Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Sample Preparation
2.2. Sensory Analysis
2.3. Data Analysis
3. Results
3.1. Dynamic Oral Texture: TCATA Product Profiles
3.2. Dynamic Oral Processing Trajectories for Selected Indigenous/Local CPs and a Commercial Porridge Reference
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J. Food oral processing—A review. Food Hydrocoll. 2009, 23, 1–25. [Google Scholar] [CrossRef]
- Stieger, M.; van de Velde, F. Microstructure, texture and oral processing: New ways to reduce sugar and salt in foods. Curr. Opin. Colloid Interface Sci. 2013, 18, 334–348. [Google Scholar] [CrossRef]
- Aguayo-Mendoza, M.G.; Ketel, E.C.; van der Linden, E.; Forde, C.G.; Piqueras-Fiszman, B.; Stieger, M. Oral processing behavior of drinkable, spoonable and chewable foods is primarily determined by rheological and mechanical food properties. Food Qual. Prefer. 2019, 71, 87–95. [Google Scholar] [CrossRef]
- Seidel, K.; Kahl, J.; Paoletti, F.; Birlouez, I.; Busscher, N.; Kretzschmar, U.; Särkkä-Tirkkonen, M.; Seljåsen, R.; Sinesio, F.; Torp, T. Quality assessment of baby food made of different pre-processed organic raw materials under industrial processing conditions. J. Food Sci. Technol. 2015, 52, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Breen, S.P.; Etter, N.M.; Ziegler, G.R.; Hayes, J.E. Oral somatosensatory acuity is related to particle size perception in chocolate. Sci. Rep. 2019, 9, 7437. [Google Scholar] [CrossRef] [PubMed]
- WHO/UNICEF. Global Strategy for Infant and Young Child Feeding; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Faber, M.; Laubscher, R.; Berti, C. Poor dietary diversity and low nutrient density of the complementary diet for 6-to 24-month-old children in urban and rural KwaZulu-Natal, South Africa. Matern. Child Nutr. 2016, 12, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, W.S.; Jackson, D.S. Gelatinization and solubility of corn starch during heating in excess water: New insights. J. Agric. Food Chem. 2006, 54, 3712–3716. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shoemaker, C.F.; Ma, J.; Moon, K.J.; Zhong, F. Structure-viscosity relationships for starches from different rice varieties during heating. Food Chem. 2008, 106, 1105–1112. [Google Scholar] [CrossRef]
- Amagloh, F.K.; Mutukumira, A.N.; Brough, L.; Weber, J.L.; Hardacre, A.; Coad, J. Carbohydrate composition, viscosity, solubility, and sensory acceptance of sweetpotato-and maize-based complementary foods. Food Nutr. Res. 2013, 57. [Google Scholar] [CrossRef]
- Schwartz, C.; Vandenberghe-Descamps, M.; Sulmont-Rossé, C.; Tournier, C.; Feron, G. Behavioral and physiological determinants of food choice and consumption at sensitive periods of the life span, a focus on infants and elderly. Innov. Food Sci. Emerg. Technol. 2018, 46, 91–106. [Google Scholar] [CrossRef]
- Akombi, B.J.; Agho, K.E.; Merom, D.; Renzaho, A.M.; Hall, J.J. Child malnutrition in sub-Saharan Africa: A meta-analysis of demographic and health surveys (2006–2016). PLoS ONE 2017, 12, e0177338. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Brown, K.H. Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention programs. Food Nutr. Bull. 2003, 24, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Demonteil, L.; Tournier, C.; Marduel, A.; Dusoulier, M.; Weenen, H.; Nicklaus, S. Longitudinal study on acceptance of food textures between 6 and 18 months. Food Qual. Prefer. 2019, 71, 54–65. [Google Scholar] [CrossRef]
- Nicklaus, S.; Demonteil, L.; Tournier, C. Modifying the texture of foods for infants and young children. In Modifying Food Texture; Chen, J., Rosenthal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 187–222. [Google Scholar]
- Le Révérend, B.J.; Edelson, L.R.; Loret, C. Anatomical, functional, physiological and behavioural aspects of the development of mastication in early childhood. Br. J. Nutr. 2014, 111, 403–414. [Google Scholar] [CrossRef] [PubMed]
