The Influence of the Site of Recording and Benchtop and Portable NIRS Equipment on Predicting the Sensory Properties of Iberian Ham
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensory Analysis
2.3. Near-Infrared Spectroscopy Analysis
2.4. Artificial Neural Network Calibration
3. Results
3.1. Sensory Characteristics of the Samples Analyzed
3.2. Spectral Characteristics of the Samples Analyzed
3.3. Prediction of Sensory Parameters
3.3.1. Prediction of Sensory Parameters Using Spectra Recorded in Lean Meat
3.3.2. Prediction of Sensory Parameters Using Spectra Recorded on Fat
3.3.3. Prediction of Sensory Parameters Using the Whole Slice Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorido, L.; Hort, J.; Estévez, M.; Ventanas, S. Reporting the Sensory Properties of Dry-Cured Ham Using a New Language: Time Intensity (TI) and Temporal Dominance of Sensations (TDS). Meat Sci. 2016, 121, 166–174. [Google Scholar] [CrossRef]
- Tejerina, D.; García-Torres, S.; Cabeza de Vaca, M.; Vázquez, F.M.; Cava, R. Effect of Production System on Physical–Chemical, Antioxidant and Fatty Acids Composition of Longissimus Dorsi and Serratus Ventralis Muscles from Iberian Pig. Food Chem. 2012, 133, 293–299. [Google Scholar] [CrossRef]
- Díaz-Caro, C.; García-Torres, S.; Elghannam, A.; Tejerina, D.; Mesias, F.J.; Ortiz, A. Is Production System a Relevant Attribute in Consumers’ Food Preferences? The Case of Iberian Dry-Cured Ham in Spain. Meat Sci. 2019, 158, 107908. [Google Scholar] [CrossRef]
- Ruiz, J.; García, C.; Muriel, E.; Andrés, A.I.; Ventanas, J. Influence of Sensory Characteristics on the Acceptability of Dry-Cured Ham. Meat Sci. 2002, 61, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Caballero, D.; Antequera, T.; Caro, A.; Duran, M.L.; Perez-Palacios, T. Data Mining on MRI-Computational Texture Features to Predict Sensory Characteristics in Ham. Food Bioprocess Technol 2016, 9, 699–708. [Google Scholar] [CrossRef]
- González-Casado, A.; Jiménez-Carvelo, A.M.; Cuadros-Rodríguez, L. Sensory Quality Control of Dry-Cured Ham: A Comprehensive Methodology for Sensory Panel Qualification and Method Validation. Meat Sci. 2019, 149, 149–155. [Google Scholar] [CrossRef]
- Guàrdia, M.D.; Aguiar, A.P.S.; Claret, A.; Arnau, J.; Guerrero, L. Sensory Characterization of Dry-Cured Ham Using Free-Choice Profiling. Food Qual. Prefer. 2010, 21, 148–155. [Google Scholar] [CrossRef]
- Hernández-Ramos, P.; Vivar-Quintana, A.M.; Revilla, I.; González-Martín, M.I.; Hernández-Jiménez, M.; Martínez-Martín, I. Prediction of Sensory Parameters of Cured Ham: A Study of the Viability of the Use of NIR Spectroscopy and Artificial Neural Networks. Sensors 2020, 20, 5624. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palacios, T.; Ruiz, J.; Martín, D.; Barat, J.M.; Antequera, T. Pre-Cure Freezing Effect on Physicochemical, Texture and Sensory Characteristics of Iberian Ham. Food Sci. Technol. Int. 2011, 17, 127–133. [Google Scholar] [CrossRef] [PubMed]
- ISO 5492:2008; Sensory Analysis. Vocabulary. International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 6658:2005; Sensory Analysis. Methodology. General Guidance. International Organization for Standardization: Geneva, Switzerland, 2005.
- ISO 8586:2014; Sensory Analysis. General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2014.
- Dos Santos Navarro da Silva, R.d.C.; Minim, V.P.R.; Silva, A.N.d.; Peternelli, L.A.; Minim, L.A. Optimized Descriptive Profile: How Many Judges Are Necessary? Food Qual. Prefer. 2014, 36, 3–11. [Google Scholar] [CrossRef]
- De Pilli, T.; Alessandrino, O.; Baiano, A. Quantitative Descriptive Analysis as a Strategic Tool in Research Activities Relating to Innovative Meat Tenderisation Technologies. Heliyon 2024, 10, e32618. [Google Scholar] [CrossRef]
- Chapman, J.; Elbourne, A.; Truong, V.K.; Cozzolino, D. Shining Light into Meat—A Review on the Recent Advances in In Vivo and Carcass Applications of near Infrared Spectroscopy. Int. J. Food Sci. Technol. 2020, 55, 935–941. [Google Scholar] [CrossRef]
- Chapman, J.; Elbourne, A.; Truong, V.K.; Newman, L.; Gangadoo, S.; Rajapaksha Pathirannahalage, P.; Cheeseman, S.; Cozzolino, D. Sensomics—From Conventional to Functional NIR Spectroscopy—Shining Light over the Aroma and Taste of Foods. Trends Food Sci. Technol. 2019, 91, 274–281. [Google Scholar] [CrossRef]
- Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near Infrared Reflectance Spectroscopy to Predict Meat and Meat Products Quality: A Review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jiménez, M.; Hernández-Ramos, P.; Martínez-Martín, I.; Vivar-Quintana, A.M.; González-Martín, I.; Revilla, I. Comparison of Artificial Neural Networks and Multiple Regression Tools Applied to near Infrared Spectroscopy for Predicting Sensory Properties of Products from Quality Labels. Microchem. J. 2020, 159, 105459. [Google Scholar] [CrossRef]
- Revilla, I.; Vivar-Quintana, A.M.; González-Martín, M.I.; Hernández-Jiménez, M.; Martínez-Martín, I.; Hernández-Ramos, P. NIR Spectroscopy for Discriminating and Predicting the Sensory Profile of Dry-Cured Beef “Cecina”. Sensors 2020, 20, 6892. [Google Scholar] [CrossRef]
- Vasconcelos, L.; Dias, L.G.; Leite, A.; Ferreira, I.; Pereira, E.; Bona, E.; Mateo, J.; Rodrigues, S.; Teixeira, A. Can Near-Infrared Spectroscopy Replace a Panel of Tasters in Sensory Analysis of Dry-Cured Bísaro Loin? Foods 2023, 12, 4335. [Google Scholar] [CrossRef]
- García-Rey, R.M.; García-Olmo, J.; De Pedro, E.; Quiles-Zafra, R.; Luque de Castro, M.D. Prediction of Texture and Colour of Dry-Cured Ham by Visible and near Infrared Spectroscopy Using a Fiber Optic Probe. Meat Sci. 2005, 70, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.C.; Sarabia, L.; García-Rey, R.; Luque de Castro, M.D. Sensitivity and Specificity of PLS-Class Modelling for Five Sensory Characteristics of Dry-Cured Ham Using Visible and near Infrared Spectroscopy. Anal. Chim. Acta 2006, 558, 125–131. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers. Chem. A Eur. J. 2021, 27, 1514–1532. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Neves, M.D.G.; Noda, I.; Guedes, G.M.; Ferreira, A.C.S.; Pfeifer, F.; Chen, X.; Siesler, H.W.; Yan, H.; Neves, M.D.G.; et al. Handheld Near-Infrared Spectroscopy: State-of-the-Art Instrumentation and Applications in Material Identification, Food Authentication, and Environmental Investigations. Chemosensors 2023, 11, 272. [Google Scholar] [CrossRef]
- de Lima, G.F.; Andrade, S.A.C.; da Silva, V.H.; Honorato, F.A. Multivariate Classification of UHT Milk as to the Presence of Lactose Using Benchtop and Portable NIR Spectrometers. Food Anal. Methods 2018, 11, 2699–2706. [Google Scholar] [CrossRef]
- Malegori, C.; Nascimento Marques, E.J.; de Freitas, S.T.; Pimentel, M.F.; Pasquini, C.; Casiraghi, E. Comparing the Analytical Performances of Micro-NIR and FT-NIR Spectrometers in the Evaluation of Acerola Fruit Quality, Using PLS and SVM Regression Algorithms. Talanta 2017, 165, 112–116. [Google Scholar] [CrossRef]
- Hernández-Jiménez, M.; Revilla, I.; Vivar-Quintana, A.M.; Grabska, J.; Beć, K.B.; Huck, C.W. Performance of Benchtop and Portable Spectroscopy Equipment for Discriminating Iberian Ham According to Breed. Curr. Res. Food Sci. 2024, 8, 100675. [Google Scholar] [CrossRef] [PubMed]
- Real Decreto 4/2014. de 10 de Enero. Por El Que Se Aprueba La Norma de Calidad Para La Carne. El Jamón. La Paleta y La Caña de Lomo Ibérico. 2014. Available online: https://www.boe.es/eli/es/rd/2014/01/10/4/con (accessed on 21 January 2026).
