The Addition of α-cyclodextrin and γ-cyclodextrin Affect Quality of Dough and Prebaked Bread During Frozen Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixolab Test
2.3. Fermentation Test
2.4. Prebaked Bread Production
2.5. Effects of the Addition of 0–3.0 wt% α-CD and γ-CD on the Textural Properties of Prebaked Bread Crumb
2.6. Specific Volume Test and Slice Structure Test
2.7. Effects of the Addition of 2.0 wt% α-CD and 3.0 wt% γ-CD on the Textural Properties of Prebaked Bread Crumb After 1, 2, or 3 Weeks of Frozen Storage
2.8. Differential Scanning Calorimetry Test
2.9. Statistical Analysis
3. Results and Discussion
3.1. Mixolab Test
3.2. Fermentation Test
3.3. Effects of the Addition of 0–3.0 wt% α-CD and γ-CD on the Textural Properties of Prebaked Bread
3.4. Specific Volume and Slice Structure Test
3.5. Effects of the Addition of 2.0 wt% α-CD and 3.0 wt% γ-CD on the Textural Properties of Prebaked Bread Subjected to 1, 2, or 3 Weeks of Frozen Storage
3.6. Differential Scanning Calorimetry (DSC) Test Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giannou, V.; Kessoglou, V.; Tzia, C. Quality and safety characteristics of bread made from frozen dough. Trends Food Sci. Technol. 2003, 14, 99–108. [Google Scholar] [CrossRef]
- Domingues, D.; Dowd, C. Frozen Dough. Encycl. Food Grains 2016, 3, 359–366. [Google Scholar]
- Wang, X.; Pei, D.; Teng, Y.; Liang, J. Effects of enzymes to improve sensory quality of frozen dough bread and analysis on its mechanism. J. Food Sci. Technol. 2018, 55, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bárcenas, M.E.; Haros, M.; Rosell, C.M. An approach to studying the effect of different bread improvers on the staling of prebaked frozen bread. Eur. Food Res. Technol. 2003, 218, 56–61. [Google Scholar] [CrossRef]
- Le-Bail, A.; Gabric, D. Improving the quality of bread made from partially baked, refrigerated and frozen dough. Breadmaking 2012, 26, 661–686. [Google Scholar]
- Cardenas, R.J.; Guerrahernandez, E.; Garciavillanova, B. Furosine is a useful indicator in prebaked breads. J. Sci. Food Agric. 2004, 84, 366–370. [Google Scholar] [CrossRef]
- Iwashita, Y.; Adachi, Y. Method for the Pre-Baking Treatment of Chunk of Frozen Bread Dough. U.S. Patent 6,391,350, 21 May 2002. [Google Scholar]
- Fik, M.; Surowka, K. Effect of prebaking and frozen storage on the sensory quality and instrumental texture of bread. J. Sci. Food Agric. 2002, 82, 1268–1275. [Google Scholar] [CrossRef]
- Debonne, E.; Bockstaele, F.V.; Philips, E.; De Leyn, I.; Eeckhout, M. Impact of par-baking and storage conditions on the quality of par-baked and fully baked bread. LWT-Food Sci. Technol. 2017, 78, 16–22. [Google Scholar] [CrossRef]
- Ronda, F.; Quilez, J.; Pando, V.; Roos, Y.H. Fermentation time and fiber effects on recrystallization of starch components and staling of bread from frozen part-baked bread. J. Food Eng. 2014, 131, 116–123. [Google Scholar] [CrossRef]
- Hejrani, T.; Sheikholeslami, Z.; Mortazavi, A.; Davoodi, M.G. The properties of part baked frozen bread with guar and xanthan gums. Food Hydrocoll. 2016, 71, 252–257. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Li, Y.; Jin, Z.Y.; Xu, X.M.; Wang, J.P.; Jiao, A.Q.; Yu, B.; Talba, T. β-Cyclodextrin (β-CD): A new approach in bread staling. Thermochim. Acta 2009, 489, 22–26. [Google Scholar] [CrossRef]
