Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples and Glazing Solution
2.3. Glazing of Tuna and Frozen Storage
2.4. Water-Holding Capacity (WHC), Drip Loss, and Cooking Loss
2.5. Low-Field Nuclear Magnetic Resonance (LF-NMR) Analysis
2.6. Determination of Protein Degradation and Fat Oxidation
2.6.1. Preparation of the Myofibrillar Protein
2.6.2. Determination of the Total Volatile Basic Nitrogen (TVB-N)
2.6.3. Determination of malondialdehyde (MDA)
2.7. Color and Texture
2.8. Free Amino Acid (FAA)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Analysis
3.1.1. Changes in the Water-Holding Capacity, Drip Loss, and Cooking Loss
3.1.2. Changes in the Color of Samples
3.1.3. Texture Analysis
3.2. Low-Field Nuclear Magnetic Resonance (LF-NMR) Relaxation Time (T2) and Moisture Distribution
3.3. Protein Degradation
3.3.1. Changes in the Myofibrillar Protein Content
3.3.2. Determination of Total Volatile Basic Nitrogen (TVB-N)
3.4. Lipid Oxidation
3.4.1. Changes in Malondialdehyde (MDA)
3.4.2. Changes in Free Amino Acid (FAA)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xie, J.; Tang, Y.; Yang, S.P.; Qian, Y.F. Effects of whey protein films on the quality of thawed bigeye tuna (Thunnus obesus) chunks under modified atmosphere packaging and vacuum packaging conditions. Food Sci. Biotechnol. 2017, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brands, C.M.J.; Van Boekel, M.A.J.S. Kinetic Modeling of Reactions in Heated Monosaccharide−Casein Systems. J. Agric. Food Chem. 2002, 50, 6725–6739. [Google Scholar] [CrossRef] [PubMed]
- Boonsumrej, S.; Chaiwanichsiri, S.; Tantratian, S.; Suzukib, T.; Takaib, R. Effects of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by air-blast and cryogenic freezing. J. Food Eng. 2007, 80, 292–299. [Google Scholar] [CrossRef]
- Solval, K.M.; Espinoza Rodezno, L.A.; Moncada, M.; Bankstonb, J.D.; Sathivel, S. Evaluation of chitosan nanoparticles as a glazing material for cryogenically frozen shrimp. LWT Food Sci. Technol. 2014, 57, 172–180. [Google Scholar] [CrossRef]
- Taheri, A. Antioxidative Effect of Rainbow Sardine (Dussumieria acuta) Protein Hydrolysate on Lipid and Protein Oxidation in Black Pomfret (Parastromateus niger) Fillet by Glazing. J. Aquat. Food Prod. Technol. 2015, 24, 241–258. [Google Scholar] [CrossRef]
- Sathivel, S.; Liu, Q.; Huang, J. Q.; Prinyawiwatkul, Q. The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J. Food Eng. 2007, 83, 366–373. [Google Scholar] [CrossRef]
- Mesarčová, L.; Marcinčák, S.; Nagy, J.; Popelka, P. Effect of glaze and selected herbal extracts on lipid oxidation and sensory properties of frozen Atlantic herrings (Clupea harengus L.). Acta Aliment. 2013, 42, 236–244. [Google Scholar] [CrossRef]
- Sundararajan, S.; Prudente, A.; Bankston, J.D.; King, J.M.; Wilson, P.; Sathivel, S. Evaluation of Green Tea Extract as a Glazing Material for Shrimp Frozen by Cryogenic Freezing. J. Food Sci. 2011, 76, E511–E518. [Google Scholar] [CrossRef]