- WHO. Complementary Feeding: Report of the Global Consultation, and Summary of Guiding Principles for Complementary Feeding of the Breastfed Child; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Balasubramanian, S.; Kaur, J.; Singh, D. Optimization of weaning mix based on malted and extruded pearl millet and barley. J. Food Sci. Technol. 2014, 51, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Henretty, N.; Chary, A.; Webb, M.F.; Wehr, H.; Moore, J.; Baird, C.; Díaz, A.K.; Rohloff, P. Mixed-methods study identifies key strategies for improving infant and young child feeding practices in a highly stunted rural indigenous population in Guatemala. Matern. Child Nutr. 2016, 12, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, E.; Shibata, S.; Matsuo, K.; Baba, M.; Fujii, W.; Palmer, J.B. Chewing and food consistency: Effects on bolus transport and swallow initiation. Dysphagia 2007, 22, 100–107. [Google Scholar] [CrossRef]
- Alsanei, W.A.; Chen, J. Studies of the oral capabilities in relation to bolus manipulations and the ease of initiating bolus flow. J. Texture Stud. 2014, 45, 1–12. [Google Scholar] [CrossRef]
- Steele, C.; Alsanei, W.; Ayanikalath, S.; Barbon, C.; Chen, J.; Cichero, J.; Coutts, K.; Dantas, R.; Duivestein, J.; Giosa, L. The influence of food texture and liquid consistency modification on swallowing physiology and function: A systematic review. Dysphagia 2015, 30, 2–26. [Google Scholar] [CrossRef]
- Black, R.E.; Makrides, M.; Ong, K.K. Complementary Feeding: Building the Foundations for a Healthy Life: 87th Nestlé Nutrition Institute Workshop, Singapore, May 2016; Karger Medical and Scientific Publishers: Basel, Switzerland, 2017. [Google Scholar]
- Plemmons, L.; Resurreccion, A. A warm-up sample improves reliability of responses in descriptive analysis. J. Sens. Stud. 1998, 13, 359–376. [Google Scholar] [CrossRef]
- Guinard, J.-X. Sensory and consumer testing with children. Trends Food Sci. Technol. 2000, 11, 273–283. [Google Scholar] [CrossRef]
- Haro-Vicente, J.; Bernal-Cava, M.; Lopez-Fernandez, A.; Ros-Berruezo, G.; Bodenstab, S.; Sanchez-Siles, L. Sensory acceptability of infant cereals with whole grain in infants and young children. Nutrients 2017, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Kevin, K. You’ve come a long way, baby-food. Food Process. 1995, 56, 61–64. [Google Scholar]
- Madrelle, J.; Lange, C.; Boutrolle, I.; Valade, O.; Weenen, H.; Monnery-Patris, S.; Issanchou, S.; Nicklaus, S. Development of a new in-home testing method to assess infant food liking. Appetite 2017, 113, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Longfier, L.; Soussignan, R.; Reissland, N.; Leconte, M.; Marret, S.; Schaal, B.; Mellier, D. Emotional expressiveness of 5–6 month-old infants born very premature versus full-term at initial exposure to weaning foods. Appetite 2016, 107, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Rombo, G.O.; Taylor, J.R.N.; Minnaar, A. Effect of irradiation, with and without cooking of maize and kidney bean flours, on porridge viscosity and in vitro starch digestibility. J. Sci. Food Agric. 2001, 81, 497–502. [Google Scholar] [CrossRef]
- Thaoge, M.; Adams, M.; Sibara, M.; Watson, T.; Taylor, J.; Goyvaerts, E. Production of improved infant porridges from pearl millet using a lactic acid fermentation step and addition of sorghum malt to reduce viscosity of porridges with high protein, energy and solids (30%) content. World J. Microbiol. Biotechnol. 2003, 19, 305–310. [Google Scholar] [CrossRef]
- Cichero, J.A. Unlocking opportunities in food design for infants, children, and the elderly: Understanding milestones in chewing and swallowing across the lifespan for new innovations. J. Texture Stud. 2017, 48, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.J.; Hollowood, T.A.; Linforth, R.S.T.; Taylor, A.J. Correlating instrumental measurements of texture and flavour release with human perception. Int. J. Food Sci. Technol. 2005, 40, 631–641. [Google Scholar] [CrossRef]
- Wool, R.P. Polymer entanglements. Macromolecules 1993, 26, 1564–1569. [Google Scholar] [CrossRef]
- Mezger, T.G. The Rheology Handbook, 4th ed.; Vincentz Network: Hannover, Germany, 2014. [Google Scholar]
- Gina. Basics of Applied Rheology; Anton Paar: Graz, Austria, 2016. [Google Scholar]
- Vickers, Z.; Damodhar, H.; Grummer, C.; Mendenhall, H.; Banaszynski, K.; Hartel, R.; Hind, J.; Joyce, A.; Kaufman, A.; Robbins, J. Relationships among rheological, sensory texture, and swallowing pressure measurements of hydrocolloid-thickened fluids. Dysphagia 2015, 30, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Boesveldt, S.; Bobowski, N.; McCrickerd, K.; Maître, I.; Sulmont-Rossé, C.; Forde, C.G. The changing role of the senses in food choice and food intake across the lifespan. Food Qual. Prefer. 2018, 68, 80–89. [Google Scholar] [CrossRef]
