Eastern European Fermented Foods: Nutritional Value, Functional Potential, and Cultural Heritage
Abstract
1. Introduction
2. Methods—Literature Search Strategy
3. Historical and Cultural Context of Classes of Fermented Foods
3.1. Vegetable Fermentation
3.2. Fermented Dairy Products
3.3. Cereal-Based Fermentations
3.4. Fermented Beverages
4. Bioactive Compounds and Functional Properties
4.1. Bioactive Peptides
4.1.1. Bioactive Peptides in Dairy Products
4.1.2. Bioactive Peptides in Cereal Products
4.2. Polyphenols and Secondary Metabolites
- -
- -
- Decarboxylation and reduction: some LAB possess phenolic acid decarboxylases (pdc) and related enzymes that convert hydroxycinnamic acids (e.g., ferulic, p-coumaric acid) into vinyl/ethyl derivatives with altered bioactivities. Strain-level differences in pdc genes materially affect the metabolic outcome [86,87,88];
- -
- Deglycosylation: microbial β-glucosidases remove sugar moieties from flavonoid glycosides, producing [84];
- -
4.2.1. Polyphenols and Secondary Metabolites in Vegetable Fermentations (Sauerkraut, Beet Kvass, Mixed Ferments)
- Sauerkraut and brassica ferments: Lactic acid fermentation of cabbage alters its phytochemical profile in predictable ways: glucosinolates may be hydrolysed to isothiocyanates or nitriles depending on processing (cutting, salting, temperature) [90], and polyphenol extractability can increase as cell walls are partially degraded and conjugates hydrolysed [91]. Targeted metabolomic and metagenomic studies of sauerkraut document dynamic shifts in metabolites and microbial functions across fermentation stages, linking specific microbial succession to secondary-metabolite transformations. These changes underlie measured increases in certain antioxidant activities in many (but not all) sauerkraut preparations [92,93].
- Beet kvass and betalain-rich ferments: Beetroot fermentations (beet kvass) present a slightly different profile: the dominant pigments are betalains (betacyanins and betaxanthins), not flavonoids [94]. Several recent analyses of commercially produced and traditional fermented beetroot juices in Polish markets show high antioxidant capacity and measurable betalain content in fermented products, although thermal processing and fermentation conditions influence betalain stability. Some studies report retention or even improved antioxidant activity in certain beet ferments, while others show losses depending on boiling/processing and long fermentation times—so product formulation and process control matter [95,96].
4.2.2. Polyphenols and Secondary Metabolites in Cereal Fermentations (Rye Sourdough and Related Products)
4.2.3. Polyphenols and Secondary Metabolites in Fermented Beverages (Kombucha and Tea-Based Ferments)
4.2.4. Factors Driving Heterogeneity in Outcomes
- Matrix interactions: Polyphenols can bind to proteins or fiber; proteolysis and polysaccharide breakdown during fermentation alter binding equilibria and extractability [84].
4.2.5. Implications for Bioavailability and Health
| Food | Major Polyphenol/Pigment Classes | Microbial or Enzymatic Transformation | Reported Outcome | Key References Cited |
|---|---|---|---|---|
| Sauerkraut | Phenolic acids, flavonoids, glucosinolates | β-glucosidase-mediated deglycosylation; partial hydrolysis of glucosinolates | ↑ extractable phenolics, ↑ antioxidant activity | [84,103] |
| Beet kvass | Betalains (betacyanins, betaxanthins), phenolic acids | LAB fermentation preserves betalains, produces phenolic catabolites | Mixed outcomes; potential ↑ antioxidant potential | [95] |
| Rye sourdough | Ferulic, p-coumaric, vanillic acids (bound) | LAB esterase and decarboxylase activity releases bound phenolics | ↑ extractable phenolics, improved antioxidant capacity | [59] |
| Kombucha | Catechins, theaflavins, flavonols | Yeast/bacterial oxidation and deglycosylation | ↑ total phenolics (moderate), altered flavonoid profile | [100] |
4.3. Probiotics, Prebiotics and Postbiotics
4.3.1. Probiotic Microorganisms in Eastern European Fermentations
- Lactobacillus (especially L. plantarum, L. brevis, L. casei, L. helveticus, L. kefiri).
- Leuconostoc mesenteroides and Leuconostoc lactis.
- Lactococcus lactis and Pediococcus pentosaceus.
- Yeasts such as Saccharomyces cerevisiae and Kluyveromyces marxianus.
4.3.2. Pre- and Postbiotic Compounds in Eastern European Fermentations and Their Functional Roles
- Prebiotics:
- Postbiotic compounds produced or enriched by fermentation belong to SCFAs, organic acids (lactic, acetic), microbially released bioactive peptides, vitamins (microbial-synthesized B-vitamins, menaquinones), microbial cell-wall components (peptidoglycan fragments, lipoteichoic acids), heat-stable metabolites, and extracellular vesicles [120].
