Next Article in Journal
Polyphenols in Raw and Cooked Cereals/Pseudocereals/Legume Pasta and Couscous
Previous Article in Journal
The Macular Carotenoids Lutein and Zeaxanthin Are Related to Increased Bone Density in Young Healthy Adults
Previous Article in Special Issue
In Situ Raman Analysis of CO2—Assisted Drying of Fruit-Slices
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessReview
Foods 2017, 6(9), 79; https://doi.org/10.3390/foods6090079

Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

Auditing Department, Tütün ve Alkol Piyasası Düzenleme Kurumu (TAPDK), 06520 Ankara, Turkey
Received: 5 July 2017 / Revised: 25 August 2017 / Accepted: 5 September 2017 / Published: 7 September 2017
(This article belongs to the Special Issue High Pressure Technologies in Food Processing)
Full-Text   |   PDF [1483 KB, uploaded 8 September 2017]   |  

Abstract

Modeling of microbial inactivation by high hydrostatic pressure (HHP) requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa), and with holding time ≤10 min) for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5) inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj) and highest mean square error (MSE) values), while the Fermi equation had the best fit (the highest R2adj and lowest MSE values). Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for enzyme inactivation by HHP. View Full-Text
Keywords: high pressure; inactivation kinetics; predictive microbiology; dose-response curves high pressure; inactivation kinetics; predictive microbiology; dose-response curves
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Buzrul, S. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms. Foods 2017, 6, 79.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Foods EISSN 2304-8158 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top