- Ndagire, C.T.; Muyonga, J.H.; Manju, R.; Nakimbugwe, D. Optimized formulation and processing protocol for a supplementary bean-based composite flour. Food Sci. Nutr. 2015, 3, 527–538. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. Sensory Analysis: General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors, 1st ed.; International standard; ISO 8586; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Castura, J.C.; Antúnez, L.; Giménez, A.; Ares, G. Temporal Check-All-That-Apply (TCATA): A novel dynamic method for characterizing products. Food Qual. Prefer. 2016, 47, 79–90. [Google Scholar] [CrossRef]
- Ares, G.; Alcaire, F.; Antúnez, L.; Vidal, L.; Giménez, A.; Castura, J.C. Identification of drivers of (dis) liking based on dynamic sensory profiles: Comparison of Temporal Dominance of Sensations and Temporal Check-all-that-apply. Food Res. Int. 2017, 92, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Esmerino, E.A.; Castura, J.C.; Ferraz, J.P.; Filho, E.R.T.; Silva, R.; Cruz, A.G.; Freitas, M.Q.; Bolini, H.M. Dynamic profiling of different ready-to-drink fermented dairy products: A comparative study using Temporal Check-All-That-Apply (TCATA), Temporal Dominance of Sensations (TDS) and Progressive Profile (PP). Food Res. Int. 2017, 101, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.R.; Alcaire, F.; Hunter, D.C.; Jin, D.; Castura, J.C.; Ares, G. Number of terms to use in temporal check-all-that-apply studies (TCATA and TCATA Fading) for sensory product characterization by consumers. Food Qual. Prefer. 2018, 64, 154–159. [Google Scholar] [CrossRef]
- Baker, A.K.; Castura, J.C.; Ross, C.F. Temporal check-all-that-apply characterization of Syrah wine. J. Food Sci. 2016, 81, S1521–S1529. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Novel Techniques in Sensory Characterization and Consumer Profiling; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Reyes, M.M.; Castura, J.C.; Hayes, J.E. Characterizing dynamic sensory properties of nutritive and nonnutritive sweeteners with temporal check-all-that-apply. J. Sens. Stud. 2017, 32, 1–25. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Kravchuk, O.; Bhandari, B.; Prakash, S. Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocoll. 2017, 72, 90–104. [Google Scholar] [CrossRef]
- Dietitians Association of Australia; The Speech Pathology Association of Australia Limited. Texture-modified foods and thickened fluids as used for individuals with dysphagia: Australian standardised labels and definitions. Nutr. Diet. 2007, 64, S53–S76. [Google Scholar] [CrossRef]
- Lazo, O.; Claret, A.; Guerrero, L. A comparison of two methods for generating descriptive attributes with trained assessors: Check-all-that-apply (CATA) vs. free choice profiling (FCP). J. Sens. Stud. 2016, 31, 163–176. [Google Scholar] [CrossRef]
- Chambers, E., IV; Jenkins, A.; Garcia, J.M. Sensory texture analysis of thickened liquids during ingestion. J. Texture Stud. 2017, 48, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Meyners, M.; Castura, J.C. Randomization of CATA attributes: Should attribute lists be allocated to assessors or to samples? Food Qual. Prefer. 2016, 48, 210–215. [Google Scholar] [CrossRef]
- McMahon, K.M.; Culver, C.; Castura, J.C.; Ross, C.F. Perception of carbonation in sparkling wines using descriptive analysis (DA) and temporal check-all-that-apply (TCATA). Food Qual. Prefer. 2017, 59, 14–26. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 16 February 2019).
- Castura, J.C. tempR: Temporal Sensory Data Analysis. 2018. Available online: http://www.cran.r-project.org/package=tempR/ (accessed on 16 February 2019).
- Meyners, M.; Castura, J.C. The analysis of temporal check-all-that-apply (TCATA) data. Food Qual. Prefer. 2018, 67, 67–76. [Google Scholar] [CrossRef]
- XLStat. XLStat Help Documentation. 2018. Available online: https://help.xlstat.com/customer/en/portal/articles/2178395-download-the-xlstat-help-documentation (accessed on 27 May 2019).
