Polymer Solar Cells Induced by Photonic Crystals and Surface Plasmon Resonance. ACS Appl. Mater. Interfaces 2018, 10, 6513–6520. [Google Scholar]
- Dong, Y.; Pang, H.; Yang, H.B.; Guo, C.; Shao, J.; Chi, Y.; Li, C.M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. Engl. 2013, 52, 7800–7804. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, A.; Uemura, T.; Zettsu, N.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y.J.A.P.L. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode. Appl. Phys. Lett. 2010, 96, 14. [Google Scholar] [CrossRef]
- Mattsson, L.; Xu, J.; Preininger, C.; Bui, B.T.S.; Haupt, K. Competitive fluorescent pseudo-immunoassay exploiting molecularly imprinted polymers for the detection of biogenic amines in fish matrix. Talanta 2018, 181, 190–196. [Google Scholar] [CrossRef]
Detection Methods | Spiked Concentration (μM) | Found Concentration (μM) | Recovery (%) | Precision (%) | Accuracy (%) | |
---|---|---|---|---|---|---|
Au-NPs probe (this work) | Colorimetric detection | 0.01 | 0.0102 ± 0.0010 | 102.13 | 9.32 | 2.13 |
0.1 | 0.0997 ± 0.0049 | 99.67 | 4.95 | −0.33 | ||
1 | 1.0690 ± 0.0259 | 106.90 | 2.43 | 6.90 | ||
Fluorescence detection | 0.01 | 0.0096 ± 0.0004 | 96.01 | 4.46 | −3.99 | |
0.1 | 0.1024 ± 0.0095 | 102.39 | 9.30 | 2.39 | ||
1 | 1.0317 ± 0.0996 | 103.17 | 9.66 | 3.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, J.; Tian, C.; Zhang, G.-L.; Hao, H.; Hou, H.-M. Detection of Histamine Based on Gold Nanoparticles with Dual Sensor System of Colorimetric and Fluorescence. Foods 2020, 9, 316. https://doi.org/10.3390/foods9030316
Bi J, Tian C, Zhang G-L, Hao H, Hou H-M. Detection of Histamine Based on Gold Nanoparticles with Dual Sensor System of Colorimetric and Fluorescence. Foods. 2020; 9(3):316. https://doi.org/10.3390/foods9030316
Chicago/Turabian StyleBi, Jingran, Chuan Tian, Gong-Liang Zhang, Hongshun Hao, and Hong-Man Hou. 2020. "Detection of Histamine Based on Gold Nanoparticles with Dual Sensor System of Colorimetric and Fluorescence" Foods 9, no. 3: 316. https://doi.org/10.3390/foods9030316
APA StyleBi, J., Tian, C., Zhang, G.-L., Hao, H., & Hou, H.-M. (2020). Detection of Histamine Based on Gold Nanoparticles with Dual Sensor System of Colorimetric and Fluorescence. Foods, 9(3), 316. https://doi.org/10.3390/foods9030316