- Pérez Elortondo, F.J.; Ojeda, M.; Albisu, M.; Salmerón, J.; Etayo, I.; Molina, M. Food Quality Certification: An Approach for the Development of Accredited Sensory Evaluation Methods. Food Qual. Prefer. 2007, 18, 425–439. [Google Scholar] [CrossRef]
- Pillonel, L.; Badertscher, R.; Casey, M.; Meyer, J.; Rossmann, A.; Schlichtherle-Cerny, H.; Tabacchi, R.; Bosset, J.O. Geographic Origin of European Emmental Cheese: Characterisation and Descriptive Statistics. Int. Dairy J. 2005, 15, 547–556. [Google Scholar] [CrossRef]
- Mayoral, A.I.; Dorado, M.; Guillén, M.T.; Robina, A.; Vivo, J.M.; Vázquez, C.; Ruiz, J. Development of Meat and Carcass Quality Characteristics in Iberian Pigs Reared Outdoors. Meat Sci. 1999, 52, 315–324. [Google Scholar] [CrossRef]
- Fuentes, V.; Estévez, M.; Grèbol, N.; Ventanas, J.; Ventanas, S. Application of Time–Intensity Method to Assess the Sensory Properties of Iberian Dry-Cured Ham: Effect of Fat Content and High-Pressure Treatment. Eur. Food Res. Technol. 2014, 238, 397–408. [Google Scholar] [CrossRef]
- Arnau, J.; Guerrero, L.; Hortós, M.; García-Regueiro, J.A. The Composition of White Film and White Crystals Found in Dry-Cured Hams. J. Sci. Food Agric. 1996, 70, 449–452. [Google Scholar] [CrossRef]
- Coll-Brasas, E.; Gou, P.; Arnau, J.; Olmos, A.; Fulladosa, E. Processing Parameters Involved in the Development of Texture and Tyrosine Precipitates in Dry-Cured Ham: Modelisation of Texture Development. Meat Sci. 2021, 172, 108362. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Bonilla, F.; García, C. Effect of Crossbreeding and Rearing System on Sensory Characteristics of Iberian Ham. Meat Sci. 2003, 65, 623–629. [Google Scholar] [CrossRef]
- Ruiz, J.; García, C.; del Carmen Díaz, M.; Cava, R.; Florencio Tejeda, J.; Ventanas, J. Dry Cured Iberian Ham Non-Volatile Components as Affected by the Length of the Curing Process. Food Res. Int. 1999, 32, 643–651. [Google Scholar] [CrossRef]
- Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Influence of Type of Muscle on Volatile Compounds throughout the Manufacture of Celta Dry-Cured Ham. Food Sci. Technol. Int. 2015, 21, 581–592. [Google Scholar] [CrossRef]
- Fulladosa, E.; Garriga, M.; Martín, B.; Guàrdia, M.D.; García-Regueiro, J.A.; Arnau, J. Volatile Profile and Microbiological Characterization of Hollow Defect in Dry-Cured Ham. Meat Sci. 2010, 86, 801–807. [Google Scholar] [CrossRef]
- Pérez-Santaescolástica, C.; Carballo, J.; Fulladosa, E.; Garcia-Perez, J.V.; Benedito, J.; Lorenzo, J.M. Effect of Proteolysis Index Level on Instrumental Adhesiveness, Free Amino Acids Content and Volatile Compounds Profile of Dry-Cured Ham. Food Res. Int. 2018, 107, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Jurado, Á.; García, C.; Timón, M.L.; Carrapiso, A.I. Effect of Ripening Time and Rearing System on Amino Acid-Related Flavour Compounds of Iberian Ham. Meat Sci. 2007, 75, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, F.J.; Zamora, R. Strecker-Type Degradation Produced by the Lipid Oxidation Products 4,5-Epoxy-2-Alkenals. J. Agric. Food Chem. 2004, 52, 7126–7131. [Google Scholar] [CrossRef]
- Ruiz-Carrascal, J.; Ventanas, J.; Cava, R.; Andrés, A.I.; García, C. Texture and Appearance of Dry Cured Ham as Affected by Fat Content and Fatty Acid Composition. Food Res. Int. 2000, 33, 91–95. [Google Scholar] [CrossRef]
- Fuentes, V.; Ventanas, J.; Morcuende, D.; Ventanas, S. Effect of Intramuscular Fat Content and Serving Temperature on Temporal Sensory Perception of Sliced and Vacuum Packaged Dry-Cured Ham. Meat Sci. 2013, 93, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Physicochemical Changes during Manufacture and Final Sensory Characteristics of Dry-Cured Celta Ham. Effect of Muscle Type. Food Control 2014, 43, 263–269. [Google Scholar] [CrossRef]
- Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Effect of pH24, NaCl Content and Proteolysis Index on the Relationship between Water Content and Texture Parameters in Biceps Femoris and Semimembranosus Muscles in Dry-Cured Ham. Meat Sci. 2006, 72, 185–194. [Google Scholar] [CrossRef]
- Škrlep, M.; Čandek-Potokar, M.; Santé-Lhoutellier, V.; Gou, P. Dry-Cured Ham Kraški Pršut Seasoning Losses as Affected by PRKAG3 and CAST Polymorphisms. Ital. J. Anim. Sci. 2011, 10, e6. [Google Scholar] [CrossRef]
- Harkouss, R.; Astruc, T.; Lebert, A.; Gatellier, P.; Loison, O.; Safa, H.; Portanguen, S.; Parafita, E.; Mirade, P.-S. Quantitative Study of the Relationships among Proteolysis, Lipid Oxidation, Structure and Texture throughout the Dry-Cured Ham Process. Food Chem. 2015, 166, 522–530. [Google Scholar] [CrossRef]
- Bec, K.B.; Grabska, J.; Pfeifer, F.; Siesler, H.W.; Huck, C.W. Rapid On-Site Analysis of Soil Microplastics Using Miniaturized NIR Spectrometers: Key Aspect of Instrumental Variation. J. Hazard. Mater. 2024, 480, 135967. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jiménez, M.; Revilla, I.; Vivar-Quintana, A.M.; Grabska, J.; Beć, K.B.; Huck, C.W. Comparison of Miniaturized and Benchtop NIR Spectrophotometers for Quantifying the Fatty Acid Profile of Iberian Ham. Appl. Sci. 2024, 14, 10680. [Google Scholar] [CrossRef]
- Dixit, Y.; Casado-Gavalda, M.P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Cullen, P.J.; Sullivan, C. Prediction of Beef Fat Content Simultaneously under Static and Motion Conditions Using near Infrared Spectroscopy. J. Near Infrared Spectrosc. JNIRS 2016, 24, 353–361. [Google Scholar] [CrossRef]
- Prieto, N.; López-Campos, Ó.; Aalhus, J.L.; Dugan, M.E.R.; Juárez, M.; Uttaro, B. Use of near Infrared Spectroscopy for Estimating Meat Chemical Composition, Quality Traits and Fatty Acid Content from Cattle Fed Sunflower or Flaxseed. Meat Sci. 2014, 98, 279–288. [Google Scholar] [CrossRef]
- Sierra, V.; Aldai, N.; Castro, P.; Osoro, K.; Coto-Montes, A.; Oliván, M. Prediction of the Fatty Acid Composition of Beef by near Infrared Transmittance Spectroscopy. Meat Sci. 2008, 78, 248–255. [Google Scholar] [CrossRef]
- Morsy, N.; Sun, D.-W. Robust Linear and Non-Linear Models of NIR Spectroscopy for Detection and Quantification of Adulterants in Fresh and Frozen-Thawed Minced Beef. Meat Sci. 2013, 93, 292–302. [Google Scholar] [CrossRef]
- Grabska, J.; Beć, K.B.; Ishigaki, M.; Huck, C.W.; Ozaki, Y. NIR Spectra Simulations by Anharmonic DFT-Saturated and Unsaturated Long-Chain Fatty Acids. J. Phys. Chem. B 2018, 122, 6931–6944. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Murray, I. Identification of Animal Meat Muscles by Visible and near Infrared Reflectance Spectroscopy. LWT Food Sci. Technol. 2004, 37, 447–452. [Google Scholar] [CrossRef]
- Prevolnik, M.; Andronikov, D.; Žlender, B.; Font-i-Furnols, M.; Novič, M.; Škorjanc, D.; Čandek-Potokar, M. Classification of Dry-Cured Hams According to the Maturation Time Using near Infrared Spectra and Artificial Neural Networks. Meat Sci. 2014, 96, 14–20. [Google Scholar] [CrossRef]
- Williams, P. Near-Infrared Technology: Getting the Best out of Light: A Short Course in the Practical Implementation of Near-Infrared Spectroscopy for the User; Sun Press: New York, NY, USA, 2004. [Google Scholar]
- Resano-Ezcaray, H.; Sanjuán-López, A.I.; Albisu-Aguado, L.M. Combining Stated and Revealed Preferences on Typical Food Products: The Case of Dry-Cured Ham in Spain. J. Agric. Econ. 2010, 61, 480–498. [Google Scholar] [CrossRef]
- Curto, B.; Moreno, V.; García-Esteban, J.A.; Blanco, F.J.; González, I.; Vivar, A.; Revilla, I. Accurate Prediction of Sensory Attributes of Cheese Using Near-Infrared Spectroscopy Based on Artificial Neural Network. Sensors 2020, 20, 3566. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Varo, A.; Riccioli, C.; Fearn, T.; De-Pedro Sanz, E.; Pérez-Marín, D.C. Multivariate Predictive Models for the Prediction of Fatty Acids in the EU High Added-Value “Acorn Iberian Pig Ham” Using a Miniature near-Infrared Spectroscopy Instrument. In Sensing for Agriculture and Food Quality and Safety XI; SPIE: Bellingham, WA, USA, 2019; Volume 11016. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Escuredo, O.; Hernández-Jiménez, M.; Revilla, I.; Vivar-Quintana, A.M.A.; Martínez-Martín, I.; Hernández-Ramos, P. Prediction of Stable Isotopes and Fatty Acids in Subcutaneous Fat of Iberian Pigs by Means of NIR: A Comparison between Benchtop and Portable Systems. Talanta 2021, 224, 121817. [Google Scholar] [CrossRef] [PubMed]