- Addinsoft. XLSTAT Statistical and Data Analysis Solution; Addinsoft: Long Island, NY, USA, 2019. [Google Scholar]
- Marascuilo, L.A.; McSweeney, M. Nonparametric and Distribution-Free Methods for the Social Sciences; Brooks-Cole Publishing Co.: Stamford, CT, USA, 1977. [Google Scholar]
- Devezeaux de Lavergne, M.; van de Velde, F.; Stieger, M. Bolus matters: The influence of food oral breakdown on dynamic texture perception. Food Funct. 2017, 8, 464–480. [Google Scholar] [CrossRef]
- Scholten, E. Understanding perception of food types in terms of their structures: The missing links. Food Funct. 2017, 8, 462–463. [Google Scholar] [CrossRef]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Assad-Bustillos, M.; Tournier, C.; Septier, C.; della Valle, G.; Feron, G. Relationships of oral comfort perception and bolus properties in the elderly with salivary flow rate and oral health status for two soft cereal foods. Food Res. Int. 2019, 118, 13–21. [Google Scholar] [CrossRef]
- Aboubacar, A.; Kirleis, A.W.; Oumarou, M. Important Sensory Attributes Affecting Consumer Acceptance of Sorghum Porridge in West Africa as Related to Quality Tests. J. Cereal Sci. 1999, 30, 217–225. [Google Scholar] [CrossRef]
- Fucile, S.; Wright, P.M.; Chan, I.; Yee, S.; Langlais, M.E.; Gisel, E.G. Functional oral-motor skills: Do they change with age? Dysphagia 1998, 13, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lolivret, L. The determining role of bolus rheology in triggering a swallowing. Food Hydrocoll. 2011, 25, 325–332. [Google Scholar] [CrossRef]
- Cichero, J. Introducing solid foods using baby-led weaning vs. spoon-feeding: A focus on oral development, nutrient intake and quality of research to bring balance to the debate. Nutr. Bull. 2016, 41, 72–77. [Google Scholar] [CrossRef]
- Rudolph, C.D.; Link, D.T. Feeding disorders in infants and children. Pediatr. Clin. N. Am. 2002, 49, 97–112. [Google Scholar] [CrossRef]
- Morris, S.E.; Klein, M.D.; Klein, D. Pre-Feeding Skills: A Comprehensive Resource for Mealtime Development; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Koç, H.; Çakir, E.; Vinyard, C.; Essick, G.; Daubert, C.; Drake, M.; Osborne, J.; Foegeding, E. Adaptation of oral processing to the fracture properties of soft solids. J. Texture Stud. 2014, 45, 47–61. [Google Scholar] [CrossRef]
- Kohyama, K.; Mioche, L.; Bourdio, P. Influence of age and dental status on chewing behaviour studied by EMG recordings during consumption of various food samples. Gerodontology 2003, 20, 15–23. [Google Scholar] [CrossRef]
- Gilbert, R.J.; Napadow, V.J.; Gaige, T.A.; Wedeen, V.J. Anatomical basis of lingual hydrostatic deformation. J. Exp. Biol. 2007, 210 Pt 23, 4069–4082. [Google Scholar] [CrossRef]
- Fontijn-Tekamp, F.A.; van der Bilt, A.; Abbink, J.H.; Bosman, F. Swallowing threshold and masticatory performance in dentate adults. Physiol. Behav. 2004, 83, 431–436. [Google Scholar] [CrossRef]
- Ketel, E.C.; Aguayo-Mendoza, M.G.; de Wijk, R.A.; de Graaf, C.; Piqueras-Fiszman, B.; Stieger, M. Age, gender, ethnicity and eating capability influence oral processing behaviour of liquid, semi-solid and solid foods differently. Food Res. Int. 2019, 119, 143–151. [Google Scholar] [CrossRef]
- He, Q.; Hort, J.; Wolf, B. Predicting sensory perceptions of thickened solutions based on rheological analysis. Food Hydrocoll. 2016, 61, 221e232. [Google Scholar] [CrossRef]
- Cakir, E.; Koc, H.; Vinyard, C.J.; Essick, G.; Daubert, C.R.; Drake, M.; Foegeding, E.A. Evaluation of texture changes due to compositional differences using oral processing. J. Texture Stud. 2012, 43, 257–267. [Google Scholar] [CrossRef]
