Selective Permeability of Volatile Organic Compounds in Candelilla Wax Edible Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Reference Standards
2.2. Fractional Factorial Design and Formulation
2.3. Film Preparation
2.4. Physicochemical Determinations
2.4.1. Thickness, Volume, Mass, and Density
2.4.2. Moisture Content
2.4.3. Solubility in Water
2.5. Water Vapor Permeability
2.5.1. Water Vapor Transmission Rate (WVTR)
2.5.2. Water Vapor Permeability (WVP)
2.6. Permeability to Volatile Organic Compounds
2.6.1. Volatile Organic Compound Transmission Rate (VOCTR)
2.6.2. Volatile Organic Compound Permeability Coefficient (VOCP)
2.7. Headspace Solid-Phase Microextraction (HS-SPME)
2.8. Gas Chromatography–Mass Spectrometry (GC-MS)
2.9. Identification and Quantification of VOCs
2.10. Analytical Recovery and Detection Limits
2.11. Scanning Electron Microscopy (SEM)
2.12. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of the Films
3.2. Initial Linear Kinetics of Volatile Diffusion
3.3. Transition to the Quadratic Regime
3.4. Linear Transport Parameters
3.5. Integrated Quadratic Parameters
3.6. Surface Microstructure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GC–MS | gas chromatography–mass spectrometry |
| HS-SPME | headspace solid-phase microextraction |
| RH | relative humidity |
| SEM | scanning electron microscopy |
| VOCs | volatile organic compounds |
| VOCP | volatile organic compound permeability coefficient |
| VOCTR | volatile organic compound transmission rate |
| WVTR | water vapor transmission rate |
| WVP | water vapor permeability |
References
- Kadirvel, V.; Palanisamy, Y.; Ganesan, N.D. Active Packaging System—An Overview of Recent Advances for Enhanced Food Quality and Safety. Packag. Technol. Sci. 2025, 38, 145–162. [Google Scholar] [CrossRef]
- Krishnan, R.R.; Olasupo, A.D.; Patel, K.H.; Bolarinwa, I.F.; Oke, M.O.; Okafor, C.; Nkwonta, C.; Ifie, I. Edible Biopolymers with Functional Additives Coatings for Postharvest Quality Preservation in Horticultural Crops: A Review. Front. Sustain. Food Syst. 2025, 9, 1569458. [Google Scholar] [CrossRef]
- Kumar, L.; Ramakanth, D.; Akhila, K.; Gaikwad, K.K. Edible films and coatings for food packaging applications: A review. Environ. Chem. Lett. 2022, 20, 1–26. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Baraniak, B. Effect of candelilla wax on functional properties of biopolymer emulsion films—A comparative study. Food Hydrocoll. 2014, 41, 195–209. [Google Scholar] [CrossRef]
- Aguirre-Joya, J.A.; Cerqueira, M.A.; Ventura-Sobrevilla, J.; Aguilar-Gonzalez, M.A.; Carbó-Argibay, E.; Castro, L.P.; Aguilar, C.N. Candelilla wax-based coatings and films: Functional and physicochemical characterization. Food Bioprocess Technol. 2019, 12, 1787–1797. [Google Scholar] [CrossRef]
- Aranda-Ledesma, N.E.; Bautista-Hernández, I.; Rojas, R.; Aguilar-Zárate, P.; del Pilar Medina-Herrera, N.; Castro-López, C.; Martínez-Ávila, G.C.G. Candelilla wax: Prospective suitable applications within the food field. LWT 2022, 159, 113170. [Google Scholar] [CrossRef]
- Ribas Garriga, M. Evaluation of Natural Wax for Green Packaging Applications. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 2019. [Google Scholar]