| 100% Iberian | Iberian | SEM | Min | Max | CV | p-Value | ||
|---|---|---|---|---|---|---|---|---|
| Appearance | Veined | 4.96 | 6.11 | 0.10 | 2.75 | 7.50 | 0.14 | 0.000 |
| Fat color | 7.04 | 6.86 | 0.54 | 5.56 | 7.71 | 0.04 | 0.130 | |
| Color homogeneity | 5.59 | 5.98 | 0.64 | 4.67 | 6.88 | 0.06 | 0.002 | |
| Color intensity | 7.33 | 6.96 | 0.06 | 5.89 | 8.31 | 0.04 | 0.002 | |
| Exudate | 5.03 | 5.08 | 0.07 | 4.13 | 6.13 | 0.07 | 0.704 | |
| White dots | 2.87 | 3.40 | 0.10 | 2.00 | 5.25 | 0.17 | 0.005 | |
| Flavor | Odor intensity | 6.67 | 6.75 | 0.04 | 6.00 | 7.33 | 0.03 | 0.308 |
| Cured aroma | 6.75 | 6.78 | 0.03 | 5.94 | 7.28 | 0.03 | 0.740 | |
| Pig aroma | 1.29 | 1.27 | 0.15 | 1.00 | 1.63 | 0.06 | 0.490 | |
| Rancid aroma | 1.52 | 1.62 | 0.03 | 1.22 | 2.17 | 0.08 | 0.050 | |
| Atypical aroma | 1.37 | 1.40 | 0.02 | 1.13 | 2.00 | 0.08 | 0.401 | |
| Flavor intensity | 6.77 | 6.83 | 0.04 | 6.17 | 7.38 | 0.03 | 0.417 | |
| Fat flavor intensity | 4.83 | 5.08 | 0.07 | 3.88 | 6.44 | 0.07 | 0.058 | |
| Cured flavor | 6.67 | 6.66 | 0.04 | 5.88 | 7.25 | 0.03 | 0.903 | |
| Saltiness | 4.29 | 4.23 | 0.05 | 3.50 | 5.25 | 0.06 | 0.587 | |
| Sweetness | 2.48 | 2.48 | 0.03 | 1.88 | 3.00 | 0.07 | 0.909 | |
| Sourness | 1.40 | 1.42 | 0.03 | 1.11 | 2.13 | 0.09 | 0.819 | |
| Rancidity | 1.61 | 1.66 | 0.03 | 1.11 | 2.25 | 0.10 | 0.516 | |
| Aftertaste | 5.95 | 6.06 | 0.05 | 5.25 | 6.75 | 0.04 | 0.274 | |
| Atypical flavor | 1.46 | 1.45 | 0.04 | 1.00 | 2.13 | 0.13 | 0.882 | |
| Texture | Hardness | 4.54 | 4.03 | 0.07 | 3.28 | 6.25 | 0.09 | 0.001 |
| Juiciness | 5.72 | 6.03 | 0.06 | 4.75 | 6.71 | 0.05 | 0.009 | |
| Fatness | 4.61 | 4.92 | 0.06 | 3.57 | 6.14 | 0.07 | 0.019 | |
| Fibrousness | 3.50 | 3.17 | 0.07 | 2.43 | 5.00 | 0.10 | 0.020 | |
| Chewiness | 3.24 | 3.10 | 0.05 | 2.43 | 4.38 | 0.08 | 0.204 | |
| Gumminess | 2.37 | 2.44 | 0.04 | 1.75 | 3.13 | 0.09 | 0.430 | |
| Heterogeneity | 3.80 | 3.41 | 0.07 | 2.43 | 4.75 | 0.10 | 0.005 | |
| Chewing Residue | 2.73 | 2.72 | 0.04 | 2.22 | 3.50 | 0.08 | 0.832 |
| (a) | ||||||||||||||||||||||||||||||||||||||||||
| Veined | Fat Color | Color Homogeneity | ||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | |||||||||||||||||||||||||||||||
| NIRFlex N-500 | 5 | 0.956 | 0.613 | 0.730 | 0.819 | 8 | 0.997 | 0.764 | 0.662 | 0.855 | 13 | 0.999 | 0.553 | 0.505 | 0.756 | |||||||||||||||||||||||||||
| 0.220 | 0.744 | 0.827 | 0.469 | 0.025 | 0.174 | 0.385 | 0.165 | 0.014 | 0.418 | 0.502 | 0.253 | |||||||||||||||||||||||||||||||
| microPHAZIR | 9 | 0.926 | 0.520 | 0.642 | 0.802 | 8 | 0.978 | 0.914 | 0.516 | 0.666 | 11 | 1.000 | 0.535 | 0.701 | 0.801 | |||||||||||||||||||||||||||
| 0.346 | 0.796 | 0.686 | 0.500 | 0.058 | 0.518 | 0.352 | 0.247 | 0.008 | 0.502 | 0.273 | 0.221 | |||||||||||||||||||||||||||||||
| MicroNIR 1700 | 8 | 0.886 | 0.887 | 0.720 | 0.829 | 13 | 0.977 | 0.808 | 0.558 | 0.657 | 15 | 0.989 | 0.724 | 0.587 | 0.891 | |||||||||||||||||||||||||||
| 0.409 | 0.371 | 0.643 | 0.447 | 0.062 | 0.376 | 0.820 | 0.353 | 0.052 | 0.279 | 0.297 | 0.164 | |||||||||||||||||||||||||||||||
| Enterprise | 1 | 0.980 | 0.500 | 0.393 | 0.819 | 6 | 0.814 | 0.338 | 0.650 | 0.647 | 15 | 0.862 | 0.725 | 0.523 | 0.634 | |||||||||||||||||||||||||||
| 0.235 | 0.614 | 0.895 | 0.464 | 0.190 | 0.351 | 0.381 | 0.256 | 0.180 | 0.436 | 0.630 | 0.333 | |||||||||||||||||||||||||||||||
| SCiO | 11 | 0.968 | 0.730 | 0.759 | 0.783 | 6 | 0.634 | 0.600 | 0.771 | 0.548 | 12 | 0.702 | 0.427 | 0.499 | 0.577 | |||||||||||||||||||||||||||
| 0.196 | 0.645 | 1.324 | 0.594 | 0.253 | 0.404 | 0.292 | 0.286 | 0.286 | 0.400 | 0.361 | 0.318 | |||||||||||||||||||||||||||||||
| Color intensity | Exudate | White dots | ||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | |||||||||||||||||||||||||||||||
| NIRFlex N-500 | 6 | 0.868 | 0.335 | 0.371 | 0.775 | 4 | 0.593 | 0.561 | 0.561 | 0.545 | 10 | 0.790 | 0.310 | 0.432 | 0.603 | |||||||||||||||||||||||||||
| 0.201 | 0.261 | 0.279 | 0.224 | 0.320 | 0.295 | 0.456 | 0.341 | 0.335 | 0.722 | 0.775 | 0.497 | |||||||||||||||||||||||||||||||
| microPHAZIR | 6 | 0.908 | 0.533 | 0.459 | 0.612 | 10 | 0.674 | 0.436 | 0.517 | 0.458 | 14 | 0.678 | 0.139 | 0.585 | 0.558 | |||||||||||||||||||||||||||
| 0.169 | 0.264 | 0.613 | 0.295 | 0.332 | 0.385 | 0.569 | 0.385 | 0.441 | 0.779 | 0.568 | 0.525 | |||||||||||||||||||||||||||||||
| MicroNIR 1700 | 9 | 0.823 | 0.511 | 0.857 | 0.707 | 12 | 0.811 | 0.222 | 0.339 | 0.525 | 13 | 0.999 | 0.532 | 0.653 | 0.699 | |||||||||||||||||||||||||||
| 0.197 | 0.510 | 0.198 | 0.268 | 0.226 | 0.498 | 0.618 | 0.361 | 0.025 | 0.550 | 1.092 | 0.474 | |||||||||||||||||||||||||||||||
| Enterprise | 3 | 0.791 | 0.350 | 0.456 | 0.618 | 15 | 0.844 | 0.213 | 0.400 | 0.571 | 1 | 0.982 | 0.051 | 0.433 | 0.690 | |||||||||||||||||||||||||||
| 0.232 | 0.405 | 0.405 | 0.295 | 0.199 | 0.640 | 0.397 | 0.336 | 0.295 | 0.927 | 0.602 | 0.494 | |||||||||||||||||||||||||||||||
| SCiO | 5 | 0.622 | 0.370 | 0.476 | 0.509 | 14 | 0.780 | 0.488 | 0.366 | 0.545 | 14 | 0.964 | 0.916 | 0.551 | 0.758 | |||||||||||||||||||||||||||
| 0.284 | 0.332 | 0.534 | 0.340 | 0.238 | 0.494 | 0.666 | 0.378 | 0.126 | 0.542 | 0.747 | 0.373 | |||||||||||||||||||||||||||||||
| (b) | ||||||||||||||||||||||||||||||||||||||||||
| Odor Intensity | Cured aroma | Pig aroma | ||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | |||||||||||||||||||||||||||||||
| NIRFlex N-500 | 10 | 0.849 | 0.002 | 0.688 | 0.559 | 12 | 0.867 | 0.616 | 0.484 | 0.655 | 7 | 0.933 | 0.488 | 0.550 | 0.655 | |||||||||||||||||||||||||||
| 0.113 | 0.364 | 0.204 | 0.187 | 0.090 | 0.199 | 0.340 | 0.170 | 0.036 | 0.130 | 0.093 | 0.069 | |||||||||||||||||||||||||||||||
| microPHAZIR | 8 | 0.821 | 0.100 | 0.502 | 0.614 | 10 | 0.906 | 0.754 | 0.561 | 0.725 | 13 | 0.953 | 0.207 | 0.638 | 0.750 | |||||||||||||||||||||||||||
| 0.118 | 0.286 | 0.252 | 0.178 | 0.084 | 0.152 | 0.298 | 0.147 | 0.031 | 0.117 | 0.067 | 0.058 | |||||||||||||||||||||||||||||||
| MicroNIR 1700 | 0.974 | 0.018 | 0.531 | 0.532 | 4 | 0.995 | 0.502 | 0.306 | 0.572 | 8 | 0.801 | 0.413 | 0.479 | 0.700 | ||||||||||||||||||||||||||||
| 0.045 | 0.348 | 0.436 | 0.219 | 0.028 | 0.253 | 0.444 | 0.199 | 0.056 | 0.076 | 0.089 | 0.065 | |||||||||||||||||||||||||||||||
| Enterprise | 1 | 0.903 | 0.410 | 0.393 | 0.573 | 14 | 0.708 | 0.765 | 0.565 | 0.657 | 10 | 1.000 | 0.264 | 0.745 | 0.778 | |||||||||||||||||||||||||||
| 0.089 | 0.226 | 0.370 | 0.184 | 0.131 | 0.155 | 0.221 | 0.152 | 0.000 | 0.132 | 0.098 | 0.064 | |||||||||||||||||||||||||||||||
| SCiO | 11 | 0.811 | 0.243 | 0.613 | 0.583 | 14 | 0.892 | 0.573 | 0.621 | 0.728 | 13 | 0.970 | 0.460 | 0.736 | 0.859 | |||||||||||||||||||||||||||
| 0.113 | 0.333 | 0.247 | 0.186 | 0.094 | 0.163 | 0.269 | 0.145 | 0.022 | 0.078 | 0.073 | 0.045 | |||||||||||||||||||||||||||||||
| Rancid aroma | Atypical aroma | Flavor intensity | ||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | |||||||||||||||||||||||||||||||
| NIRFlex N-500 | 7 | 0.988 | 0.462 | 0.859 | 0.795 | 1 | 0.849 | 0.591 | 0.665 | 0.582 | 1 | 0.960 | 0.594 | 0.437 | 0.722 | |||||||||||||||||||||||||||
| 0.019 | 0.215 | 0.106 | 0.094 | 0.056 | 0.176 | 0.184 | 0.110 | 0.086 | 0.208 | 0.292 | 0.156 | |||||||||||||||||||||||||||||||
| microPHAZIR | 15 | 0.917 | 0.492 | 0.337 | 0.550 | 14 | 0.998 | 0.097 | 0.403 | 0.610 | 12 | 1.000 | 0.105 | 0.411 | 0.727 | |||||||||||||||||||||||||||
| 0.060 | 0.175 | 0.256 | 0.130 | 0.009 | 0.121 | 0.262 | 0.112 | 0.000 | 0.318 | 0.242 | 0.155 | |||||||||||||||||||||||||||||||
| MicroNIR 1700 | 9 | 0.804 | 0.181 | 0.444 | 0.394 | 12 | 0.876 | 0.528 | 0.409 | 0.673 | 13 | 0.984 | 0.473 | 0.537 | 0.751 | |||||||||||||||||||||||||||
| 0.092 | 0.212 | 0.338 | 0.173 | 0.063 | 0.140 | 0.174 | 0.101 | 0.039 | 0.236 | 0.295 | 0.150 | |||||||||||||||||||||||||||||||