- Seabra, L.; Damasceno k Andrade, S.; Ddantas, M.M.G. Effect of rosemary on the quality characteristics of white shrimp (litopenaeus vannamei). J. Food Qual. 2011, 34, 363–369. [Google Scholar] [CrossRef]
- Ge, L.; Zhu, M.; Li, X.; Xu, X.B. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-tserm antibacterial activities. Food Hydrocoll. 2018, 83, 308–316. [Google Scholar] [CrossRef]
- Li, T.T.; Hu, W.Z.; Li, J.R.; Zhang, X.G.; Zhu, K.L.; Li, X.P. Coating effects of tea polyphenol and rosemary extract combined with chitosan on the storage quality of large yellow croaker (Pseudosciaena crocea). Food Control 2012, 25, 101–106. [Google Scholar] [CrossRef]
- Zhuang, R.Y.; Huang, Y.W.; Beuchat, L.R. Quality Changes During Refrigerated Storage of Packaged Shrimp and Catfish Fillets Treated with Sodium Acetate, Sodium Lactate or Propyl Gallate. J. Food Sci. 1996, 61, 241–244. [Google Scholar] [CrossRef]
- Sallam, K.I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 2007, 18, 566–575. [Google Scholar] [CrossRef]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Zhang, X.L.; Ma, H.X.; Yang, X.Q. Effect of Antioxidant of Bamboo Leaves (AOB) Combined with Different Packaging Methods on the Preservation of Fresh Tilapia Fillets. Food Sci. 2017, 38, 263–268. [Google Scholar]
- Yu, W.H.; Wang, J.F.; Xie, J. Response Surface Methodology for Optimizing the Proportion of Tuna Compound Ice Coating Solution. Food Ferment Ind. 2019, 1–8. [Google Scholar] [CrossRef]
- Mousakhani-Ganjeh, A.; Hamdami, N.; Soltanizadeh, N. Impact of high voltage electric field thawing on the quality of frozen tuna fish (Thunnus albacares). J. Food Eng. 2015, 156, 39–44. [Google Scholar] [CrossRef]
- Niu, L.; Rasco, B.A.; Tang, J.; Lai, K.Q.; Huang, Y.Q. Relationship of changes in quality attributes and protein solubility of ground beef under pasteurization conditions. LWT Food Sci. Technol. 2015, 61, 19–24. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Determination of Volatile Base Nitrogen in Food: GB 5009.228-2016; Standards Press: Beijing, China, 2017. [Google Scholar]
- Yu, D.; Xu, Y.; Regenstein, J.M.; Xia, W.S.; Yang, F.; Jiang, Q.X.; Wang, B. The effects of edible chitosan-based coatings on flavor quality of raw grass carp (Ctenopharyngodon idellus) fillets during refrigerated storage. Food Chem. 2018, 242, 412. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Li, D.; Qin, N.; Zhang, L.; Li, Q.; Prinyawiwatkul, W.; Luo, Y. Degradation of adenosine triphosphate, water loss and textural changes in frozen common carp (Cyprinus carpio) fillets during storage at different temperatures. Int. J. Refrig. 2018, 98, 294–301. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Thongkaew, C.; Tanaka, M. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage. Food Res. Int. 2003, 36, 787–795. [Google Scholar] [CrossRef]
- Lagerstedt, A.; Enfalt, L.; Johansson, L.; Lundström, K. Effect of freezing on sensory quality, shear force and water loss in beef longissimus dorsi. Meat Sci. 2008, 80, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Tajima, G.; Shikama, K. Autoxidation of oxymyoglobin. An overall stoichiometry including subsequent side reactions. J. Biol. Chem. 1987, 262, 12603–12606. [Google Scholar]