- Ho, S.; Thoo, Y.Y.; Young, D.J.; Siow, L.F. Stability and recovery of cyclodextrin encapsulated catechin in various food matrices. Food Chem. 2019, 275, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gandara, J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009, 23, 1631–1640. [Google Scholar] [CrossRef]
- Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Wang, F.; Gu, Z.; Du, G.; Wu, J.; Chen, J. γ-Cyclodextrin: A review on enzymatic production and applications. Appl. Microbiol. Biotechnol. 2007, 77, 245. [Google Scholar] [CrossRef]
- Lang, C.E.; Neises, E.K.; Walker, C.E. Effects of additives on flour-water dough mixograms. Cereal Chem. 1992, 11, 1. [Google Scholar]
- Randall, P.G.; Manley, M.; Mcgill, A.E.J.; Taylor, J.R.N. Relationship between the High M r Subunits of Glutenin of South African Wheats and End-use Quality. J. Cereal Sci. 1993, 18, 251–258. [Google Scholar] [CrossRef]
- Huang, W.; Kim, Y.; Li, X.; Rayas-Duarte, P. Rheofermentometer parameters and bread specific volume of frozen sweet dough influenced by ingredients and dough mixing temperature. J. Cereal Sci. 2008, 48, 639–646. [Google Scholar] [CrossRef]
- Almeida, E.L.; Chang, Y.K. Effect of the addition of enzymes on the quality of frozen prebaked French bread substituted with whole wheat flour. LWT-Food Sci. Technol. 2012, 49, 64–72. [Google Scholar] [CrossRef]
- Ozkoc, S.O.; Sumnu, G.; Sahin, S. The effects of gums on macro and micro-structure of breads baked in different ovens. Food Hydrocoll. 2009, 23, 2182–2189. [Google Scholar] [CrossRef]
- Lian, X.; Guo, J.; Wang, D.; Lin, L.; Jiaran, Z. Effects of protein in wheat flour on retrogradation of wheat starch. J. Food Sci. 2014, 79, C1505–C1511. [Google Scholar]
- Niccoli, M.; Oliva, R.; Castronuovo, G. Cyclodextrin-protein interaction as inhibiting factor against aggregation. J. Therm. Anal. Calorim. 2016, 127, 1–9. [Google Scholar] [CrossRef]
- Tschoegl, N.W.; Rinde, J.A.; Smith, T.L. Rheological properties of wheat flour doughs. Rheol. Acta 1970, 9, 223–238. [Google Scholar] [CrossRef]
- Hans, G.; Louise, S.; Harry, L.; Delcour, J.A. Amylases and bread firming—An integrated view. J. Cereal Sci. 2009, 50, 345–352. [Google Scholar]
- Gómez, M.; Jiménez, S.; Ruiz, E.; Oliete, B. Effect of extruded wheat bran on dough rheology and bread quality. LWT-Food Sci. Technol. 2011, 44, 2231–2237. [Google Scholar] [CrossRef]
- Stauffer, C.E. Principles of Dough Formation. In Technology of breadmaking; Springer: Boston, MA, USA, 2007. [Google Scholar]
- Rosell, C.M.; Rojas, J.A.; Barber C B, D. Combined Effect of Different Antistaling Agents on the Pasting Properties of Wheat Flour. Eur. Food Res. Technol. 2001, 212, 473–476. [Google Scholar] [CrossRef]
- Guarda, A.; Rosell, C.M.; Benedito, C.; Galotto, M.J. Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocoll. 2004, 18, 241–247. [Google Scholar] [CrossRef]