- Debeaufort, F.; Voilley, A. Aroma compound and water vapor permeability of edible films and polymeric packagings. J. Agric. Food Chem. 1994, 42, 2871–2875. [Google Scholar] [CrossRef]
- Debeaufort, F.; Quezada-Gallo, J.-A.; Voilley, A. Edible films and coatings: Tomorrow’s packagings: A review. Crit. Rev. Food Sci. 1998, 38, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Hambleton, A.; Debeaufort, F.; Bonnotte, A.; Voilley, A. Influence of alginate emulsion-based films structure on its barrier properties and on the protection of microencapsulated aroma compound. Food Hydrocoll. 2009, 23, 2116–2124. [Google Scholar] [CrossRef]
- Jahangiri, F.; Mohanty, A.K.; Misra, M. Sustainable biodegradable coatings for food packaging: Challenges and opportunities. Green Chem. 2024, 26, 4934–4974. [Google Scholar] [CrossRef]
- Miller, K.S.; Krochta, J. Oxygen and aroma barrier properties of edible films: A review. Trends Food Sci. Technol. 1997, 8, 228–237. [Google Scholar] [CrossRef]
- Quezada Gallo, J.A.; Debeaufort, F.; Voilley, A. Interactions between aroma and edible films. 1. Permeability of methylcellulose and low-density polyethylene films to methyl ketones. J. Agric. Food Chem. 1999, 47, 108–113. [Google Scholar] [CrossRef]
- Fabra, M.J.; Hambleton, A.; Talens, P.; Debeaufort, F.; Chiralt, A.; Voilley, A. Influence of interactions on water and aroma permeabilities of ι-carrageenan–oleic acid–beeswax films used for flavour encapsulation. Carbohydr. Polym. 2009, 76, 325–332. [Google Scholar] [CrossRef]
- Saucedo-Pompa, S.; Rojas-Molina, R.; Aguilera-Carbó, A.F.; Saenz-Galindo, A.; de La Garza, H.; Jasso-Cantú, D.; Aguilar, C.N. Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Res. Int. 2009, 42, 511–515. [Google Scholar] [CrossRef]
- Oregel-Zamudio, E.; Angoa-Pérez, M.V.; Oyoque-Salcedo, G.; Aguilar-González, C.N.; Mena-Violante, H.G. Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Sci. Hortic. 2017, 214, 273–279. [Google Scholar] [CrossRef]
- Devi, L.S.; Jaiswal, A.K.; Jaiswal, S. Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Curr. Res. Food Sci. 2024, 8, 100720. [Google Scholar] [CrossRef] [PubMed]
- Saidi, L.; Wang, Y.; Wich, P.R.; Selomulya, C. Polysaccharide-based Edible Films-Strategies to Minimize Water Vapor Permeability. Curr. Opin. Food Sci. 2024, 61, 101258. [Google Scholar] [CrossRef]
- de Roos, K.B. Effect of texture and microstructure on flavour retention and release. Int. Dairy J. 2003, 13, 593–605. [Google Scholar] [CrossRef]
- Santhosh, R.; Ahmed, J.; Thakur, R.; Sarkar, P. Starch-based edible packaging: Rheological, thermal, mechanical, microstructural, and barrier properties—A review. Sustain. Food Technol. 2024, 2, 307–330. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Xiao, H.; Liang, X.; Wang, M.; Li, M.; Jin, G. Experimental investigation and simulations of the microstructure and actuation performance of PVC gels with varying plasticizers. J. Mater. Sci. 2025, 60, 5634–5647. [Google Scholar] [CrossRef]
- ASTM designation E 104-85; Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions. Astm E: West Conshohocken, PA, USA, 1985; pp. 790–795.
- National Institute of Standards and Technology; U.S.E.P.A.; National Institutes of Health. NIST/EPA/NIH Mass Spectral Library (NIST 17). 2017. Available online: https://www.sisweb.com/software/ms/nist17.pdf (accessed on 1 October 2025).