- Ying, L.S.; Zhang, M.; Zhou, X.Q.; Fu, H.J. Research Progress in Color Protection Technologies for Meat Products. Food Sci. 2011, 32, 291–295. [Google Scholar]
- Djenane, D.; Sanchez-escalantel, A.; Beltran, J.A.; Roncalés, P. Ability of a-tocopherol, taurine and rosemary, in combination with vitamin C, to increase the oxidative stability of beef steaks packaged in modified atmosphere. Food Chem. 2002, 76, 407–415. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Osako, K.; Benjakul, S.; Suthiluk, P.; Rawdkuen, S. Shelf life extension for Bluefin tuna slices ( Thunnus thynnus ) wrapped with myofibrillar protein film incorporated with catechin-Kradon extract. Food Control 2017, 79, 333–343. [Google Scholar] [CrossRef]
- OcañoHiguera, V.M.; MarquezRíos, E.; CanizalesDávila, E.; Castillo-Yáñez, F.J.; Pacheco-Aguilar, P.; Lugo-Sánchez, M.E.; García-Orozco, K.D.; Graciano-Verdugo, A.Z. Postmortem changes in cazon fish muscle stored on ice. Food Chem. 2009, 116, 933–938. [Google Scholar] [CrossRef]
- Hernández, M.D.; López, M.B.; Álvarez, A.; Ferrandinib, E.; García, B.G.; Garrido, M.D. Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food Chem. 2009, 114, 237–245. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef]
- Gudjónsdóttir, M.; Traoré, A.; Jónsson, Á.; Karlsdóttira, M.G.; Arasonad, S. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23Na MRI, 23Na NMR, low-field NMR and physicochemical analysis. Food Chem. 2015, 188, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Jesper, B.; Lars, M.; Poul, H.; Anders, H.K. Prediction of waterholding capacity and composition of porcine meat by comparative spectroscopy. Meat Sci. 2000, 55, 177–185. [Google Scholar]
- Shi, J.; Lei, X.T.; Shen, H.X.; Hong, H.; Yu, X.P.; Zhu, B.W.; Luo, Y.K. Effect of glazing and rosemary (Rosmarinus officinalis) extract on preservation of mud shrimp (Solenocera melantho) during frozen storage. Food Chem. 2019, 272, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Miklos, R.; Mora-Gallego, H.; Larsen, F.H.; Sorra, X.; Cheong, L.Z.; Xu, X.; Arnau, J.; Lametsch, R. Influence of lipid type on water and fat mobility in fermented sausages studied by low-field NMR. Meat Sci. 2014, 96, 617–622. [Google Scholar] [CrossRef]
- Somjit, K.; Ruttanapornwareesakul, Y.; Hara, K.; Nozaki, Y. The cryoprotectant effect of shrimp chitin and shrimp chitin hydrolysate on denaturation and unfrozen water of lizardfi shsurimi during frozen storage. Food Res. Int. 2005, 38, 345–355. [Google Scholar] [CrossRef]
- Zhanga, W.M.; Dong, Q.L.; Song, Y.Y.; Liu, Q. Progress of Sodium Lactate as a Preservative in Meat and Meat Products. Food Sci. 2016, 518, 257–262. [Google Scholar]
- Rogério, O.M.; Amparo, G.; José, P.; Carla, P. Indole production and deep water pink shrimp(Parapenaeus longirostris) decomposition. Eur. Food Res. Technol. 2005, 221, 320–328. [Google Scholar]