- Campoy, C.; Campos, D.; Cerdó, T.; Diéguez, E.; García-Santos, J.A. Complementary Feeding in Developed Countries: The 3 Ws (When, What, and Why?). Ann. Nutr. Metab. 2018, 73 (Suppl. S1), 27–36. [Google Scholar] [CrossRef] [PubMed]
- Gisel, E.G. Effect of food texture on the development of chewing of children between six months and two years of age. Dev. Med. Child Neurol. 1991, 33, 69–79. [Google Scholar] [CrossRef] [PubMed]
- De Wijk, R.; Terpstra, M.; Janssen, A.; Prinz, J. Perceived creaminess of semi-solid foods. Trends Food Sci. Technol. 2006, 17, 412–422. [Google Scholar] [CrossRef]
- Delaney, A.L.; Arvedson, J.C. Development of swallowing and feeding: Prenatal through first year of life. Dev. Disabil. Res. Rev. 2008, 14, 105–117. [Google Scholar] [CrossRef]
- Marconati, M.; Engmann, J.; Burbidge, A.; Mathieu, V.; Souchon, I.; Ramaioli, M. A review of the approaches to predict the ease of swallowing and post-swallow residues. Trends Food Sci. Technol. 2019, 86, 281–297. [Google Scholar] [CrossRef]
- Van der Bilt, A.; Abbink, J. The influence of food consistency on chewing rate and muscular work. Arch. Oral Biol. 2017, 83, 105–110. [Google Scholar] [CrossRef]
- Prakash, S.; Ma, Q.; Bhandari, B. Rheological behaviour of selected commercially available baby formulas in simulated human digestive system. Food Res. Int. 2014, 64, 889–895. [Google Scholar] [CrossRef][Green Version]
- Scholten, E. Composite foods: From structure to sensory perception. Food Funct. 2017, 8, 481–497. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Ngoddy, P.O. Technological aspects of preparing affordable fermented complementary foods. Food Control 1997, 8, 279–287. [Google Scholar] [CrossRef]
- Muoki, N. Nutritional, Rheological and Sensory Properties of Extruded Cassava-Soy Complementary Porridges. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2013. [Google Scholar]
- Nasirpour, A.; Scher, J.; Desobry, S. Baby Foods: Formulations and Interactions (A Review). Crit. Rev. Food Sci. Nutr. 2006, 46, 665–681. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.H.; Logemann, J.A.; Burghardt, W.R.; Carrell, T.D.; Zecker, S.G. Oral sensory discrimination of fluid viscosity. Dysphagia 1997, 12, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Laguna, L.; Chen, J. The eating capability: Constituents and assessments. Food Qual. Prefer. 2016, 48, 345–358. [Google Scholar] [CrossRef]
- Witt, T.; Stokes, J.R. Physics of food structure breakdown and bolus formation during oral processing of hard and soft solids. Curr. Opin. Food Sci. 2015, 3, 110–117. [Google Scholar] [CrossRef]
- Shama, F.; Sherman, P. Identification of Stimuli controlling the Sensory evaluation of Viscosity II: Oral Methods. J. Texture Stud. 1973, 4. [Google Scholar] [CrossRef]
- Hayakawa, F.; Kazami, Y.; Nishinari, K.; Ioku, K.; Akuzawa, S.; Yamano, Y.; Baba, Y.; Kohyama, K. Classification of J apanese Texture Terms. J. Texture Stud. 2013, 44, 140–159. [Google Scholar] [CrossRef]
- Cai, H.; Li, Y.; Chen, J. Rheology and tribology study of the sensory perception of oral care products. Biotribology 2017, 10, 17–25. [Google Scholar] [CrossRef]
- McLaren, S.; Dickerson, J. Measurement of eating disability in an acute stroke population. Clin. Eff. Nurs. 2000, 4, 109–120. [Google Scholar] [CrossRef]
- Tamine, K.; Ono, T.; Hori, K.; Kondoh, J.; Hamanaka, S.; Maeda, Y. Age-related changes in tongue pressure during swallowing. J. Dent. Res. 2010, 89, 1097–1101. [Google Scholar] [CrossRef]
Porridge Indigenous/Local | Flour (g) | Water (g) | Solids (%) # | Description and Source |
Maize | 40 | 960 | 4 | Super maize meal (commercially processed) from the local supermarket (Pretoria, RSA) |