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.4.2; R Core Team: Vienna, Austria, 2025. [Google Scholar]
- Chhikara, S.; Kumar, D. Edible coating and edible film as food packaging material: A review. J. Packag. Technol. Res. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Gupta, V.; Biswas, D.; Roy, S. A comprehensive review of biodegradable polymer-based films and coatings and their food packaging applications. Materials 2022, 15, 5899. [Google Scholar] [CrossRef]
- Kokoszka, S.; Debeaufort, F.; Lenart, A.; Voilley, A. Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. Int. Dairy J. 2010, 20, 53–60. [Google Scholar] [CrossRef]
- Ramos, O.L.; Fernandes, J.C.; Silva, S.I.; Pintado, M.E.; Malcata, F.X. Edible films and coatings from whey proteins: A review on formulation, and on mechanical and bioactive properties. Crit. Rev. Food Sci. Nutr. 2012, 52, 533–552. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gardner, D.J.; Stark, N.M.; Bousfield, D.W.; Tajvidi, M.; Cai, Z. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 2018, 6, 49–70. [Google Scholar] [CrossRef]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Tarahi, M.; Almasi, H.; Chawla, R.; Ali, A.M.M. Insights into recent innovations in barrier resistance of edible films for food packaging applications. Int. J. Biol. Macromol. 2024, 271, 132354. [Google Scholar] [CrossRef]
- Pashova, S. Application of plant waxes in edible coatings. Coatings 2023, 13, 911. [Google Scholar] [CrossRef]
- Hernández-García, E.; Freitas, P.A.; Zomeño, P.; González-Martínez, C.; Torres-Giner, S. Multilayer sheets based on double coatings of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) on paper substrate for sustainable food packaging applications. Appl. Sci. 2022, 13, 179. [Google Scholar] [CrossRef]
- Ricci, E.; Minelli, M.; De Angelis, M.G. Modelling sorption and transport of gases in polymeric membranes across different scales: A review. Membranes 2022, 12, 857. [Google Scholar] [CrossRef]
- Giancone, T.; Torrieri, E.; Di Pierro, P.; Mariniello, L.; Moresi, M.; Porta, R.; Masi, P. Role of constituents on the network formation of hydrocolloid edible films. J. Food Eng. 2008, 89, 195–203. [Google Scholar] [CrossRef]
- The, D.P.; Debeaufort, F.; Voilley, A.; Luu, D. Influence of hydrocolloid nature on the structure and functional properties of emulsified edible films. Food Hydrocoll. 2009, 23, 691–699. [Google Scholar] [CrossRef]
- Wong, D.W.; Gastineau, F.A.; Gregorski, K.S.; Tillin, S.J.; Pavlath, A.E. Chitosan-lipid films: Microstructure and surface energy. J. Agric. Food Chem. 1992, 40, 540–544. [Google Scholar] [CrossRef]
- Kedia, P.; Badhe, Y.; Gupta, R.; Kausley, S.; Rai, B. Modeling the effect of pH on the permeability of dried chitosan film. J. Food Eng. 2023, 358, 111682. [Google Scholar] [CrossRef]
- Arya, R.K.; Thapliyal, D.; Sharma, J.; Verros, G.D. Glassy polymers—Diffusion, sorption, ageing and applications. Coatings 2021, 11, 1049. [Google Scholar] [CrossRef]
- Li, J.; Xing, G.; Qiao, M.; Liu, Z.; Sun, H.; Jiao, R.; Li, L.; Zhang, J.; Li, A. Guar gum-based macroporous hygroscopic polymer for efficient atmospheric water harvesting. Langmuir 2023, 39, 18161–18170. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Hasan, Z.; Omran, A.A.B.; Elfaghi, A.M.; Khattak, M.; Ilyas, R.; Sapuan, S. Effect of various plasticizers in different concentrations on physical, thermal, mechanical, and structural properties of wheat starch-based films. Polymers 2022, 15, 63. [Google Scholar] [CrossRef]
- Martins, V.; Romani, V.; Martins, P.; Nogueira, D. Protein-based materials for packaging applications. In Bio-Based Packaging: Material, Environmental and Economic Aspects; Wiley: Hoboken, NJ, USA, 2021; pp. 27–49. [Google Scholar]
- Kocira, A.; Kozłowicz, K.; Panasiewicz, K.; Staniak, M.; Szpunar-Krok, E.; Hortyńska, P. Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality—A review. Agronomy 2021, 11, 813. [Google Scholar] [CrossRef]