- Shah, A.R.; Shah, R.K.; Datta, M. Improvement of the quality of whole wheat bread by supplementation of xylanase from Aspergillus foetidus. Bioresour. Technol. 2006, 97, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Piazza, L.; Masi, P. Moisture redistribution throughout the bread loaf during staling and its effects on mechanical properties. Cereal Chem. 1995, 72, 320–325. [Google Scholar]
- Mathapa, B.G.; Paunov, V.N. Cyclodextrin stabilised emulsions and cyclodextrinosomes. Phys. Chem. Chem. Phys. 2013, 15, 17903–17914. [Google Scholar] [CrossRef] [PubMed]
- Lindner, K.; Saenger, W. Topography of cyclodextrin inclusion complexes. XVI. Cyclic system of hydrogen bonds: Structure of α-cyclodextrin hexahydrate, form (II): Comparison with form (I). Acta Crystallogr B38:203–210. Acta Crystallogr. 2010, 38, 203–210. [Google Scholar] [CrossRef]
- Kadan, R.S.; Robinson, M.G.; Thibodeaux, D.P.; Pepperman, A.B., Jr. Texture and other Physicochemical Properties of Whole Rice Bread. J. Food Sci. 2010, 66, 940–944. [Google Scholar] [CrossRef]
- Phimolsiripol, Y.; Siripatrawan, U.; Tulyathan, V.; Cleland, D.J. Effects of freezing and temperature fluctuations during frozen storage on frozen dough and bread quality. J. Food Eng. 2008, 84, 48–56. [Google Scholar] [CrossRef]
- Scanlon, M.G.; Saoirstein, H.D. Digital image analysis for quality assurance in the wheat-to-bread supply chain. In Wheat Quality Elucidation: The Bushuk Legacy; American Association of Cereal Chemists: St. Paul, MN, USA, 2002. [Google Scholar]
- Miles, M.J.; Morris, V.J.; Orford, P.D.; Ring, S.G. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Int. J. Food Eng. 2014, 135, 271–281. [Google Scholar] [CrossRef]
- Zobel, H.F. Starch Crystal Transformations and Their Industrial Importance. Starch-Stärke 1988, 40, 7. [Google Scholar] [CrossRef]
- Sievert, D.; Pomeranz, Y. Enzyme-Resistant Starch. II. Differential Scanning Calorimetry Studies on Heat-Treated Starches and Enzyme-Resistant Starch Residues. Cereal Chem. 1990, 67, 217–221. [Google Scholar]
- Curti, E.; Bubici, S.; Carini, E.; Baroni, S.; Vittadini, E. Water molecular dynamics during bread staling by Nuclear Magnetic Resonance. LWT-Food Sci. Technol. 2011, 44, 854–859. [Google Scholar] [CrossRef]
CD | (wt %) | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
---|---|---|---|---|---|---|---|---|
α | Wa (%) | 61.3 ± 0.1 a | 62.2 ± 0.2 b | 62.6 ± 0.1 c | 63.5 ± 0.2 d | 64.0 ± 0.1 e | 64.5 ± 0.1 f | 65.0 ± 0.1 g |
Ft (min) | 10.2 ± 0.1 a | 9.8 ± 0.1 b | 9.6 ± 0.1 b | 9.0 ± 0.1 c | 9.2 ± 0.0 c | 8.5 ± 0.1 d | 8.4 ± 0.1 d | |
St (min) | 10.5 ± 0.1 a | 10.3 ± 0.1 b | 10.2 ± 0.0 b | 10.0 ± 0.1 c | 9.7 ± 0.1 d | 9.7 ± 0.1 d | 9.1 ± 0.1 e | |
AI | 9 ± 0 | 9 ± 0 | 9 ± 0 | 9 ± 0 | 8 ± 0 | 8 ± 0 | 8 ± 0 | |
γ | Wa (%) | 61.3 ± 0.1 a | 62.3 ± 0.1 b | 62.8 ± 0.1 c | 63.2 ± 0.2 d | 63.5 ± 0.1 e | 64.5 ± 0.2 f | 65.2 ± 0.1 g |
Ft (min) | 10.2 ± 0.1 a | 10.0 ± 0.1 b | 9.5 ± 0.1 c | 9.0 ± 0.1 d | 8.8 ± 0.0 e | 8.5 ± 0.1 f | 8.3 ± 0.1 g | |
St (min) | 10.5 ± 0.1 a | 10.5 ± 0.1 a | 10.1 ± 0.1 b | 10.0 ± 0.1 b | 9.4 ± 0.1 c | 9.2 ± 0.1 c | 8.7 ± 0.2 d | |
AI | 9 ± 0 | 9 ± 0 | 9 ± 0 | 9 ± 0 | 9 ± 0 | 9 ± 0 | 8 ± 0 |
CD | wt% | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
---|---|---|---|---|---|---|---|---|