| Enterprise | 5 | 0.781 | 0.507 | 0.411 | 0.598 | 14 | 0.899 | 0.544 | 0.395 | 0.554 | 7 | 0.983 | 0.691 | 0.625 | 0.730 | |||||||||||||||||||||||||||
| 0.099 | 0.185 | 0.152 | 0.124 | 0.060 | 0.100 | 0.248 | 0.115 | 0.035 | 0.235 | 0.315 | 0.155 | |||||||||||||||||||||||||||||||
| SCiO | 5 | 0.512 | 0.475 | 0.471 | 0.472 | 11 | 0.543 | 0.225 | 0.454 | 0.473 | 12 | 0.816 | 0.425 | 0.400 | 0.715 | |||||||||||||||||||||||||||
| 0.150 | 0.104 | 0.145 | 0.143 | 0.127 | 0.127 | 0.110 | 0.125 | 0.135 | 0.217 | 0.186 | 0.158 | |||||||||||||||||||||||||||||||
| Fat flavor intensity | Cured flavor | Saltiness | Sweetness | |||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | |||||||||||||||||||||||||||
| NIRFlex N-500 | 14 | 1.000 | 0.176 | 0.469 | 0.651 | 9 | 0.687 | 0.162 | 0.803 | 0.627 | 9 | 0.995 | 0.487 | 0.626 | 0.741 | 8 | 0.825 | 0.276 | 0.783 | 0.676 | ||||||||||||||||||||||
| 0.000 | 0.803 | 0.598 | 0.388 | 0.174 | 0.178 | 0.254 | 0.189 | 0.027 | 0.401 | 0.340 | 0.205 | 0.105 | 0.278 | 0.148 | 0.150 | |||||||||||||||||||||||||||
| microPHAZIR | 7 | 0.891 | 0.468 | 0.653 | 0.788 | 15 | 0.864 | 0.293 | 0.173 | 0.482 | 7 | 0.994 | 0.424 | 0.301 | 0.626 | 1 | 1.000 | 0.363 | 0.768 | 0.884 | ||||||||||||||||||||||
| 0.172 | 0.345 | 0.378 | 0.245 | 0.106 | 0.438 | 0.347 | 0.234 | 0.028 | 0.294 | 0.501 | 0.226 | 0.006 | 0.177 | 0.149 | 0.090 | |||||||||||||||||||||||||||
| MicroNIR 1700 | 10 | 0.664 | 0.615 | 0.617 | 0.614 | 15 | 0.999 | 0.445 | 0.426 | 0.644 | 9 | 0.773 | 0.722 | 0.778 | 0.738 | 6 | 0.929 | 0.814 | 0.735 | 0.833 | ||||||||||||||||||||||
| 0.316 | 0.355 | 0.331 | 0.324 | 0.008 | 0.344 | 0.497 | 0.234 | 0.159 | 0.213 | 0.238 | 0.182 | 0.068 | 0.102 | 0.229 | 0.112 | |||||||||||||||||||||||||||
| Enterprise | 5 | 0.998 | 0.385 | 0.326 | 0.663 | 2 | 0.959 | 0.195 | 0.485 | 0.688 | 7 | 0.783 | 0.498 | 0.738 | 0.721 | 1 | 0.887 | 0.197 | 0.518 | 0.615 | ||||||||||||||||||||||
| 0.029 | 0.557 | 0.739 | 0.359 | 0.060 | 0.351 | 0.247 | 0.174 | 0.178 | 0.205 | 0.273 | 0.199 | 0.114 | 0.283 | 0.148 | 0.156 | |||||||||||||||||||||||||||
| SCiO | 6 | 0.712 | 0.288 | 0.860 | 0.644 | 5 | 0.720 | 0.212 | 0.760 | 0.572 | 1 | 0.839 | 0.415 | 0.642 | 0.640 | 4 | 0.833 | 0.683 | 0.603 | 0.701 | ||||||||||||||||||||||
| 0.301 | 0.447 | 0.244 | 0.320 | 0.171 | 0.312 | 0.181 | 0.200 | 0.146 | 0.312 | 0.394 | 0.230 | 0.096 | 0.247 | 0.161 | 0.140 | |||||||||||||||||||||||||||
| Sourness | Rancidity | Aftertaste | Atypical flavor | |||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | |||||||||||||||||||||||||||
| NIRFlex N-500 | 5 | 0.944 | 0.276 | 0.486 | 0.701 | 9 | 0.975 | 0.376 | 0.691 | 0.828 | 9 | 0.754 | 0.299 | 0.725 | 0.359 | 2 | 0.962 | 0.451 | 0.686 | 0.727 | ||||||||||||||||||||||
| 0.053 | 0.221 | 0.157 | 0.114 | 0.043 | 0.195 | 0.160 | 0.104 | 0.185 | 0.365 | 0.551 | 0.299 | 0.052 | 0.293 | 0.216 | 0.148 | |||||||||||||||||||||||||||
| microPHAZIR | 10 | 0.930 | 0.363 | 0.397 | 0.725 | 3 | 0.753 | 0.173 | 0.655 | 0.568 | 13 | 0.699 | 0.019 | 0.548 | 0.443 | 4 | 0.793 | 0.264 | 0.763 | 0.649 | ||||||||||||||||||||||
| 0.057 | 0.135 | 0.205 | 0.106 | 0.160 | 0.273 | 0.187 | 0.185 | 0.219 | 0.483 | 0.274 | 0.282 | 0.152 | 0.177 | 0.322 | 0.191 | |||||||||||||||||||||||||||
| MicroNIR 1700 | 5 | 0.911 | 0.418 | 0.514 | 0.586 | 12 | 0.811 | 0.206 | 0.582 | 0.174 | 11 | 0.731 | 0.297 | 0.816 | 0.502 | 7 | 0.880 | 0.211 | 0.682 | 0.582 | ||||||||||||||||||||||
| 0.061 | 0.159 | 0.291 | 0.138 | 0.105 | 0.438 | 0.415 | 0.250 | 0.193 | 0.291 | 0.467 | 0.267 | 0.113 | 0.245 | 0.350 | 0.191 | |||||||||||||||||||||||||||
| Enterprise | 4 | 0.753 | 0.074 | 0.644 | 0.525 | 8 | 0.732 | 0.005 | 0.690 | 0.357 | 1 | 1.000 | 0.593 | 0.902 | 0.863 | 10 | 0.742 | 0.253 | 0.728 | 0.360 | ||||||||||||||||||||||
| 0.110 | 0.223 | 0.161 | 0.141 | 0.132 | 0.328 | 0.298 | 0.204 | 0.001 | 0.264 | 0.270 | 0.146 | 0.143 | 0.252 | 0.430 | 0.227 | |||||||||||||||||||||||||||
| SCiO | 10 | 0.896 | 0.172 | 0.272 | 0.495 | 12 | 0.869 | 0.262 | 0.817 | 0.384 | 7 | 0.698 | 0.281 | 0.729 | 0.566 | 14 | 0.537 | 0.219 | 0.589 | 0.464 | ||||||||||||||||||||||
| 0.068 | 0.168 | 0.335 | 0.156 | 0.085 | 0.199 | 0.437 | 0.199 | 0.203 | 0.387 | 0.216 | 0.241 | 0.195 | 0.264 | 0.156 | 0.202 | |||||||||||||||||||||||||||
| (c) | ||||||||||||||||||||||||||||||||||||||||||
| Hardness | Juiciness | Fatness | Fibrousness | |||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | |||||||||||||||||||||||||||
| NIRFlex N-500 | 7 | 0.836 | 0.841 | 0.878 | 0.843 | 11 | 0.980 | 0.688 | 0.806 | 0.885 | 13 | 0.934 | 0.223 | 0.777 | 0.578 | 15 | 1.000 | 0.532 | 0.840 | 0.862 | ||||||||||||||||||||||
| 0.204 | 0.302 | 0.218 | 0.224 | 0.064 | 0.230 | 0.269 | 0.147 | 0.117 | 0.772 | 0.423 | 0.355 | 0.000 | 0.497 | 0.249 | 0.215 | |||||||||||||||||||||||||||
| microPHAZIR | 6 | 0.762 | 0.567 | 0.842 | 0.686 | 2 | 0.838 | 0.265 | 0.796 | 0.729 | 11 | 0.755 | 0.607 | 0.868 | 0.536 | 11 | 1.000 | 0.026 | 0.748 | 0.617 | ||||||||||||||||||||||
| 0.257 | 0.603 | 0.264 | 0.334 | 0.166 | 0.363 | 0.308 | 0.231 | 0.271 | 0.304 | 0.584 | 0.341 | 0.000 | 0.747 | 0.459 | 0.339 | |||||||||||||||||||||||||||
| MicroNIR 1700 | 2 | 1.000 | 0.699 | 0.889 | 0.897 | 0.918 | 0.791 | 0.834 | 0.851 | 3 | 0.687 | 0.472 | 0.804 | 0.658 | 8 | 0.804 | 0.560 | 0.746 | 0.714 | |||||||||||||||||||||||
| 0.092 | 0.304 | 0.412 | 0.213 | 0.120 | 0.274 | 0.248 | 0.175 | 0.290 | 0.394 | 0.279 | 0.306 | 0.237 | 0.281 | 0.520 | 0.303 | |||||||||||||||||||||||||||
| Enterprise | 13 | 0.965 | 0.366 | 0.903 | 0.622 | 14 | 0.722 | 0.536 | 0.638 | 0.641 | 9 | 0.540 | 0.554 | 0.712 | 0.549 | 8 | 0.950 | 0.631 | 0.802 | 0.847 | ||||||||||||||||||||||
| 0.109 | 0.619 | 0.826 | 0.410 | 0.270 | 0.371 | 0.344 | 0.299 | 0.408 | 0.574 | 0.619 | 0.473 | 0.126 | 0.260 | 0.409 | 0.215 | |||||||||||||||||||||||||||
| SCiO | 4 | 0.832 | 0.800 | 0.964 | 0.813 | 5 | 0.668 | 0.857 | 0.887 | 0.702 | 14 | 0.882 | 0.638 | 0.647 | 0.763 | 10 | 0.967 | 0.233 | 0.829 | 0.840 | ||||||||||||||||||||||
| 0.195 | 0.395 | 0.347 | 0.261 | 0.267 | 0.174 | 0.118 | 0.238 | 0.217 | 0.438 | 0.306 | 0.275 | 0.106 | 0.364 | 0.373 | 0.220 | |||||||||||||||||||||||||||
| Chewiness | Gumminess | Heterogeneity | Chewing residue | |||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | |||||||||||||||||||||||||||
| NIRFlex N-500 | 13 | 1.000 | 0.243 | 0.779 | 0.646 | 4 | 0.789 | 0.637 | 0.694 | 0.283 | 7 | 0.913 | 0.639 | 0.856 | 0.762 | 9 | 0.522 | 0.323 | 0.613 | 0.504 | ||||||||||||||||||||||
| 0.008 | 0.708 | 0.313 | 0.300 | 0.143 | 0.162 | 0.678 | 0.295 | 0.143 | 0.488 | 0.325 | 0.257 | 0.225 | 0.261 | 0.195 | 0.226 | |||||||||||||||||||||||||||
| microPHAZIR | 10 | 0.860 | 0.312 | 0.782 | 0.348 | 4 | 0.873 | 0.237 | 0.614 | 0.418 | 1 | 1.000 | 0.322 | 0.773 | 0.426 | 12 | 0.650 | 0.059 | 0.608 | 0.359 | ||||||||||||||||||||||
| 0.161 | 0.560 | 0.500 | 0.321 | 0.121 | 0.350 | 0.462 | 0.246 | 0.000 | 0.546 | 0.965 | 0.429 | 0.195 | 0.274 | 0.403 | 0.250 | |||||||||||||||||||||||||||
| MicroNIR 1700 | 2 | 0.794 | 0.817 | 0.754 | 0.784 | 4 | 0.826 | 0.561 | 0.733 | 0.670 | 5 | 0.576 | 0.617 | 0.649 | 0.570 | 14 | 0.510 | 0.290 | 0.639 | 0.438 | ||||||||||||||||||||||
| 0.171 | 0.252 | 0.170 | 0.185 | 0.131 | 0.220 | 0.391 | 0.205 | 0.304 | 0.454 | 0.373 | 0.341 | 0.237 | 0.241 | 0.256 | 0.241 | |||||||||||||||||||||||||||
| Enterprise | 8 | 0.735 | 0.343 | 0.676 | 0.672 | 12 | 0.803 | 0.506 | 0.614 | 0.678 | 1 | 0.744 | 0.369 | 0.714 | 0.661 | 11 | 0.998 | 0.300 | 0.667 | 0.335 | ||||||||||||||||||||||
| 0.194 | 0.256 | 0.308 | 0.225 | 0.127 | 0.284 | 0.240 | 0.179 | 0.273 | 0.397 | 0.354 | 0.307 | 0.013 | 0.340 | 0.730 | 0.312 | |||||||||||||||||||||||||||
| SCiO | 14 | 0.704 | 0.681 | 0.641 | 0.662 | 8 | 0.773 | 0.116 | 0.722 | 0.550 | 4 | 0.670 | 0.614 | 0.764 | 0.643 | 12 | 0.741 | 0.339 | 0.790 | 0.358 | ||||||||||||||||||||||
| 0.192 | 0.365 | 0.271 | 0.238 | 0.146 | 0.287 | 0.369 | 0.219 | 0.277 | 0.383 | 0.395 | 0.315 | 0.179 | 0.190 | 0.514 | 0.260 | |||||||||||||||||||||||||||
| (a) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Veined | Fat Color | Color Homogeneity | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||||||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||||||||||||||||||||||||||||||||