- Aoufi, D.; Belloul, N.; Serier, A. Development and characterization of new formulation of biodegradable emulsified film based on polysaccharides blend and microcrystalline wax. J. Polym. Eng. 2023, 43, 893–903. [Google Scholar] [CrossRef]
- García-Betanzos, C.I.; Hernández-Sánchez, H.; Ojeda-Piedra, S.A.; Ulloa-Saavedra, A.; Quintanar-Guerrero, D.; Zambrano-Zaragoza, M.L. Study of Candelilla Wax Concentrations on the Physical Properties of Edible Nanocoatings as a Function of Support Polysaccharides. Polymers 2023, 15, 1209. [Google Scholar] [CrossRef]
- Yousuf, B.; Sun, Y.; Wu, S. Lipid and lipid-containing composite edible coatings and films. Food Rev. Int. 2022, 38, 574–597. [Google Scholar] [CrossRef]
- Devi, L.S.; Kalita, S.; Mukherjee, A.; Kumar, S. Carnauba wax-based composite films and coatings: Recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends Food Sci. Technol. 2022, 129, 296–305. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Mousavi, Z.; McClements, D.J. Beeswax: A review on the recent progress in the development of superhydrophobic films/coatings and their applications in fruits preservation. Food Chem. 2023, 424, 136404. [Google Scholar] [CrossRef]
- Jahangiri, F.; Mohanty, A.; Pal, A.K.; Clemmer, R.; Gregori, S.; Misra, M. Wax coatings for paper packaging applications: Study of the coating effect on surface, mechanical, and barrier properties. ACS Environ. Au 2024, 5, 165–182. [Google Scholar] [CrossRef]
- Pasquier, E.; Mattos, B.D.; Koivula, H.; Khakalo, A.; Belgacem, M.N.; Rojas, O.J.; Bras, J. Multilayers of renewable nanostructured materials with high oxygen and water vapor barriers for food packaging. ACS Appl. Mater. Interfaces 2022, 14, 30236–30245. [Google Scholar] [CrossRef]
- Caicedo, C.; Díaz-Cruz, C.A.; Jiménez-Regalado, E.J.; Aguirre-Loredo, R.Y. Effect of plasticizer content on mechanical and water vapor permeability of maize starch/PVOH/chitosan composite films. Materials 2022, 15, 1274. [Google Scholar] [CrossRef]
- Gomez-Caturla, J.; Ivorra-Martinez, J.; Quiles-Carrillo, L.; Arrieta, M.P.; Boronat, T. Terpenes: Nature’s Plasticizers for Sustainable Biopolymer Enhancement. In Sustainable Nanocomposites with Green Biomaterials; Springer: Berlin/Heidelberg, Germany, 2025; pp. 243–275. [Google Scholar]
- Nahas, E.O.; Furtado, G.F.; Lopes, M.S.; Silva, E.K. From Emulsions to Films: The Role of Polysaccharide Matrices in Essential Oil Retention Within Active Packaging Films. Foods 2025, 14, 1501. [Google Scholar] [CrossRef]
- Rodriguez, K.M.; Lin, S.; Wu, A.X.; Storme, K.R.; Joo, T.; Grosz, A.F.; Roy, N.; Syar, D.; Benedetti, F.M.; Smith, Z.P. Penetrant-induced plasticization in microporous polymer membranes. Chem. Soc. Rev. 2024, 53, 2435–2529. [Google Scholar] [CrossRef]
- Leyva Gutierrez, F.M.A. Chemistry and Functionality of Plant Waxes: Applications Toward Postharvest Coatings. Doctoral Dissertation, University of Tennessee, Knoxville, TN, USA, 2022. [Google Scholar]
- Hu, J.; Sun, X.; Xiao, H.; Liu, C.; Yang, F.; Liu, W.; Wu, Y.; Wang, Y.; Zhao, R.; Wang, H. Effect of guar gum, gelatin, and pectin on moisture changes in freeze-dried restructured strawberry blocks. Food Chem. 2024, 449, 139244. [Google Scholar] [CrossRef] [PubMed]
- Ben, Z.Y.; Samsudin, H.; Yhaya, M.F. Glycerol: Its properties, polymer synthesis, and applications in starch based films. Eur. Polym. J. 2022, 175, 111377. [Google Scholar] [CrossRef]
- Matloob, A.; Ayub, H.; Mohsin, M.; Ambreen, S.; Khan, F.A.; Oranab, S.; Rahim, M.A.; Khalid, W.; Nayik, G.A.; Ramniwas, S. A review on edible coatings and films: Advances, composition, production methods, and safety concerns. ACS Omega 2023, 8, 28932–28944. [Google Scholar] [CrossRef]
- Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of different essential oils on the properties of edible coatings based on yam (Dioscorea rotundata L.) starch and its application in strawberry (Fragaria vesca L.) preservation. Appl. Sci. 2021, 11, 11057. [Google Scholar] [CrossRef]