- National Standard of the People’s Republic of China. GB 2733-2005, Hygienic Standard for Fresh and Frozen Marine Products of Animal Origin; Ministry of Health of the People’s Republic of China: Beijing, China, 2005.
- Arancibia, M.Y.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Chitosan coatings enriched with active shrimp waste for shrimp preservation. Food Control 2015, 54, 259–266. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010, 120, 193–198. [Google Scholar] [CrossRef]
- Ozogul, Y.; Ayas, D.; Yazgan, H.; Ozougul, F.; Boga, E.K.; Ozyurt, G. The capability of rosemary extract in preventing oxidation of fish lipid. Int. J. Food Sci. Technol. 2010, 45, 1717–1723. [Google Scholar] [CrossRef]
- Seydim, A.C.; Guzel-Seydim, Z.B.; Acton, J.C.; Dawson, P.L. Effects of Rosemary Extract and Sodium Lactate on Quality of Vacuum-packaged Ground Ostrich Meat. J. Food Sci. 2006, 71, S71–S76. [Google Scholar] [CrossRef]
- Fernández-López, J.; Zhi, N.; Aleson-Carbonell, L.; Pérez-Alvareza, J.A.; Kuri, V. Antioxidant and antibacterial activities of natural extracts: Application in beef meatballs. Meat Sci. 2005, 69, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Mei, J.; Shen, Y.; Xie, J. Quality improvement of half-smooth tongue sole (Cynoglossus Semilaevis) fillets by chitosan coatings containing rosmarinic acid during storage. CyTA J. Food 2018, 16, 1018–1029. [Google Scholar] [CrossRef]
- Wang, Y.; Hui, T.; Zhang, Y.W.; Liu, B.; Wang, F.L.; Li, J.K.; Cui, B.W.; Guo, X.Y.; Peng, Z.Q. Effects of frying conditions on the formation of heterocyclic amines and trans fatty acids in grass carp ( Ctenopharyngodon idellus ). Food Chem. 2015, 167, 251–257. [Google Scholar] [CrossRef] [PubMed]
Treatment | Storage Time (day) | |||||
---|---|---|---|---|---|---|
30 | 60 | 90 | 120 | 150 | 180 | |
UG | 31.09 ± 2.6 Ec | 29.71 ±0.4 Eb | 27.64 ± 2.4 Ca | 29.86 ± 2.4 Cb | 27.54 ± 1.9 Da | 33.02 ± 1.4 Dd |
CG | 23.69 ± 1.2 Ba | 26.63 ± 1.5 Ccd | 27.70 ± 2 Cd | 24.42 ± 2.1 Bab | 24.57 ± 2.2 Cab | 26.02 ± 1.6 Cc |
RG | 18.50 ± 1.5 Aa | 28.51 ± 0.6 Dd | 30.42 ± 1.7 De | 24.58 ± 0.6 Bb | 18.30 ± 1.8 Aa | 25.63 ± 1.0 Cc |
SG | 30.21 ± 2.1 Dd | 23.72 ± 1.7 Ab | 27.88 ± 1.7 Cc | 20.39 ± 1.8 Aa | 21.67 ± 1.2 Bab | 19.88 ± 1.4 Aa |
AG | 30.29 ± 1.3 Dd | 24.48 ± 1.8 ABab | 23.91 ± 1.6 Ba | 29.82 ± 1.9 Cd | 27.14 ± 0.5 Dc | 24.97 ± 1.3B Cab |
WG | 28.20 ± 2.6 Ccd | 25.40 ± 1.8 Bb | 21.27 ± 0.7 Aa | 29.95 ± 2.1 Cd | 27.76 ± 0.7 Dc | 23.83 ± 0.5 Bab |
The proportion | UG | WG | RG | AG | SG | CG | |
---|---|---|---|---|---|---|---|
0 day | T2 peak area | 13,000.83781 | |||||
T21 peak area proportion | 0.04 | ||||||
T22 peak area proportion | 0.95 | ||||||
T23 peak area proportion | 0.01 | ||||||
60 days | T2 peak area proportion | 10,622.29 | 9010.84 | 9186.84 | 8788.45 | 9384.28 | 11,389.84 |
T21 peak area proportion | 0.04 | 0.05 | 0.03 | 0.04 | 0.03 | 0.04 | |
T22 peak area proportion | 0.96 | 0.91 | 0.96 | 0.89 | 0.96 | 0.96 | |
T23 peak area proportion | 0.00 | 0.04 | 0.01 | 0.08 | 0.01 | 0.01 | |
120 days | T2 peak area proportion | 9260.24 | 7854.69 | 8522.56 | 8616.11 | 8871.52 | 9574.82 |