| NIRFlex N-500 | 7 | 0.851 | 0.395 | 0.678 | 0.745 | 6 | 0.704 | 0.635 | 0.666 | 0.654 | 5 | 0.852 | 0.474 | 0.498 | 0.729 | ||||||||||||||||||||||||||||||||||||||||
| 0.427 | 0.876 | 0.679 | 0.559 | 0.214 | 0.401 | 0.221 | 0.252 | 0.199 | 0.344 | 0.258 | 0.377 | ||||||||||||||||||||||||||||||||||||||||||||
| microPHAZIR | 13 | 0.999 | 0.566 | 0.740 | 0.831 | 3 | 1.000 | 0.705 | 0.641 | 0.843 | 3 | 1.000 | 0.524 | 0.678 | 0.758 | ||||||||||||||||||||||||||||||||||||||||
| 0.037 | 0.932 | 0.769 | 0.469 | 0.002 | 0.357 | 0.264 | 0.172 | 0.009 | 0.320 | 0.277 | 0.639 | ||||||||||||||||||||||||||||||||||||||||||||
| MicroNIR 1700 | 5 | 0.738 | 0.314 | 0.800 | 0.660 | 11 | 0.854 | 0.655 | 0.540 | 0.716 | 3 | 0.851 | 0.694 | 0.466 | 0.706 | ||||||||||||||||||||||||||||||||||||||||
| 0.508 | 0.908 | 0.806 | 0.634 | 0.169 | 0.204 | 0.401 | 0.225 | 0.194 | 0.430 | 0.282 | 0.412 | ||||||||||||||||||||||||||||||||||||||||||||
| Enterprise | 5 | 0.825 | 0.489 | 0.743 | 0.738 | 5 | 0.922 | 0.700 | 0.609 | 0.795 | 14 | 0.967 | 0.475 | 0.439 | 0.691 | ||||||||||||||||||||||||||||||||||||||||
| 0.451 | 0.862 | 0.643 | 0.562 | 0.115 | 0.258 | 0.369 | 0.199 | 0.097 | 0.541 | 0.327 | 0.614 | ||||||||||||||||||||||||||||||||||||||||||||
| SCiO | 14 | 0.850 | 0.101 | 0.582 | 0.639 | 12 | 0.832 | 0.282 | 0.413 | 0.553 | 15 | 0.833 | 0.288 | 0.710 | 0.673 | ||||||||||||||||||||||||||||||||||||||||
| 0.443 | 1.095 | 0.944 | 0.671 | 0.176 | 0.307 | 0.534 | 0.280 | 0.203 | 0.430 | 0.288 | 0.417 | ||||||||||||||||||||||||||||||||||||||||||||
| Color intensity | Exudate | White dots | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||||||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||||||||||||||||||||||||||||||||
| NIRFlex N-500 | 9 | 0.992 | 0.355 | 0.610 | 0.815 | 11 | 0.970 | 0.235 | 0.493 | 0.565 | 13 | 0.917 | 0.778 | 0.548 | 0.822 | ||||||||||||||||||||||||||||||||||||||||
| 0.045 | 0.382 | 0.421 | 0.223 | 0.094 | 0.685 | 0.579 | 0.356 | 0.239 | 0.333 | 0.559 | 0.322 | ||||||||||||||||||||||||||||||||||||||||||||
| microPHAZIR | 7 | 0.919 | 0.339 | 0.482 | 0.662 | 8 | 0.849 | 0.473 | 0.351 | 0.646 | 15 | 1.000 | 0.626 | 0.458 | 0.848 | ||||||||||||||||||||||||||||||||||||||||
| 0.137 | 0.522 | 0.419 | 0.284 | 0.215 | 0.454 | 0.443 | 0.304 | 0.000 | 0.540 | 0.550 | 0.299 | ||||||||||||||||||||||||||||||||||||||||||||
| MicroNIR 1700 | 11 | 0.588 | 0.675 | 0.624 | 0.601 | 10 | 0.843 | 0.292 | 0.652 | 0.652 | 1 | 0.883 | 0.628 | 0.781 | 0.703 | ||||||||||||||||||||||||||||||||||||||||
| 0.315 | 0.280 | 0.247 | 0.301 | 0.218 | 0.458 | 0.514 | 0.323 | 0.372 | 0.522 | 1.015 | 0.540 | ||||||||||||||||||||||||||||||||||||||||||||
| Enterprise | 2 | 0.750 | 0.666 | 0.578 | 0.694 | 13 | 0.990 | 0.838 | 0.305 | 0.826 | 6 | 0.983 | 0.634 | 0.715 | 0.707 | ||||||||||||||||||||||||||||||||||||||||
| 0.235 | 0.355 | 0.292 | 0.265 | 0.047 | 0.263 | 0.481 | 0.216 | 0.104 | 0.612 | 1.136 | 0.508 | ||||||||||||||||||||||||||||||||||||||||||||
| SCiO | 8 | 0.907 | 0.617 | 0.202 | 0.558 | 10 | 0.944 | 0.242 | 0.723 | 0.693 | 13 | 0.808 | 0.651 | 0.419 | 0.684 | ||||||||||||||||||||||||||||||||||||||||
| 0.143 | 0.397 | 0.667 | 0.323 | 0.117 | 0.609 | 0.582 | 0.341 | 0.328 | 0.396 | 0.750 | 0.428 | ||||||||||||||||||||||||||||||||||||||||||||
| (b) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Odor Intensity | Cured aroma | Pig aroma | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||||||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||||||||||||||||||||||||||||||||
| NIRFlex N-500 | 6 | 0.857 | 0.366 | 0.729 | 0.596 | 4 | 0.781 | 0.723 | 0.472 | 0.676 | 6 | 0.869 | 0.140 | 0.811 | 0.734 | ||||||||||||||||||||||||||||||||||||||||
| 0.112 | 0.361 | 0.238 | 0.192 | 0.106 | 0.184 | 0.246 | 0.148 | 0.049 | 0.100 | 0.121 | 0.073 | ||||||||||||||||||||||||||||||||||||||||||||
| microPHAZIR | 10 | 0.878 | 0.167 | 0.568 | 0.743 | 8 | 0.936 | 0.683 | 0.113 | 0.599 | 1 | 0.983 | 0.195 | 0.376 | 0.505 | ||||||||||||||||||||||||||||||||||||||||
| 0.113 | 0.213 | 0.174 | 0.142 | 0.064 | 0.264 | 0.296 | 0.163 | 0.022 | 0.111 | 0.191 | 0.088 | ||||||||||||||||||||||||||||||||||||||||||||
| MicroNIR 1700 | 11 | 0.800 | 0.403 | 0.449 | 0.609 | 11 | 0.649 | 0.219 | 0.271 | 0.460 | 11 | 0.877 | 0.537 | 0.547 | 0.730 | ||||||||||||||||||||||||||||||||||||||||
| 0.134 | 0.158 | 0.346 | 0.185 | 0.173 | 0.221 | 0.225 | 0.189 | 0.037 | 0.090 | 0.118 | 0.066 | ||||||||||||||||||||||||||||||||||||||||||||
| Enterprise | 13 | 0.734 | 0.473 | 0.372 | 0.544 | 11 | 0.949 | 0.344 | 0.216 | 0.470 | 10 | 0.967 | 0.628 | 0.430 | 0.793 | ||||||||||||||||||||||||||||||||||||||||
| 0.176 | 0.141 | 0.276 | 0.190 | 0.060 | 0.346 | 0.369 | 0.202 | 0.024 | 0.087 | 0.095 | 0.054 | ||||||||||||||||||||||||||||||||||||||||||||
| SCiO | 5 | 0.578 | 0.357 | 0.454 | 0.506 | 14 | 0.480 | 0.389 | 0.171 | 0.302 | 14 | 0.720 | 0.310 | 0.335 | 0.617 | ||||||||||||||||||||||||||||||||||||||||
| 0.195 | 0.232 | 0.207 | 0.203 | 0.201 | 0.267 | 0.233 | 0.217 | 0.066 | 0.087 | 0.088 | 0.073 | ||||||||||||||||||||||||||||||||||||||||||||
| Rancid aroma | Atypical aroma | Flavor intensity | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||||||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||||||||||||||||||||||||||||||||
| NIRFlex N-500 | 15 | 0.990 | 0.072 | 0.708 | 0.331 | 1 | 1.000 | 0.445 | 0.652 | 0.863 | 15 | 0.974 | 0.588 | 0.344 | 0.602 | ||||||||||||||||||||||||||||||||||||||||
| 0.021 | 0.240 | 0.420 | 0.188 | 0.000 | 0.135 | 0.099 | 0.065 | 0.046 | 0.232 | 0.515 | 0.222 | ||||||||||||||||||||||||||||||||||||||||||||
| microPHAZIR | 4 | 0.632 | 0.420 | 0.763 | 0.156 | 9 | 0.869 | 0.397 | 0.486 | 0.654 | 3 | 0.847 | 0.650 | 0.635 | 0.774 | ||||||||||||||||||||||||||||||||||||||||
| 0.113 | 0.214 | 0.330 | 0.179 | 0.057 | 0.176 | 0.148 | 0.101 | 0.112 | 0.203 | 0.187 | 0.142 | ||||||||||||||||||||||||||||||||||||||||||||
| MicroNIR 1700 | 11 | 0.627 | 0.591 | 0.403 | 0.568 | 12 | 0.638 | 0.603 | 0.682 | 0.609 | 5 | 0.700 | 0.302 | 0.349 | 0.442 | ||||||||||||||||||||||||||||||||||||||||
| 0.134 | 0.097 | 0.139 | 0.130 | 0.114 | 0.084 | 0.088 | 0.106 | 0.163 | 0.255 | 0.472 | 0.249 | ||||||||||||||||||||||||||||||||||||||||||||
| Enterprise | 8 | 0.919 | 0.028 | 0.499 | 0.612 | 13 | 0.925 | 0.589 | 0.651 | 0.764 | 14 | 0.803 | 0.309 | 0.518 | 0.632 | ||||||||||||||||||||||||||||||||||||||||
| 0.050 | 0.225 | 0.186 | 0.121 | 0.052 | 0.174 | 0.140 | 0.097 | 0.132 | 0.313 | 0.200 | 0.181 | ||||||||||||||||||||||||||||||||||||||||||||
| SCiO | 8 | 0.662 | 0.803 | 0.548 | 0.575 | 15 | 0.940 | 0.687 | 0.320 | 0.811 | 14 | 0.736 | 0.652 | 0.377 | 0.402 | ||||||||||||||||||||||||||||||||||||||||
| 0.122 | 0.089 | 0.182 | 0.129 | 0.044 | 0.088 | 0.144 | 0.075 | 0.160 | 0.190 | 0.470 | 0.237 | ||||||||||||||||||||||||||||||||||||||||||||
| Fat flavor intensity | Cured flavor | Saltiness | Sweetness | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||||||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||||||||||||||||||||||||||||
| NIRFlex N-500 | 7 | 0.952 | 0.349 | 0.626 | 0.743 | 6 | 0.951 | 0.715 | 0.647 | 0.826 | 8 | 0.779 | 0.550 | 0.581 | 0.680 | 12 | 0.950 | 0.315 | 0.719 | 0.761 | |||||||||||||||||||||||||||||||||||
| 0.110 | 0.468 | 0.442 | 0.266 | 0.064 | 0.190 | 0.223 | 0.126 | 0.172 | 0.262 | 0.248 | 0.200 | 0.059 | 0.251 | 0.188 | 0.131 | ||||||||||||||||||||||||||||||||||||||||
| microPHAZIR | 9 | 0.702 | 0.047 | 0.652 | 0.608 | 12 | 0.794 | 0.546 | 0.797 | 0.692 | 15 | 0.969 | 0.813 | 0.273 | 0.600 | 9 | 0.968 | 0.228 | 0.508 | 0.597 | |||||||||||||||||||||||||||||||||||
| 0.338 | 0.449 | 0.376 | 0.363 | 0.126 | 0.270 | 0.225 | 0.172 | 0.060 | 0.294 | 0.495 | 0.228 | 0.048 | 0.401 | 0.173 | 0.174 | ||||||||||||||||||||||||||||||||||||||||
| MicroNIR 1700 | 10 | 0.980 | 0.649 | 0.840 | 0.774 | 15 | 0.729 | 0.120 | 0.780 | 0.637 | 14 | 0.897 | 0.445 | 0.497 | 0.610 | 15 | 0.947 | 0.718 | 0.826 | 0.858 | |||||||||||||||||||||||||||||||||||
| 0.072 | 0.440 | 0.595 | 0.293 | 0.165 | 0.213 | 0.226 | 0.183 | 0.107 | 0.429 | 0.309 | 0.224 | 0.056 | 0.170 | 0.148 | 0.099 | ||||||||||||||||||||||||||||||||||||||||