80 | 920.0 | 8 | ||
100 | 900 | 10 | ||
Sorghum | 40 | 960 | 4 | Super mabela flour (commercially processed) from local supermarket (Pretoria, RSA) |
80 | 920 | 8 | ||
100 | 900 | 10 | ||
Bambara | 100 | 900 | 10 | Dry Seeds, cream cultivar, Mbare Produce market (Harare, Zimbabwe) |
Cowpea | 100 | 900 | 10 | Commercial seeds, Agrinawa cultivar Agricol (Pty) Ltd. (Pretoria, RSA) |
Cassava | 40 | 960 | 4 | High-quality cassava (84.4% starch), Thai Farm International (Ogun, Nigeria) |
60 | 940 | 6 | ||
100 | 900 | 10 | ||
OFSP (Orange-fleshed sweet potato) | 100 | 900 | 10 | Dried with electric dryer (60 °C, 6–8 h), Exilite 499 cc (Tzaneen, Limpopo, RSA) |
160 | 840 | 16 | ||
Commercial Porridges (Code) | Age (Months) | Flour:Liquid (g:mL) | Solids (%) | Description/Manufacturers Instructions Guide ** |
A1-Reference | 6 to 24 | 50:150 | 25.0 | Enzyme-hydrolyzed cereal (maize 62%), add water |
A2 | 6 to 24 | 50:150 | 25.0 | Enzyme-hydrolyzed cereal (rice 63%), add water |
A3 | 6 to 24 | 50:150 | 25.0 | Enzyme-hydrolyzed cereal (wheat 61%), add water |
C2 | 6 to 24 | 50:140 | 26.3 | Oat flakes 32%, add water |
F1 | 6 to 8 | 45:150 | 23.1 | Enzyme-hydrolyzed cereal (wheat 51%), add water |
9 to 12 | 67:200 | 25.1 | ||
13 to 36 | 80:250 | 24.2 | ||
F2 | 6 to 8 | 35:150 | 18.9 | Enzyme-hydrolyzed cereal (rice 51%), add water |
9 to 12 | 60:200 | 23.1 | ||
13 to 36 | 75:250 | 23.1 | ||
F3 | 9 to 12 | 67:200 | 25.1 | Enzyme-hydrolyzed cereal (wheat, rice, corn, rye, barley 54%), add water |
13 to 36 | 80:250 | 24.2 | ||
F4 | 9 to 12 | 67:200 | 25.1 | Enzyme-hydrolyzed cereal (wheat, rice, corn, rye, barley 43%), add water |
13 to 36 | 80:250 | 24.2 | ||
B1 | 6 to 24 | 50:160 | 35.1 | Enzyme-hydrolyzed cereal (maize), add water |
B2 | 6 to 24 | 50:160 | 35.1 | Enzyme-hydrolyzed cereal (wheat), add water |
C1 | 6 to 24 | 20:170 | 24.8 | Whole oat flour 70%, banana flakes 30%, add milk |
D | 6 to 36 | 20:140 | 26.3 | Maize flour minimum 86%, add milk |
E1 | 6 to 12 | 25:200 | 26.7 | Maize meal flour, 3 min cook with milk *** Cooking loss of 5% |
13 to 36 | 35:280 | 25.8 | ||
E2 | 6 to 12 | 25:125 | 30.0 | Sorghum flour (minimum 89%), add milk |
13 to 36 | 35:190 | 29.1 | ||
G | 13 to 36 | 20:80 | 32.8 | Wheat flour, maize flour, soy flour, add milk |
No. | TCATA Attribute | Definition |
---|---|---|
1 | Soft | Selected when little force is required to orally process and move around the mouth. |
2 | Smooth | Selected when the sample is perceived as smooth when squeezed between the palate and tongue [48]. |
3 | Creamy | Selected when the sample is perceived as creamy, with a silky smooth sensation in the mouth [48]. |
4 | Grainy | Selected when grainy particles are perceived in the mouth. |
5 | Too thick/Semi-solid | Viscosity perception of cooked maize meal pastes 15–20% solids in water. Similar to mashed potato [49]. |
6 | Thick | Viscosity perception of cooked maize meal paste (10–15% solids in water). Selected when the sample is perceived as thick (viscous) as opposed to thin like a fluid [48]. |
7 | Thin | Selected when the sample is perceived as thin andfluid-likeas opposed to thick (viscous). |
8 | Chewy | Selected when the sample requires a substantial number of chews before it is ready to swallow [50]. |
9 | Sticky | Selected when the sample sticks to the teeth and palate [48]. |
10 | Watery | Selected when the sample was perceived as thin and watery [49]. |
11 | Easy to swallow | Selected when the sample requires little effort (exertion/force) to swallow [51]. |
12 | Difficult to swallow | Selected when the sample requires a lot of effort (exertion/force) to swallow. |