α | Maintain gas (mL) | 1038 ± 4 a | 1100 ± 3 b | 1118 ± 4 c | 1151 ± 5 d | 1226 ± 4 e | 1167 ± 5 f | 1190 ± 4 g |
Total gas (mL) | 1227 ± 3 a | 1200 ± 5 b | 1219 ± 3 c | 1225 ± 4 c | 1363 ± 2 d | 1276 ± 6 e | 1288 ± 3 f | |
Ratio (%) | 84.6 ± 0.4 a | 91.7 ± 0.3 b | 91.7 ± 0.3 b | 93.9 ± 0.4 c | 90.0 ± 0.3 d | 91.4 ± 0.4 b | 92.4 ± 0.3 e | |
γ | Maintain gas (mL) | 1038 ± 4 a | 1199 ± 5 b | 1206 ± 4 b | 1220 ± 3 c | 1235 ± 6 d | 1238 ± 3 d | 1294 ± 4 e |
Total gas (mL) | 1227 ± 5 a | 1319 ± 5 b | 1340 ± 6 c | 1360 ± 3 d | 1365 ± 4 d | 1375 ± 4 e | 1396 ± 3 f | |
Ratio (%) | 84.6 ± 0.3 a | 90.9 ± 0.4 b | 90.0 ± 0.3 c | 89.8 ± 0.2 c | 90.3 ± 0.4 c | 90.0 ± 0.2 c | 92.7 ± 0.3 d |
Time (W) | -CD | Hardness (g) | Elastic | Resilience |
---|---|---|---|---|
1 | Control group | 180.2 ± 2.3 a | 0.942 ± 0.007 a | 0.403 ± 0.003 a |
2.0 wt% α-CD | 150.4 ± 2.5 b | 0.963 ± 0.004 b | 0.424 ± 0.003 b | |
3.0 wt% γ-CD | 114.3 ± 3.2 c | 0.980 ± 0.008 c | 0.433 ± 0.002 c | |
2 | Control group | 215.3 ± 3.1 d | 0.912 ± 0.005 d | 0.382 ± 0.005 d |
2.0 wt% α-CD | 173.4 ± 2.3 ae | 0.946 ± 0.006 a | 0.417 ± 0.002 e | |
3.0 wt% γ-CD | 135.2 ± 3.5 f | 0.951 ± 0.003 a | 0.426 ± 0.004 b | |
3 | Control group | 248.5 ± 1.8 g | 0.874 ± 0.005 e | 0.355 ± 0.002 f |
2.0 wt% α-CD | 208.3 ± 2.1 d | 0.921 ± 0.005 d | 0.393 ± 0.004 g | |
3.0 wt% γ-CD | 168.1 ± 1.8 e | 0.942 ± 0.003 a | 0.403 ± 0.003 a |
Time (W) | -CD | T0 (°C) | Tp (°C) | ΔH (J/g) |
---|---|---|---|---|
1 | Control group | 49.1 ± 1.2 a | 104.6 ± 1.2 a | 190.5 ± 2.6 a |
2.0 wt% α-CD | 52.2 ± 1.1 b | 105.2 ± 0.8 ab | 186.4 ± 1.7 ab | |
3.0 wt% γ-CD | 53.2 ± 0.9 bc | 105.9 ± 0.7 abc | 179.8 ± 2.9 b | |
2 | Control group | 53.0 ± 1.4 bc | 105.4 ± 0.7 ab | 205.1 ± 3.1 c |
2.0 wt% α-CD | 54.1 ± 1.3 bcd | 106.7 ± 0.7 bc | 190.8 ± 2.4 a | |
3.0 wt% γ-CD | 55.5 ± 1.1 bcd | 107.1 ± 0.8 cd | 184.6 ± 1.8 ab | |
3 | Control group | 55.5 ± 0.9 bcd | 106.7 ± 0.6 bc | 238.8 ± 3.6 d |
2.0 wt% α-CD | 56.1 ± 0.8 cd | 108.2 ± 0.5 d | 215.6 ± 3.7 e | |
3.0 wt% γ-CD | 57.7 ± 1.2 d | 108.4 ± 1.1 d | 199.7 ± 3.2 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Ke, Y.; Barba, F.J.; Xiao, S.; Hu, X.; Qin, X.; Ding, W.; Lyu, Q.; Wang, X.; Liu, G. The Addition of α-cyclodextrin and γ-cyclodextrin Affect Quality of Dough and Prebaked Bread During Frozen Storage. Foods 2019, 8, 174. https://doi.org/10.3390/foods8050174
Zhou J, Ke Y, Barba FJ, Xiao S, Hu X, Qin X, Ding W, Lyu Q, Wang X, Liu G. The Addition of α-cyclodextrin and γ-cyclodextrin Affect Quality of Dough and Prebaked Bread During Frozen Storage. Foods. 2019; 8(5):174. https://doi.org/10.3390/foods8050174
Chicago/Turabian StyleZhou, Jianjun, Yuan Ke, Francisco J. Barba, Shensheng Xiao, Xianqin Hu, Xinguang Qin, Wenping Ding, Qingyun Lyu, Xuedong Wang, and Gang Liu. 2019. "The Addition of α-cyclodextrin and γ-cyclodextrin Affect Quality of Dough and Prebaked Bread During Frozen Storage" Foods 8, no. 5: 174. https://doi.org/10.3390/foods8050174
APA StyleZhou, J., Ke, Y., Barba, F. J., Xiao, S., Hu, X., Qin, X., Ding, W., Lyu, Q., Wang, X., & Liu, G. (2019). The Addition of α-cyclodextrin and γ-cyclodextrin Affect Quality of Dough and Prebaked Bread During Frozen Storage. Foods, 8(5), 174. https://doi.org/10.3390/foods8050174