T21 peak area proportion | 0.04 | 0.01 | 0.04 | 0.04 | 0.03 | 0.04 | |
T22 peak area proportion | 0.96 | 0.99 | 0.96 | 0.96 | 0.97 | 0.96 | |
T23 peak area proportion | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | |
180 days | T2 peak area proportion | 6218.72 | 6421.40 | 8018.95 | 7758.65 | 8473.01 | 9208.06 |
T21 peak area proportion | 0.05 | 0.04 | 0.05 | 0.04 | 0.05 | 0.06 | |
T22 peak area proportion | 0.95 | 0.96 | 0.90 | 0.95 | 0.91 | 0.92 | |
T23 peak area proportion | 0.00 | 0.00 | 0.06 | 0.01 | 0.04 | 0.02 |
Type | WG | RG | AG | SG | CG | UG |
---|---|---|---|---|---|---|
Asp | 0.49 ± 0.13 AB | 0.39 ± 0.06 A | 0.62 ± 0.04 C | 0.34 ± 0.02 A | 0.54 ± 0.15 B | 0.37 ± 0.03 A |
Thr | 1.82 ± 0.07 A | 1.88 ± 1.01 A | 1.88 ± 0.62 A | 2.82 ± 0.44 B | 3.12 ± 0.49 B | 2.83 ± 0.31 B |
Ser | 2.04 ± 0.24 AB | 1.63 ± 0.33 A | 1.73 ± 0.21 A | 2.46 ± 0.20 B | 3.18 ± 0.08 C | 2.40 ± 0.07 B |
Glu | 0.80 ± 0.09 A | 1.50 ± 0.15 BC | 1.80 ± 0.09 C | 1.27 ± 0.06 B | 0.90 ± 0.04 A | 0.78 ± 0.17 A |
Gly | 3.28 ± 0.36 B | 2.72 ± 0.29 A | 2.23 ± 0.17 A | 5.19 ± 0.46 C | 3.27 ± 0.30 B | 5.81 ± 0.26 C |
Ala | 8.05 ± 0.54 B | 4.93 ± 0.95 A | 10.73 ± 1.91 C | 10.74 ± 0.95 C | 15.58 ± 4.37 D | 9.61 ± 1.01 BC |
Val | 5.13 ± 0.55 C | 1.64 ± 0.27 A | 4.05 ± 0.62 B | 4.05 ± 1.89 B | 4.79 ± 1.44 BC | 4.11 ± 0.46 B |
Met | 2.91 ± 0.09 D | 1.48 ± 0.34 A | 2.50 ± 1.02 C | 1.31 ± 0.09 A | 2.10 ± 0.36 BC | 1.80 ± 0.06 B |
Ile | 2.58 ± 0.62 C | 2.05 ± 1.32 A | 2.09 ± 1.17 A | 2.26 ± 0.56 B | 3.06 ± 1.05 D | 2.22 ± 0.63 B |
Leu | 4.49 ± 1.15 C | 3.30 ± 0.84 A | 3.69 ± 1.19 B | 3.47 ± 1.66 AB | 5.16 ± 1.99 D | 3.42 ± 0.47 A |
Tyr | 3.92 ± 1.17 C | 1.67 ± 0.71 A | 3.50 ± 0.20 C | 2.65 ± 0.53 B | 2.76 ± 0.96 B | 2.62 ± 0.73 B |
Phe | 3.04 ± 1.37 C | 1.51 ± 0.43 A | 2.13 ± 0.69 B | 2.05 ± 0.36 B | 2.20 ± 1.36 B | 2.16 ± 0.64 B |
Lys | 65.37 ± 6.18 C | 38.05 ± 3.18 A | 57.90 ± 3.11 B | 65.85 ± 3.81 C | 60.54 ± 5.47 BC | 70.90 ± 4.42 D |
His | 290.10 ± 12.16 D | 203.59 ± 14.49 A | 231.11 ± 6.63 B | 334.78 ± 18.42 E | 270.60 ± 9.38 C | 359.45 ± 22.23 F |
Arg | 0.42 ± 0.13 A | 1.02 ± 0.10 C | 0.70 ± 0.34 B | 1.30 ± 0.23 CD | 0.52 ± 0.36 AB | 1.51 ± 0.67 D |
Pro | 1.12 ± 0.29 A | 1.01 ± 0.60 A | 1.92 ± 0.78 B | 1.31 ± 0.35 A | 2.55 ± 1.05 C | 1.14 ± 0.27 A |
Total | 395.56 ± 5.20 | 268.36 ± 7.05 | 328.57 ± 13.72 | 441.85 ± 20.50 | 380.87 ± 21.57 | 471.13 ± 19.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yu, W.; Xie, J. Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage. Foods 2020, 9, 231. https://doi.org/10.3390/foods9020231
Wang J, Yu W, Xie J. Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage. Foods. 2020; 9(2):231. https://doi.org/10.3390/foods9020231
Chicago/Turabian StyleWang, Jinfeng, Wenhui Yu, and Jing Xie. 2020. "Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage" Foods 9, no. 2: 231. https://doi.org/10.3390/foods9020231
APA StyleWang, J., Yu, W., & Xie, J. (2020). Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage. Foods, 9(2), 231. https://doi.org/10.3390/foods9020231