| Enterprise | 14 | 0.994 | 0.393 | 0.369 | 0.679 | 7 | 0.759 | 0.383 | 0.448 | 0.654 | 12 | 0.729 | 0.244 | 0.625 | 0.615 | 8 | 0.699 | 0.499 | 0.884 | 0.660 | |||||||||||||||||||||||||||||||||||
| 0.041 | 0.463 | 0.657 | 0.313 | 0.147 | 0.228 | 0.257 | 0.181 | 0.199 | 0.334 | 0.144 | 0.218 | 0.148 | 0.200 | 0.188 | 0.164 | ||||||||||||||||||||||||||||||||||||||||
| SCiO | 11 | 0.717 | 0.171 | 0.453 | 0.513 | 9 | 0.782 | 0.460 | 0.366 | 0.502 | 12 | 0.556 | 0.153 | 0.639 | 0.459 | 5 | 0.578 | 0.541 | 0.277 | 0.468 | |||||||||||||||||||||||||||||||||||
| 0.280 | 0.442 | 0.736 | 0.407 | 0.129 | 0.244 | 0.396 | 0.210 | 0.236 | 0.336 | 0.265 | 0.258 | 0.176 | 0.118 | 0.268 | 0.186 | ||||||||||||||||||||||||||||||||||||||||
| Sourness | Rancidity | Aftertaste | Atypical flavor | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||||||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||||||||||||||||||||||||||||
| NIRFlex N-500 | 5 | 0.841 | 0.725 | 0.500 | 0.681 | 2 | 0.658 | 0.616 | 0.664 | 0.571 | 15 | 0.942 | 0.396 | 0.678 | 0.792 | 9 | 0.999 | 0.477 | 0.329 | 0.511 | |||||||||||||||||||||||||||||||||||
| 0.086 | 0.106 | 0.256 | 0.129 | 0.149 | 0.169 | 0.197 | 0.160 | 0.091 | 0.286 | 0.253 | 0.166 | 0.010 | 0.264 | 0.464 | 0.207 | ||||||||||||||||||||||||||||||||||||||||
| microPHAZIR | 4 | 0.840 | 0.460 | 0.345 | 0.677 | 11 | 0.702 | 0.317 | 0.613 | 0.603 | 7 | 0.984 | 0.700 | 0.828 | 0.854 | 2 | 0.939 | 0.095 | 0.791 | 0.738 | |||||||||||||||||||||||||||||||||||
| 0.086 | 0.121 | 0.192 | 0.114 | 0.155 | 0.176 | 0.169 | 0.160 | 0.048 | 0.178 | 0.337 | 0.153 | 0.078 | 0.291 | 0.169 | 0.146 | ||||||||||||||||||||||||||||||||||||||||
| MicroNIR 1700 | 12 | 0.958 | 0.521 | 0.607 | 0.840 | 7 | 0.926 | 0.126 | 0.566 | 0.674 | 7 | 0.785 | 0.369 | 0.242 | 0.597 | 9 | 0.742 | 0.452 | 0.416 | 0.624 | |||||||||||||||||||||||||||||||||||
| 0.043 | 0.138 | 0.136 | 0.083 | 0.068 | 0.299 | 0.170 | 0.145 | 0.162 | 0.290 | 0.381 | 0.230 | 0.143 | 0.242 | 0.215 | 0.173 | ||||||||||||||||||||||||||||||||||||||||
| Enterprise | 11 | 1.000 | 0.598 | 0.496 | 0.574 | 13 | 0.963 | 0.128 | 0.471 | 0.670 | 8 | 0.884 | 0.519 | 0.536 | 0.680 | 11 | 0.965 | 0.602 | 0.368 | 0.729 | |||||||||||||||||||||||||||||||||||
| 0.000 | 0.107 | 0.346 | 0.140 | 0.051 | 0.306 | 0.209 | 0.150 | 0.129 | 0.333 | 0.310 | 0.207 | 0.049 | 0.230 | 0.290 | 0.149 | ||||||||||||||||||||||||||||||||||||||||
| SCiO | 5 | 0.781 | 0.277 | 0.191 | 0.533 | 12 | 0.576 | 0.017 | 0.451 | 0.450 | 15 | 0.665 | 0.219 | 0.308 | 0.528 | 1 | 0.693 | 0.272 | 0.357 | 0.341 | |||||||||||||||||||||||||||||||||||
| 0.098 | 0.168 | 0.227 | 0.136 | 0.164 | 0.243 | 0.188 | 0.182 | 0.209 | 0.375 | 0.268 | 0.250 | 0.151 | 0.216 | 0.429 | 0.225 | ||||||||||||||||||||||||||||||||||||||||
| (c) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Hardness | Juiciness | Fatness | Fibrousness | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||||||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||||||||||||||||||||||||||||
| NIRFlex N-500 | 9 | 0.996 | 0.844 | 0.758 | 0.926 | 8 | 0.903 | 0.682 | 0.511 | 0.700 | 13 | 0.853 | 0.654 | 0.709 | 0.821 | 5 | 0.864 | 0.751 | 0.556 | 0.781 | |||||||||||||||||||||||||||||||||||
| 0.038 | 0.219 | 0.336 | 0.159 | 0.127 | 0.360 | 0.446 | 0.246 | 0.214 | 0.241 | 0.191 | 0.215 | 0.204 | 0.313 | 0.361 | 0.252 | ||||||||||||||||||||||||||||||||||||||||
| microPHAZIR | 6 | 0.963 | 0.620 | 0.898 | 0.913 | 10 | 0.988 | 0.638 | 0.811 | 0.797 | 11 | 0.994 | 0.028 | 0.757 | 0.742 | 15 | 0.996 | 0.665 | 0.734 | 0.794 | |||||||||||||||||||||||||||||||||||
| 0.121 | 0.319 | 0.137 | 0.168 | 0.045 | 0.336 | 0.404 | 0.207 | 0.040 | 0.522 | 0.409 | 0.259 | 0.040 | 0.388 | 0.671 | 0.302 | ||||||||||||||||||||||||||||||||||||||||
| MicroNIR 1700 | 14 | 0.873 | 0.763 | 0.882 | 0.821 | 15 | 0.887 | 0.513 | 0.526 | 0.717 | 11 | 0.832 | 0.514 | 0.610 | 0.695 | 7 | 0.832 | 0.252 | 0.797 | 0.719 | |||||||||||||||||||||||||||||||||||
| 0.190 | 0.435 | 0.241 | 0.250 | 0.144 | 0.332 | 0.391 | 0.232 | 0.189 | 0.413 | 0.416 | 0.276 | 0.216 | 0.453 | 0.327 | 0.282 | ||||||||||||||||||||||||||||||||||||||||
| Enterprise | 6 | 0.968 | 0.756 | 0.727 | 0.851 | 14 | 0.957 | 0.802 | 0.707 | 0.850 | 4 | 0.998 | 0.592 | 0.635 | 0.737 | 13 | 0.998 | 0.596 | 0.495 | 0.804 | |||||||||||||||||||||||||||||||||||
| 0.119 | 0.346 | 0.470 | 0.247 | 0.084 | 0.227 | 0.331 | 0.171 | 0.021 | 0.532 | 0.514 | 0.287 | 0.023 | 0.510 | 0.315 | 0.233 | ||||||||||||||||||||||||||||||||||||||||
| SCiO | 2 | 0.864 | 0.862 | 0.760 | 0.829 | 2 | 0.653 | 0.207 | 0.802 | 0.570 | 9 | 0.590 | 0.223 | 0.200 | 0.459 | 14 | 0.857 | 0.836 | 0.430 | 0.671 | |||||||||||||||||||||||||||||||||||
| 0.170 | 0.361 | 0.330 | 0.237 | 0.244 | 0.453 | 0.237 | 0.284 | 0.340 | 0.397 | 0.444 | 0.366 | 0.208 | 0.400 | 0.673 | 0.350 | ||||||||||||||||||||||||||||||||||||||||
| Chewiness | Gumminess | Heterogeneity | Chewing residue | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||||||||||||||||||||||||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||||||||||||||||||||||||||||
| NIRFlex N-500 | 10 | 0.999 | 0.716 | 0.675 | 0.748 | 6 | 0.882 | 0.817 | 0.654 | 0.757 | 5 | 0.809 | 0.170 | 0.719 | 0.682 | 3 | 0.938 | 0.326 | 0.325 | 0.614 | |||||||||||||||||||||||||||||||||||
| 0.009 | 0.347 | 0.446 | 0.219 | 0.092 | 0.152 | 0.325 | 0.159 | 0.236 | 0.453 | 0.354 | 0.298 | 0.081 | 0.297 | 0.443 | 0.217 | ||||||||||||||||||||||||||||||||||||||||
| microPHAZIR | 10 | 0.992 | 0.214 | 0.533 | 0.631 | 4 | 0.745 | 0.439 | 0.603 | 0.673 | 13 | 0.831 | 0.502 | 0.513 | 0.675 | 15 | 0.997 | 0.273 | 0.635 | 0.715 | |||||||||||||||||||||||||||||||||||
| 0.034 | 0.500 | 0.403 | 0.250 | 0.170 | 0.256 | 0.216 | 0.192 | 0.224 | 0.551 | 0.391 | 0.322 | 0.021 | 0.306 | 0.301 | 0.167 | ||||||||||||||||||||||||||||||||||||||||
| MicroNIR 1700 | 11 | 0.761 | 0.159 | 0.629 | 0.648 | 3 | 0.589 | 0.425 | 0.411 | 0.478 | 4 | 0.801 | 0.521 | 0.737 | 0.717 | 10 | 0.864 | 0.511 | 0.313 | 0.522 | |||||||||||||||||||||||||||||||||||
| 0.197 | 0.321 | 0.277 | 0.232 | 0.204 | 0.201 | 0.386 | 0.240 | 0.219 | 0.470 | 0.267 | 0.278 | 0.105 | 0.356 | 0.472 | 0.245 | ||||||||||||||||||||||||||||||||||||||||
| Enterprise | 9 | 0.963 | 0.409 | 0.467 | 0.702 | 8 | 0.776 | 0.308 | 0.459 | 0.470 | 11 | 0.949 | 0.218 | 0.696 | 0.665 | 8 | 0.966 | 0.321 | 0.414 | 0.715 | |||||||||||||||||||||||||||||||||||
| 0.077 | 0.266 | 0.493 | 0.226 | 0.166 | 0.278 | 0.411 | 0.237 | 0.118 | 0.565 | 0.613 | 0.338 | 0.064 | 0.324 | 0.276 | 0.173 | ||||||||||||||||||||||||||||||||||||||||
| SCiO | 11 | 0.691 | 0.523 | 0.443 | 0.603 | 9 | 0.493 | 0.389 | 0.349 | 0.449 | 15 | 0.817 | 0.193 | 0.703 | 0.649 | 15 | 0.720 | 0.482 | 0.574 | 0.590 | |||||||||||||||||||||||||||||||||||
| 0.212 | 0.328 | 0.301 | 0.247 | 0.232 | 0.228 | 0.254 | 0.235 | 0.226 | 0.596 | 0.236 | 0.312 | 0.160 | 0.259 | 0.290 | 0.202 | ||||||||||||||||||||||||||||||||||||||||
| (a) | |||||||||||||||||||||||||
| Veined | Fat Color | Color Homogeneity | |||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||
| NIRFlex N-500 | 12 | 0.942 | 0.603 | 0.847 | 0.835 | 13 | 0.999 | 0.054 | 0.947 | 0.800 | 15 | 1.000 | 0.543 | 0.746 | 0.834 | ||||||||||
| 0.267 | 0.895 | 0.636 | 0.481 | 0.012 | 0.451 | 0.198 | 0.191 | 0.003 | 0.467 | 0.347 | 0.225 | ||||||||||||||
| Foss 5000 * | 5 | 0.695 | 0.662 | 0.751 | 0.632 | 4 | 0.708 | 0.284 | 0.733 | 0.574 | 11 | 0.926 | 0.193 | 0.678 | 0.749 | ||||||||||
| 0.518 | 0.831 | 1.024 | 0.670 | 0.235 | 0.459 | 0.179 | 0.274 | 0.145 | 0.520 | 0.291 | 0.261 | ||||||||||||||
| microPHAZIR | 13 | 0.882 | 0.434 | 0.821 | 0.797 | 6 | 0.794 | 0.458 | 0.794 | 0.720 | 3 | 0.945 | 0.650 | 0.709 | 0.801 | ||||||||||
| 0.452 | 0.737 | 0.583 | 0.525 | 0.205 | 0.340 | 0.168 | 0.226 | 0.112 | 0.402 | 0.357 | 0.228 | ||||||||||||||
| MicroNIR 1700 | 1 | 1.000 | 0.372 | 0.708 | 0.825 | 9 | 0.910 | 0.387 | 0.697 | 0.802 | 9 | 0.909 | 0.366 | 0.632 | 0.667 | ||||||||||
| 0.000 | 1.036 | 0.543 | 0.453 | 0.140 | 0.334 | 0.164 | 0.186 | 0.154 | 0.432 | 0.544 | 0.298 | ||||||||||||||