13 | Slimy | Selected when the sample is perceived as slimy and slippery, a mildly sticky perception on the palate/tongue. |
14 | Pasty | Selected when the sample has the consistency of a (starch) paste, semi-solid with some stickiness. |
Porridge Type | Beginning (6 s) | Middle (16 s) | End (26 s) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thick | Sticky | Too thick | Pasty | Slimy | Thick | Sticky | Too thick | Pasty | Slimy | Thick | Sticky | Pasty | Slimy | |
Bambara 10% | 0.05 a | 0.03 ab | 0.00 a | 0.03 ab | 0.25 b | 0.00 a | 0.00 a | 0.00 a | 0.05 ab | 0.20 b | 0.00 a | 0.00 a | 0.03 ab | 0.15 b |
Cowpea 10% | 0.08 a | 0.13 cd | 0.00 a | 0.05 abc | 0.35 bc | 0.05 ab | 0.08 ab | 0.03 a | 0.08 abc | 0.20 b | 0.03 ab | 0.05 a | 0.05 ab | 0.13 b |
Cassava 4% | 0.00 a | 0.10 bcd | 0.00 a | 0.03 ab | 0.40 bc | 0.00 a | 0.05 ab | 0.00 a | 0.00 a | 0.25 bc | 0.00 a | 0.05 a | 0.00 a | 0.13 b |
Cassava 6% | 0.08 a | 0.18 de | 0.00 a | 0.15 cd | 0.43 c | 0.05 ab | 0.05 ab | 0.00 a | 0.05 ab | 0.38 c | 0.00 a | 0.05 a | 0.03 ab | 0.18 bc |
Cassava 10% | 0.30 b | 0.25 e | 0.10 b | 0.20 d | 0.50 c | 0.33 f | 0.30 c | 0.13 b | 0.20 c | 0.55 d | 0.10 c | 0.25 b | 0.18 cd | 0.25 c |
Maize 4% | 0.00 a | 0.03 ab | 0.00 a | 0.00 a | 0.05 a | 0.00 a | 000 a | 0.00 a | 0.00 a | 003 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a |
Maize 8% | 0.40 b | 0.05 abc | 0.05 ab | 0.03 ab | 0.08 a | 0.15 cd | 0.03 a | 0.05 a | 0.05 ab | 0.00 a | 0.03 ab | 0.00 a | 0.03 ab | 0.00 a |
Maize 10% | 0.33 b | 0.10 bcd | 0.25 d | 0.13 bcd | 0.08 a | 0.23 de | 0.13 b | 0.13 b | 0.20 c | 0.05 a | 0.05 b | 0.05 a | 0.13 bcd | 0.03 a |
Sorghum 4% | 0.05 a | 0.00 a | 0.00 a | 0.00 a | 0.05 a | 0.00 a | 0.00 a | 0.00 a | 005 ab | 0.05 a | 0.00 a | 0.00 a | 0.03 ab | 0.00 a |
Sorghum 8% | 0.30 b | 0.03 ab | 0.05 ab | 0.00 a | 0.03 a | 0.10 bc | 0.08 ab | 005 a | 0.08 abc | 0.03 a | 0.05 b | 0.03 a | 0.08 abc | 0.03 a |
Sorghum 10% | 0.40 b | 0.03 ab | 0.18 c | 0.15 cd | 0.00 a | 0.25 ef | 0.03 a | 0.05 a | 0.13 abc | 0.03 a | 0.03 ab | 0.00 a | 0.05 ab | 0.03 a |
OFSP 10% | 0.00 a | 0.00 a | 0.00 a | 0.08 abc | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.10 abc | 0.03 a | 0.03 ab | 0.00 a | 0.10 abcd | 0.03 a |
OFSP 16% | 0.10 a | 0.03 ab | 0.00 a | 0.05 abc | 0.03 a | 0.00 a | 0.08 ab | 0.00 a | 0.15 bc | 0.03 a | 0.00 a | 0.05 a | 0.20 d | 0.03 a |
A1 * | 0.00 a | 0.00 a | 0.00 a | 0.03 ab | 0.03 a | 0.00 a | 0.03 a | 0.00 a | 0.10 abc | 0.05 a | 0.00 a | 0.00 a | 0.10 abcd | 0.03 a |
Porridge-Sample | Oral-Method | Initial: 1–10 s | End: 21–30 s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Thick | Too thick | Sticky | Slimy | Pasty | Thick | Too Thick | Slimy | Pasty | Swallow (+) | ||
Maize 4% | Normal | 0.00 a | 0.00 a | 0.02 ab | 0.04 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.64 bcdefghij |
Up-Down | 0.00 a | 0.00 a | 0.01 a | 0.06 abc | 0.00 a | 0.00 a | 0.00 a | 0.01 a | 0.00 a | 0.77 ij | |
Maize 8% | Normal | 0.23 def | 0.03 ab | 0.05 abc | 0.02 a | 0.00 a | 0.05 abc | 0.01 ab | 0.00 a | 0.00 a | 0.76 hij |
Up-Down | 0.37 g | 0.03 ab | 0.07 abcd | 0.05 ab | 0.05 abc | 0.01 bc | 0.03 ab | 0.00 a | 0.05 abc | 0.59 bcdefgh | |
Maize 10% | Normal | 0.26 defg | 0.11 cd | 0.07 abcd | 0.07 abc | 0.08 abcd | 0.04 abc | 0.02 ab | 0.00 a | 0.10 abcd | 0.62 bcdefghi |
Up-Down | 0.31 efg | 0.20 e | 0.10 bcd | 0.00 a | 0.13 bcde | 0.01 cd | 0.00 a | 0.10 abcd | 0.18 cde | 0.53 bcde | |
Sorghum 4% | Normal | 0.01 a | 0.00 a | 0.00 a | 0.02 a | 0.01 a | 0.00 a | 0.00 a | 0.02 ab | 0.05 abc | 0.65 cdefghij |
Up-Down | 0.02 a | 0.00 a | 0.00 a | 0.04 a | 0.01 a | 0.00 a | 0.00 a | 0.01 a | 0.00 a | 0.63 bcdefghij | |