- Ren, G.; Ke, G.; Huang, R.; Pu, Q.; Zhao, J.; Zheng, Q.; Yang, M. Study of the volatilization rules of volatile oil and the sustained-release effect of volatile oil solidified by porous starch. Sci. Rep. 2022, 12, 8153. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Ahmad, M.Z.; Cassano, A. Pervaporation-aided processes for the selective separation of aromas, fragrances and essential (AFE) solutes from agro-food products and wastes. Food Rev. Int. 2023, 39, 1499–1525. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, M.; Feng, X.; Yao, Z.; Wang, T.; Xu, C. Effect of lemon essential oil-enriched coating on the postharvest storage quality of citrus fruits. Food Sci. Technol. 2022, 42, e125421. [Google Scholar] [CrossRef]
- Basile, G.; De Luca, L.; Calabrese, M.; Esposito, M.; Sorrentino, G.; Romano, A.; Pizzolongo, F.; Lambiase, G.; Romano, R. Study of lipid oxidation and volatile component of roasted peanuts stored in high-barrier packaging. Int. J. Food Sci. Technol. 2025, 60, vvaf038. [Google Scholar] [CrossRef]
- Merabtine, Y.; Lubbers, S.; Andriot, I.; Tromelin, A.; Guichard, E. Retention/release equilibrium of aroma compounds in fat-free dairy gels. J. Sci. Food Agric. 2010, 90, 1403–1409. [Google Scholar] [CrossRef]
- Alloh, P.B.; El-Said, M.M.; El-Sayed, H.S.; Baranenko, D.A.; El-Messery, T.M. Extension of ultrafiltered cheese shelf life using edible coatings containing supercritical rosemary, thyme and coriander extracts as antimicrobial agents. Food Control 2024, 163, 110479. [Google Scholar] [CrossRef]
- Wei, S.; Mei, J.; Xie, J. Effects of edible coating and modified atmosphere technology on the physiology and quality of mangoes after low-temperature transportation at 13 C in vibration mitigation packaging. Plants 2021, 10, 2432. [Google Scholar] [CrossRef]
- Torres-García, J.R.; Leonardo-Elias, A.; Angoa-Pérez, M.V.; Villar-Luna, E.; Arias-Martínez, S.; Oyoque-Salcedo, G.; Oregel-Zamudio, E. Bacillus subtilis edible films for strawberry preservation: Antifungal efficacy and quality at varied temperatures. Foods 2024, 13, 980. [Google Scholar] [CrossRef]
- Dalei, G.; Das, S.; Mohanty, D.; Biswal, S.; Jena, D.; Dehury, P.; Das, B.R. Xanthan gum-Pectin Edible Coating Enriched with Sweet Orange (Citrus sinensis L.) Peel Essential Oil for Chicken Meat Preservation. Food Biophys. 2025, 20, 52. [Google Scholar] [CrossRef]
- Zang, Z.; Huang, X.; Ma, G.; Wan, F.; Xu, Y.; Zhao, Q.; Wu, B.; Lu, H.; Liu, Z. Novel edible coatings pretreatment for enhancing drying performance and physicochemical properties of cherry fruits during multi-frequency ultrasonic vacuum far infrared radiation—Radio frequency vacuum segmented combination drying. Ultrason. Sonochem. 2025, 116, 107306. [Google Scholar] [CrossRef] [PubMed]
- Zebua, D.N.; Prima, E.C.; Garnida, Y. Effect of a pectin edible coating with lemon peel extract to maintain strawberry fruit’s quality during cold storage. Food Humanit. 2025, 4, 100541. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Padilla-Jiménez, S.M.; Oregel-Zamudio, J.M.; Arias-Martínez, S.; Torres-García, J.R.; Oregel-Zamudio, E. Selective Permeability of Volatile Organic Compounds in Candelilla Wax Edible Films. Foods 2026, 15, 233. https://doi.org/10.3390/foods15020233
Padilla-Jiménez SM, Oregel-Zamudio JM, Arias-Martínez S, Torres-García JR, Oregel-Zamudio E. Selective Permeability of Volatile Organic Compounds in Candelilla Wax Edible Films. Foods. 2026; 15(2):233. https://doi.org/10.3390/foods15020233
Chicago/Turabian StylePadilla-Jiménez, Samuel Macario, Jose Manuel Oregel-Zamudio, Sergio Arias-Martínez, Jesús Rubén Torres-García, and Ernesto Oregel-Zamudio. 2026. "Selective Permeability of Volatile Organic Compounds in Candelilla Wax Edible Films" Foods 15, no. 2: 233. https://doi.org/10.3390/foods15020233
APA StylePadilla-Jiménez, S. M., Oregel-Zamudio, J. M., Arias-Martínez, S., Torres-García, J. R., & Oregel-Zamudio, E. (2026). Selective Permeability of Volatile Organic Compounds in Candelilla Wax Edible Films. Foods, 15(2), 233. https://doi.org/10.3390/foods15020233