| Enterprise | 11 | 0.918 | 0.394 | 0.874 | 0.808 | 2 | 0.731 | 0.587 | 0.734 | 0.653 | 10 | 1.000 | 0.615 | 0.635 | 0.722 | ||||||||||
| 0.316 | 0.809 | 0.607 | 0.472 | 0.230 | 0.450 | 0.336 | 0.290 | 0.004 | 0.459 | 0.593 | 0.290 | ||||||||||||||
| SCiO | 3 | 0.730 | 0.716 | 0.844 | 0.709 | 13 | 0.816 | 0.830 | 0.738 | 0.392 | 2 | 0.401 | 0.223 | 0.583 | 0.373 | ||||||||||
| 0.557 | 0.590 | 0.688 | 0.584 | 0.202 | 0.152 | 0.747 | 0.340 | 0.412 | 0.381 | 0.307 | 0.393 | ||||||||||||||
| Color intensity | Exudate | White dots | |||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||
| NIRFlex N-500 | 12 | 0.841 | 0.639 | 0.596 | 0.731 | 8 | 0.819 | 0.762 | 0.636 | 0.519 | 3 | 0.706 | 0.144 | 0.790 | 0.628 | ||||||||||
| 0.208 | 0.313 | 0.464 | 0.278 | 0.230 | 0.310 | 0.779 | 0.377 | 0.423 | 0.711 | 0.291 | 0.462 | ||||||||||||||
| Foss 5000 * | 5 | 0.750 | 0.539 | 0.788 | 0.634 | 8 | 0.818 | 0.096 | 0.649 | 0.636 | 6 | 0.625 | 0.257 | 0.735 | 0.423 | ||||||||||
| 0.275 | 0.361 | 0.342 | 0.300 | 0.216 | 0.544 | 0.371 | 0.313 | 0.565 | 0.870 | 0.458 | 0.607 | ||||||||||||||
| microPHAZIR | 7 | 0.868 | 0.784 | 0.566 | 0.758 | 8 | 0.917 | 0.846 | 0.589 | 0.407 | 1 | 0.974 | 0.451 | 0.701 | 0.735 | ||||||||||
| 0.170 | 0.436 | 0.266 | 0.243 | 0.150 | 0.159 | 0.973 | 0.402 | 0.160 | 0.801 | 0.682 | 0.429 | ||||||||||||||
| MicroNIR 1700 | 13 | 0.909 | 0.696 | 0.734 | 0.676 | 12 | 0.790 | 0.304 | 0.780 | 0.650 | 11 | 0.957 | 0.158 | 0.740 | 0.711 | ||||||||||
| 0.136 | 0.284 | 0.579 | 0.274 | 0.266 | 0.456 | 0.317 | 0.309 | 0.170 | 0.840 | 0.734 | 0.455 | ||||||||||||||
| Enterprise | 1 | 0.917 | 0.502 | 0.799 | 0.782 | 15 | 0.720 | 0.364 | 0.663 | 0.511 | 14 | 0.687 | 0.017 | 0.796 | 0.537 | ||||||||||
| 0.238 | 0.335 | 0.282 | 0.261 | 0.291 | 0.707 | 0.353 | 0.391 | 0.454 | 0.782 | 0.509 | 0.525 | ||||||||||||||
| SCiO | 3 | 0.726 | 0.580 | 0.645 | 0.690 | 12 | 0.670 | 0.360 | 0.673 | 0.429 | 9 | 0.877 | 0.366 | 0.742 | 0.683 | ||||||||||
| 0.263 | 0.288 | 0.322 | 0.276 | 0.293 | 0.565 | 0.634 | 0.410 | 0.283 | 0.884 | 0.440 | 0.450 | ||||||||||||||
| (b) | |||||||||||||||||||||||||
| Odor Intensity | Cured aroma | Pig aroma | |||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||
| NIRFlex N-500 | 11 | 0.997 | 0.138 | 0.602 | 0.752 | 14 | 1.000 | 0.509 | 0.689 | 0.900 | 9 | 1.000 | 0.007 | 0.609 | 0.715 | ||||||||||
| 0.016 | 0.322 | 0.197 | 0.147 | 0.000 | 0.172 | 0.133 | 0.084 | 0.000 | 0.142 | 0.088 | 0.065 | ||||||||||||||
| Foss 5000 * | 10 | 0.808 | 0.014 | 0.771 | 0.653 | 10 | 0.905 | 0.394 | 0.683 | 0.763 | 10 | 0.811 | 0.087 | 0.773 | 0.681 | ||||||||||
| 0.132 | 0.305 | 0.141 | 0.171 | 0.086 | 0.226 | 0.135 | 0.125 | 0.054 | 0.117 | 0.043 | 0.066 | ||||||||||||||
| microPHAZIR | 10 | 1.000 | 0.170 | 0.679 | 0.683 | 12 | 0.938 | 0.409 | 0.834 | 0.809 | 6 | 0.768 | 0.125 | 0.600 | 0.379 | ||||||||||
| 0.002 | 0.424 | 0.181 | 0.179 | 0.082 | 0.116 | 0.203 | 0.114 | 0.063 | 0.142 | 0.134 | 0.092 | ||||||||||||||
| MicroNIR 1700 | 15 | 0.918 | 0.378 | 0.906 | 0.689 | 15 | 0.552 | 0.508 | 0.677 | 0.412 | 15 | 0.772 | 0.040 | 0.718 | 0.642 | ||||||||||
| 0.088 | 0.287 | 0.290 | 0.174 | 0.166 | 0.312 | 0.249 | 0.208 | 0.061 | 0.116 | 0.081 | 0.075 | ||||||||||||||
| Enterprise | 5 | 0.653 | 0.190 | 0.746 | 0.503 | 12 | 0.670 | 0.365 | 0.705 | 0.326 | 8 | 0.960 | 0.491 | 0.632 | 0.737 | ||||||||||
| 0.173 | 0.310 | 0.225 | 0.207 | 0.151 | 0.253 | 0.369 | 0.214 | 0.023 | 0.100 | 0.143 | 0.070 | ||||||||||||||
| SCiO | 4 | 0.758 | 0.005 | 0.623 | 0.588 | 14 | 0.771 | 0.344 | 0.582 | 0.232 | 2 | 0.417 | 0.137 | 0.665 | 0.405 | ||||||||||
| 0.138 | 0.259 | 0.262 | 0.184 | 0.113 | 0.301 | 0.457 | 0.232 | 0.081 | 0.107 | 0.124 | 0.093 | ||||||||||||||
| Rancid aroma | Atypical aroma | Flavor intensity | |||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | |||||||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||||||
| NIRFlex N-500 | 4 | 0.575 | 0.227 | 0.625 | 0.505 | 14 | 0.961 | 0.314 | 0.643 | 0.718 | 8 | 0.902 | 0.379 | 0.540 | 0.307 | ||||||||||
| 0.139 | 0.107 | 0.166 | 0.139 | 0.031 | 0.199 | 0.103 | 0.090 | 0.091 | 0.291 | 0.624 | 0.277 | ||||||||||||||
| microPHAZIR | 10 | 0.707 | 0.185 | 0.710 | 0.421 | 6 | 0.941 | 0.141 | 0.557 | 0.557 | 9 | 0.845 | 0.542 | 0.761 | 0.717 | ||||||||||
| 0.100 | 0.279 | 0.145 | 0.148 | 0.046 | 0.209 | 0.197 | 0.118 | 0.119 | 0.198 | 0.275 | 0.165 | ||||||||||||||
| MicroNIR 1700 | 13 | 0.562 | 0.017 | 0.769 | 0.245 | 5 | 0.995 | 0.048 | 0.608 | 0.616 | 4 | 0.810 | 0.437 | 0.536 | 0.645 | ||||||||||
| 0.130 | 0.279 | 0.195 | 0.171 | 0.016 | 0.249 | 0.106 | 0.106 | 0.127 | 0.238 | 0.306 | 0.184 | ||||||||||||||
| Enterprise | 14 | 0.793 | 0.271 | 0.643 | 0.598 | 13 | 0.922 | 0.529 | 0.654 | 0.635 | 2 | 0.661 | 0.185 | 0.595 | 0.462 | ||||||||||
| 0.098 | 0.207 | 0.115 | 0.123 | 0.056 | 0.103 | 0.225 | 0.107 | 0.189 | 0.288 | 0.310 | 0.228 | ||||||||||||||
| SCiO | 14 | 0.918 | 0.199 | 0.747 | 0.344 | 10 | 0.792 | 0.184 | 0.618 | 0.476 | 2 | 0.822 | 0.778 | 0.750 | 0.753 | ||||||||||
| 0.057 | 0.206 | 0.405 | 0.182 | 0.086 | 0.236 | 0.229 | 0.146 | 0.161 | 0.145 | 0.156 | 0.158 | ||||||||||||||
| Fat flavor intensity | Cured flavor | Saltiness | Sweetness | ||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
| NIRFlex N-500 | 11 | 1.000 | 0.209 | 0.638 | 0.508 | 9 | 0.992 | 0.240 | 0.524 | 0.710 | 15 | 0.981 | 0.644 | 0.745 | 0.816 | 15 | 0.855 | 0.666 | 0.707 | 0.787 | |||||
| 0.000 | 0.614 | 0.794 | 0.389 | 0.027 | 0.307 | 0.334 | 0.177 | 0.062 | 0.275 | 0.292 | 0.164 | 0.095 | 0.176 | 0.152 | 0.120 | ||||||||||
| Foss 5000 * | 12 | 0.758 | 0.120 | 0.771 | 0.611 | 10 | 0.973 | 0.076 | 0.665 | 0.427 | 10 | 0.972 | 0.662 | 0.561 | 0.787 | 11 | 0.823 | 0.551 | 0.608 | 0.381 | |||||
| 0.272 | 0.497 | 0.338 | 0.326 | 0.062 | 0.387 | 0.521 | 0.257 | 0.060 | 0.272 | 0.301 | 0.165 | 0.124 | 0.187 | 0.447 | 0.214 | ||||||||||
| microPHAZIR | 2 | 0.991 | 0.581 | 0.653 | 0.527 | 14 | 0.656 | 0.012 | 0.635 | 0.373 | 9 | 1.000 | 0.669 | 0.600 | 0.699 | 4 | 0.991 | 0.579 | 0.773 | 0.872 | |||||
| 0.142 | 0.344 | 0.964 | 0.414 | 0.190 | 0.461 | 0.293 | 0.265 | 0.000 | 0.212 | 0.458 | 0.196 | 0.025 | 0.169 | 0.175 | 0.096 | ||||||||||
| MicroNIR 1700 | 4 | 0.999 | 0.477 | 0.576 | 0.727 | 14 | 0.741 | 0.263 | 0.560 | 0.386 | 5 | 0.646 | 0.158 | 0.605 | 0.510 | 15 | 1.000 | 0.500 | 0.639 | 0.851 | |||||
| 0.052 | 0.370 | 0.675 | 0.301 | 0.182 | 0.215 | 0.430 | 0.240 | 0.203 | 0.388 | 0.272 | 0.250 | 0.002 | 0.206 | 0.142 | 0.097 | ||||||||||
| Enterprise | 11 | 0.897 | 0.026 | 0.731 | 0.430 | 11 | 0.967 | 0.573 | 0.713 | 0.826 | 9 | 0.940 | 0.808 | 0.825 | 0.867 | 5 | 0.747 | 0.303 | 0.669 | 0.587 | |||||
| 0.167 | 0.974 | 0.513 | 0.448 | 0.056 | 0.272 | 0.189 | 0.137 | 0.086 | 0.166 | 0.223 | 0.130 | 0.122 | 0.288 | 0.158 | 0.163 | ||||||||||
| SCiO | 15 | 0.601 | 0.604 | 0.589 | 0.569 | 14 | 0.794 | 0.055 | 0.855 | 0.214 | 1 | 0.982 | 0.764 | 0.587 | 0.877 | 13 | 0.739 | 0.573 | 0.618 | 0.670 | |||||
| 0.329 | 0.340 | 0.405 | 0.343 | 0.133 | 0.383 | 0.540 | 0.280 | 0.189 | 0.231 | 0.299 | 0.216 | 0.125 | 0.164 | 0.205 | 0.146 | ||||||||||
| Sourness | Rancidity | Aftertaste | Atypical flavor | ||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
| NIRFlex N-500 | 3 | 0.914 | 0.095 | 0.507 | 0.726 | 8 | 0.809 | 0.228 | 0.565 | 0.599 | 12 | 0.789 | 0.049 | 0.599 | 0.598 | 8 | 0.800 | 0.398 | 0.640 | 0.643 | |||||
| 0.061 | 0.176 | 0.154 | 0.104 | 0.122 | 0.272 | 0.127 | 0.155 | 0.161 | 0.363 | 0.316 | 0.230 | 0.127 | 0.258 | 0.229 | 0.171 | ||||||||||
| 10 | 0.784 | 0.177 | 0.686 | 0.614 | 9 | 0.769 | 0.191 | 0.697 | 0.220 | 13 | 0.889 | 0.630 | 0.682 | 0.743 | 7 | 0.939 | 0.561 | 0.787 | 0.378 | ||||||
| 0.104 | 0.190 | 0.136 | 0.126 | 0.117 | 0.381 | 0.340 | 0.221 | 0.111 | 0.353 | 0.244 | 0.190 | 0.073 | 0.200 | 0.571 | 0.242 | ||||||||||
| microPHAZIR | 11 | 1.000 | 0.145 | 0.699 | 0.781 | 15 | 0.909 | 0.593 | 0.607 | 0.422 | 5 | 0.926 | 0.381 | 0.627 | 0.740 | 7 | 0.849 | 0.449 | 0.629 | 0.697 | |||||
| 0.005 | 0.211 | 0.134 | 0.097 | 0.084 | 0.129 | 0.465 | 0.200 | 0.098 | 0.234 | 0.382 | 0.192 | 0.113 | 0.199 | 0.243 | 0.154 | ||||||||||