Sorghum 8% | Normal | 0.20 cde | 0.04 abc | 0.04 abc | 0.00 a | 0.02 a | 0.00 a | 0.01 a | 0.00 a | 0.07 abc | 0.56 bcdefg |
Up-Down | 0.36 g | 0.04 abc | 0.04 abc | 0.04 a | 0.05 ab | 0.09 bcd | 0.03 ab | 0.05 abcd | 0.05 abc | 0.59 bcdefgh | |
Sorghum 10% | Normal | 0.28 defg | 0.08 bc | 0.02 ab | 0.00 a | 0.03 a | 0.04 abc | 0.01 a | 0.00 a | 0.00 a | 0.67 defghij |
Up-Down | 0.32 fg | 0.17 de | 0.03 abc | 0.01 a | 0.16 de | 0.06 abc | 0.02 ab | 0.05 abcd | 0.11 abcd | 0.63 bcdefghij | |
Bambara 10% | Normal | 0.02 a | 0.00 a | 0.01 a | 0.18 cd | 0.00 a | 0.00 a | 0.00 a | 0.15 bcde | 0.00 a | 0.75 hij |
Up-Down | 0.03 a | 0.00 a | 0.01 a | 0.18 cd | 0.05 ab | 0.00 a | 0.00 a | 0.15 bcde | 0.05 abc | 0.76 hij | |
Cowpea 10% | Normal | 0.07 ab | 0.00 a | 0.09 abcd | 0.24 de | 0.01 a | 0.00 a | 0.00 a | 0.11 abcde | 0.05 abc | 0.70 efghij |
Up-Down | 0.05 a | 0.00 a | 0.09 abcd | 0.28 def | 0.06 abc | 0.07 abcd | 0.00 a | 0.16 cde | 0.08 abc | 0.52 bcd | |
Cassava 4% | Normal | 0.00 a | 0.00 a | 0.08 abcd | 0.28 def | 0.02 a | 0.00 a | 0.00 a | 0.13 abcde | 0.00 a | 0.73 ghij |
Up-Down | 0.00 a | 0.00 a | 0.08 abcd | 0.35 ef | 0.05 ab | 0.00 a | 0.00 a | 0.18 de | 0.00 a | 0.55 bcdef | |
Cassava 6 % | Normal | 0.05 a | 0.00 a | 0.12 cde | 0.33 ef | 0.07 abcd | 0.00 a | 0.00 a | 0.19 de | 0.00 a | 0.67 cdefhij |
Up-Down | 0.06 a | 0.00 a | 0.16 def | 0.39 f | 0.14 cde | 0.01 ab | 0.00 a | 0.24 de | 0.08 abc | 0.60 bcdefhi | |
Cassava 10% | Normal | 0.19 bcd | 0.04 abc | 0.22 ef | 0.38 f | 0.08 abcd | 0.05 abc | 0.01 a | 0.24 ef | 0.09 abc | 0.70 efghij |
Up-Down | 0.27 defg | 0.17 de | 0.26 f | 0.35 ef | 0.20 e | 0.15 d | 0.03 ab | 0.35 f | 0.22 de | 0.26 a | |
OFSP 10% | Normal | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.06 abc | 0.00 a | 0.00 a | 0.03 abc | 0.13 bcde | 0.56 bcdefg |
Up-Down | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.08 abcd | 0.05 abc | 0.00 a | 0.00 a | 0.05 abc | 0.65 cdefghij | |
OFSP 16% | Normal | 0.03 a | 0.00 a | 0.02 ab | 0.00 a | 0.03 a | 0.00 a | 0.00 a | 0.00 a | 0.13 abcd | 0.47 b |
Up-Down | 0.10 abc | 0.00 a | 0.05 abc | 0.03 a | 0.08 abcd | 0.00 a | 0.00 a | 0.05 abcd | 0.25 e | 0.50 bc | |
A1 | Normal | 0.00 a | 0.00 a | 0.00 a | 0.02 a | 0.01 a | 0.00 a | 0.05 b | 0.00 a | 0.05 abc | 0.68 defghi |
Up-Down | 0.00 a | 0.00 a | 0.00 a | 0.04 a | 0.05 abc | 0.00 a | 0.00 a | 0.05 abcd | 0.15 cde | 0.72 fghi | |
A2 | Normal | 0.08 abc | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.04 abc | 0.05 abc | 0.62 bcdefghi |
Up-Down | 0.06 a | 0.00 a | 0.00 a | 0.00 a | 0.04 ab | 0.05 abc | 0.00 a | 0.01 a | 0.11 abcd | 0.53 bcde | |
A3 | Normal | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.01 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.80 j |
Up-Down | 0.01 a | 0.00 a | 0.00 a | 0.00 a | 0.04 ab | 0.00 a | 0.00 a | 0.00 a | 0.02 ab | 0.65 cdefghi |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makame, J.; Cronje, T.; Emmambux, N.M.; De Kock, H. Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities. Foods 2019, 8, 221. https://doi.org/10.3390/foods8060221
Makame J, Cronje T, Emmambux NM, De Kock H. Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities. Foods. 2019; 8(6):221. https://doi.org/10.3390/foods8060221
Chicago/Turabian StyleMakame, James, Tanita Cronje, Naushad M. Emmambux, and Henriette De Kock. 2019. "Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities" Foods 8, no. 6: 221. https://doi.org/10.3390/foods8060221
APA StyleMakame, J., Cronje, T., Emmambux, N. M., & De Kock, H. (2019). Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities. Foods, 8(6), 221. https://doi.org/10.3390/foods8060221