| MicroNIR 1700 | 5 | 0.999 | 0.499 | 0.602 | 0.827 | 5 | 0.655 | 0.472 | 0.772 | 0.302 | 2 | 0.995 | 0.524 | 0.572 | 0.737 | 1 | 0.938 | 0.563 | 0.721 | 0.605 | |||||
| 0.005 | 0.147 | 0.173 | 0.088 | 0.144 | 0.194 | 0.405 | 0.212 | 0.031 | 0.292 | 0.471 | 0.216 | 0.111 | 0.159 | 0.401 | 0.191 | ||||||||||
| Enterprise | 13 | 1.000 | 0.100 | 0.606 | 0.386 | 13 | 0.915 | 0.137 | 0.672 | 0.169 | 4 | 0.814 | 0.690 | 0.779 | 0.676 | 6 | 0.880 | 0.010 | 0.741 | 0.319 | |||||
| 0.003 | 0.212 | 0.443 | 0.190 | 0.078 | 0.311 | 0.620 | 0.276 | 0.152 | 0.279 | 0.365 | 0.219 | 0.105 | 0.312 | 0.506 | 0.247 | ||||||||||
| SCiO | 8 | 0.395 | 0.014 | 0.661 | 0.257 | 14 | 0.791 | 0.489 | 0.606 | 0.473 | 13 | 0.748 | 0.187 | 0.646 | 0.613 | 7 | 0.653 | 0.173 | 0.688 | 0.154 | |||||
| 0.162 | 0.201 | 0.179 | 0.171 | 0.114 | 0.258 | 0.283 | 0.176 | 0.175 | 0.343 | 0.318 | 0.233 | 0.148 | 0.264 | 0.580 | 0.276 | ||||||||||
| (c) | |||||||||||||||||||||||||
| Hardness | Juiciness | Fatness | Fibrousness | ||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
| NIRFlex N-500 | 12 | 1.000 | 0.725 | 0.860 | 0.905 | 5 | 0.999 | 0.549 | 0.907 | 0.919 | 15 | 0.971 | 0.004 | 0.713 | 0.596 | 12 | 0.982 | 0.561 | 0.793 | 0.830 | |||||
| 0.000 | 0.255 | 0.402 | 0.184 | 0.011 | 0.230 | 0.235 | 0.128 | 0.093 | 0.867 | 0.325 | 0.367 | 0.086 | 0.365 | 0.434 | 0.231 | ||||||||||
| Foss 5000 * | 8 | 0.997 | 0.595 | 0.686 | 0.426 | 2 | 0.672 | 0.578 | 0.663 | 0.610 | 11 | 0.982 | 0.137 | 0.728 | 0.805 | 3 | 0.849 | 0.345 | 0.690 | 0.705 | |||||
| 0.037 | 0.508 | 1.066 | 0.458 | 0.230 | 0.408 | 0.289 | 0.273 | 0.070 | 0.490 | 0.285 | 0.227 | 0.199 | 0.353 | 0.484 | 0.286 | ||||||||||
| microPHAZIR | 2 | 0.935 | 0.540 | 0.914 | 0.780 | 13 | 0.980 | 0.546 | 0.785 | 0.822 | 1 | 0.961 | 0.684 | 0.607 | 0.568 | 8 | 0.918 | 0.687 | 0.784 | 0.823 | |||||
| 0.135 | 0.565 | 0.285 | 0.270 | 0.059 | 0.339 | 0.308 | 0.184 | 0.169 | 0.343 | 0.720 | 0.340 | 0.138 | 0.418 | 0.250 | 0.221 | ||||||||||
| MicroNIR 1700 | 10 | 0.955 | 0.773 | 0.868 | 0.853 | 2 | 0.875 | 0.631 | 0.875 | 0.794 | 2 | 0.741 | 0.248 | 0.683 | 0.627 | 15 | 0.795 | 0.681 | 0.804 | 0.711 | |||||
| 0.116 | 0.234 | 0.491 | 0.232 | 0.174 | 0.327 | 0.198 | 0.208 | 0.234 | 0.508 | 0.328 | 0.305 | 0.244 | 0.512 | 0.132 | 0.289 | ||||||||||
| Enterprise | 1 | 0.986 | 0.594 | 0.733 | 0.852 | 1 | 0.856 | 0.127 | 0.718 | 0.654 | 2 | 0.558 | 0.630 | 0.755 | 0.239 | 9 | 0.806 | 0.412 | 0.627 | 0.662 | |||||
| 0.113 | 0.387 | 0.335 | 0.220 | 0.218 | 0.390 | 0.485 | 0.302 | 0.321 | 0.367 | 0.818 | 0.439 | 0.233 | 0.550 | 0.337 | 0.317 | ||||||||||
| SCiO | 7 | 0.791 | 0.615 | 0.907 | 0.760 | 4 | 0.969 | 0.469 | 0.813 | 0.848 | 11 | 0.665 | 0.287 | 0.706 | 0.525 | 3 | 0.834 | 0.569 | 0.784 | 0.756 | |||||
| 0.299 | 0.335 | 0.410 | 0.324 | 0.072 | 0.349 | 0.206 | 0.168 | 0.279 | 0.392 | 0.542 | 0.349 | 0.189 | 0.368 | 0.380 | 0.259 | ||||||||||
| Chewiness | Gumminess | Heterogeneity | Chewing residue | ||||||||||||||||||||||
| N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | N | R2Train | R2Valid | R2Test | R2Total | ||||||
| RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
| NIRFlex N-500 | 15 | 0.975 | 0.683 | 0.761 | 0.870 | 13 | 0.933 | 0.257 | 0.609 | 0.647 | 15 | 0.978 | 0.710 | 0.813 | 0.857 | 11 | 0.997 | 0.200 | 0.804 | 0.795 | |||||
| 0.061 | 0.272 | 0.215 | 0.143 | 0.089 | 0.252 | 0.436 | 0.209 | 0.082 | 0.192 | 0.500 | 0.219 | 0.018 | 0.295 | 0.286 | 0.160 | ||||||||||
| Foss 5000 * | 14 | 0.820 | 0.091 | 0.691 | 0.584 | 10 | 0.941 | 0.043 | 0.622 | 0.587 | 14 | 1.000 | 0.349 | 0.707 | 0.814 | 14 | 0.916 | 0.004 | 0.689 | 0.293 | |||||
| 0.181 | 0.397 | 0.351 | 0.255 | 0.073 | 0.454 | 0.254 | 0.211 | 0.000 | 0.383 | 0.559 | 0.263 | 0.094 | 0.435 | 0.531 | 0.277 | ||||||||||
| microPHAZIR | 15 | 0.848 | 0.053 | 0.532 | 0.540 | 7 | 0.904 | 0.306 | 0.698 | 0.455 | 9 | 0.839 | 0.246 | 0.687 | 0.712 | 8 | 0.714 | 0.043 | 0.699 | 0.304 | |||||
| 0.161 | 0.518 | 0.305 | 0.269 | 0.106 | 0.262 | 0.503 | 0.237 | 0.242 | 0.365 | 0.413 | 0.294 | 0.176 | 0.391 | 0.430 | 0.269 | ||||||||||
| MicroNIR 1700 | 12 | 0.958 | 0.529 | 0.724 | 0.782 | 12 | 0.704 | 0.049 | 0.820 | 0.558 | 14 | 0.874 | 0.406 | 0.769 | 0.722 | 2 | 0.862 | 0.370 | 0.813 | 0.708 | |||||
| 0.074 | 0.359 | 0.287 | 0.189 | 0.183 | 0.369 | 0.157 | 0.218 | 0.199 | 0.487 | 0.325 | 0.281 | 0.131 | 0.269 | 0.254 | 0.180 | ||||||||||
| Enterprise | 9 | 0.927 | 0.502 | 0.822 | 0.341 | 11 | 0.886 | 0.609 | 0.637 | 0.337 | 11 | 0.911 | 0.108 | 0.732 | 0.710 | 15 | 0.816 | 0.105 | 0.574 | 0.522 | |||||
| 0.114 | 0.422 | 0.783 | 0.358 | 0.109 | 0.253 | 0.652 | 0.286 | 0.157 | 0.570 | 0.290 | 0.280 | 0.137 | 0.409 | 0.237 | 0.216 | ||||||||||
| SCiO | 7 | 0.907 | 0.338 | 0.901 | 0.711 | 1 | 0.662 | 0.011 | 0.738 | 0.605 | 15 | 0.710 | 0.509 | 0.759 | 0.649 | 10 | 0.996 | 0.572 | 0.558 | 0.617 | |||||
| 0.114 | 0.401 | 0.378 | 0.234 | 0.225 | 0.194 | 0.160 | 0.212 | 0.303 | 0.364 | 0.279 | 0.309 | 0.020 | 0.284 | 0.503 | 0.224 | ||||||||||
| Lean Meat | Fat | Whole Slice | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Device | R2Total | Appearance (6) | Flavor (14) | Texture (8) | Total (28) | Appearance (6) | Flavor (14) | Texture (8) | Total (28) | Appearance (6) | Flavor (14) | Texture (8) | Total (28) |
| NIRFlex N-500 | >0.5 | 6 | 13 | 7 | 26 | 6 | 13 | 8 | 27 | 6 | 13 | 8 | 27 |
| >0.6 | 5 | 12 | 5 | 22 | 5 | 10 | 8 | 23 | 5 | 9 | 7 | 21 | |
| >0.7 | 4 | 6 | 4 | 14 | 4 | 6 | 6 | 16 | 4 | 8 | 6 | 18 | |
| >0.8 | 2 | 1 | 3 | 6 | 2 | 2 | 2 | 6 | 3 | 2 | 5 | 10 | |
| Foss 5000 | >0.5 | 5 | 9 | 6 | 20 | ||||||||
| >0.6 | 3 | 8 | 4 | 15 | |||||||||
| >0.7 | 1 | 4 | 3 | 8 | |||||||||
| >0.8 | 0 | 0 | 2 | 2 | |||||||||
| microPHAZIR | >0.5 | 5 | 12 | 4 | 21 | 6 | 13 | 8 | 27 | 5 | 10 | 6 | 21 |
| >0.6 | 4 | 10 | 3 | 17 | 6 | 10 | 8 | 24 | 5 | 8 | 4 | 15 | |
| >0.7 | 2 | 6 | 1 | 9 | 4 | 4 | 5 | 13 | 5 | 4 | 4 | 13 | |
| >0.8 | 2 | 1 | 0 | 3 | 2 | 1 | 1 | 4 | 1 | 2 | 2 | 5 | |
| MicroNIR 1700 | >0.5 | 6 | 12 | 7 | 25 | 6 | 12 | 7 | 25 | 6 | 10 | 8 | 25 |
| >0.6 | 5 | 7 | 7 | 19 | 6 | 10 | 6 | 22 | 6 | 8 | 7 | 21 | |
| >0.7 | 3 | 4 | 4 | 11 | 3 | 4 | 3 | 10 | 3 | 4 | 2 | 9 | |
| >0.8 | 2 | 1 | 2 | 5 | 0 | 2 | 1 | 5 | 2 | 2 | 0 | 4 | |
| Enterprise | >0.5 | 6 | 12 | 7 | 25 | 6 | 13 | 7 | 26 | 6 | 7 | 5 | 18 |
| >0.6 | 5 | 8 | 6 | 19 | 6 | 11 | 7 | 24 | 4 | 8 | 4 | 13 | |
| >0.7 | 1 | 4 | 1 | 6 | 4 | 3 | 6 | 13 | 3 | 4 | 2 | 9 | |
| >0.8 | 1 | 1 | 1 | 3 | 1 | 0 | 3 | 4 | 1 | 2 | 1 | 4 | |
| SCiO | >0.5 | 6 | 10 | 7 | 23 | 6 | 8 | 6 | 20 | 3 | 6 | 8 | 17 |
| >0.6 | 2 | 6 | 6 | 14 | 4 | 2 | 4 | 10 | 3 | 2 | 7 | 12 | |
| >0.7 | 2 | 4 | 4 | 10 | 0 | 1 | 1 | 2 | 0 | 1 | 4 | 6 | |
| >0.8 | 0 | 1 | 2 | 3 | 0 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Revilla, I.; Vivar-Quintana, A.M.; Martínez-Martín, I.; Hernández-Ramos, P.; Hernández-Jiménez, M.; Grabska, J.; Beć, K.B.; Huck, C.W. The Influence of the Site of Recording and Benchtop and Portable NIRS Equipment on Predicting the Sensory Properties of Iberian Ham. Foods 2026, 15, 436. https://doi.org/10.3390/foods15030436
Revilla I, Vivar-Quintana AM, Martínez-Martín I, Hernández-Ramos P, Hernández-Jiménez M, Grabska J, Beć KB, Huck CW. The Influence of the Site of Recording and Benchtop and Portable NIRS Equipment on Predicting the Sensory Properties of Iberian Ham. Foods. 2026; 15(3):436. https://doi.org/10.3390/foods15030436
Chicago/Turabian StyleRevilla, Isabel, Ana María Vivar-Quintana, Iván Martínez-Martín, Pedro Hernández-Ramos, Miriam Hernández-Jiménez, Justyna Grabska, Krzysztof B. Beć, and Christian W. Huck. 2026. "The Influence of the Site of Recording and Benchtop and Portable NIRS Equipment on Predicting the Sensory Properties of Iberian Ham" Foods 15, no. 3: 436. https://doi.org/10.3390/foods15030436
APA StyleRevilla, I., Vivar-Quintana, A. M., Martínez-Martín, I., Hernández-Ramos, P., Hernández-Jiménez, M., Grabska, J., Beć, K. B., & Huck, C. W. (2026). The Influence of the Site of Recording and Benchtop and Portable NIRS Equipment on Predicting the Sensory Properties of Iberian Ham. Foods, 15(3), 436. https://doi.org/10.3390/foods15030436