4.4. Vitamins and Micronutrients in Eastern European Fermentations
4.5. Organic Acids in Eastern European Fermentations
5. Health Effects: Evidence Overview
5.1. Cardiovascular Health
5.2. Gastrointestinal Health
5.3. Immune Function
5.4. Metabolic Health
6. Comparative Perspective
6.1. Microbial Diversity
6.2. Substrates and Nutrient Matrix
6.3. Functional Implications
6.4. Cultural Context and Persistence
7. Challenges and Research Gaps
7.1. Heterogeneity of Traditional Practices
7.2. Limited Clinical Evidence
7.3. Bioavailability and Mechanistic Understanding
7.4. Safety and Quality Considerations
7.5. Integration with Modern Nutrition Science
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGovern, P.E.; Zhang, J.; Tang, J.; Zhang, Z.; Hall, G.R.; Moreau, R.A.; Nuñez, A.; Butrym, E.D.; Richards, M.P.; Wang, C.; et al. Fermented Beverages of Pre- and Proto-Historic China. Proc. Natl. Acad. Sci. USA 2004, 101, 17593–17598. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health Benefits of Fermented Foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef] [PubMed]
- Apalowo, O.E.; Adegoye, G.A.; Mbogori, T.; Kandiah, J.; Obuotor, T.M. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods 2024, 13, 1026. [Google Scholar] [CrossRef]
- Raak, C.; Ostermann, T.; Boehm, K.; Molsberger, F. Regular Consumption of Sauerkraut and Its Effect on Human Health: A Bibliometric Analysis. Glob. Adv. Health Med. 2014, 3, 12–18. [Google Scholar] [CrossRef]
- Kaszuba, J.; Jańczak-Pieniążek, M.; Migut, D.; Kapusta, I.; Buczek, J. Comparison of the Antioxidant and Sensorial Properties of Kvass Produced from Mountain Rye Bread with the Addition of Selected Plant Raw Materials. Foods 2024, 13, 357. [Google Scholar] [CrossRef]
- Skowron, K.; Budzyńska, A.; Grudlewska-Buda, K.; Wiktorczyk-Kapischke, N.; Andrzejewska, M.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Two Faces of Fermented Foods—The Benefits and Threats of Its Consumption. Front. Microbiol. 2022, 13, 845166. [Google Scholar] [CrossRef]
- Food Consumption Data|EFSA. Available online: https://www.efsa.europa.eu/en/data-report/food-consumption-data (accessed on 20 October 2025).
- The Global Tradition of Fermented Foods: A Culinary Staple Across Cultures. Available online: https://www.thefermented.org/learn/the-global-tradition-of-fermented-foods-a-culinary-staple-across-cultures (accessed on 20 October 2025).
- Wiśniewska, M.Z.; Kowalska, A.; Manning, L.; Malinowska, E.; Kowalski, P. Consumption and Home Preparation of Fermented Vegetable Products in Poland. Zesz. Nauk. Organ. Zarządzanie Politech. Śląska 2022, 155, 557–578. [Google Scholar]
- Sõukand, R.; Pieroni, A.; Biró, M.; Dénes, A.; Dogan, Y.; Hajdari, A.; Kalle, R.; Reade, B.; Mustafa, B.; Nedelcheva, A.; et al. An Ethnobotanical Perspective on Traditional Fermented Plant Foods and Beverages in Eastern Europe. J. Ethnopharmacol. 2015, 170, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Steinkraus, K.H. Classification of Fermented Foods: Worldwide Review of Household Fermentation Techniques. Food Control 1997, 8, 311–317. [Google Scholar] [CrossRef]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar] [CrossRef]
- Sauerkraut History and Use in Eastern European Recipes. Available online: https://web.archive.org/web/20170116055455/http://easteuropeanfood.about.com/od/vegetables/a/sauerkraut.htm (accessed on 29 October 2025).
- Horvath, S.; Vass, E.; Ardelean, E. Alimentaţia Tradiţională din Bihor Între Secolul al XVIII-Lea şi Începutul Secolului al XX-Lea; Editura Muzeului Ţării Crişurilor: Oradea, Romania, 2017; ISBN 978-973-7621-95-5. [Google Scholar]
- Beet Kvass: An Unbeetable Traditional Ukrainian Health Drink|Tin and Thyme. Available online: https://tinandthyme.uk/2018/05/beet-kvass/ (accessed on 20 October 2025).
- Netmeds|www.netmeds.com. Available online: https://www.netmeds.com/c/health-library/post/sauerkraut-nutrition-uses-health-benefits-and-know-how-to-make-this-probiotic-food-at-home (accessed on 20 October 2025).
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional Microbial Signatures Positively Correlate with Differential Wine Phenotypes: Evidence for a Microbial Aspect to Terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef]
- Prado, M.R.; Blandón, L.M.; Vandenberghe, L.P.S.; Rodrigues, C.; Castro, G.R.; Thomaz-Soccol, V.; Soccol, C.R. Milk Kefir: Composition, Microbial Cultures, Biological Activities, and Related Products. Front. Microbiol. 2015, 6, 1177. [Google Scholar] [CrossRef] [PubMed]
- Ряженка: Пoльза, Прoизвoдствo и Рецепты Этoгo Традициoннoгo Кислoмoлoч. Available online: https://gastronomusa.com/ru/blogs/blogs/ryazhenka-benefits-production-and-recipes-with-this-traditional-dairy-drink (accessed on 20 October 2025).
- Altay, F. Chapter 17—Rheology and Functionality of Ayran—A Yogurt Drink. In Yogurt in Health and Disease Prevention; Shah, N.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 295–305. ISBN 978-0-12-805134-4. [Google Scholar]
- Teneva-Angelova, T.; Balabanova, T.; Boyanova, P.; Beshkova, D. Traditional Balkan Fermented Milk Products. Eng. Life Sci. 2018, 18, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Metchnikoff, É. The Prolongation of Life: Optimistic Studies; Chalmers Mitchell, P., Ed.; William Heinemann: London, UK, 1908; Available online: https://www.gutenberg.org/files/51521/51521-h/51521-h.htm (accessed on 20 September 2025).
- 4 Best Dairy Products in Eastern Europe—TasteAtlas. Available online: https://www.tasteatlas.com/best-rated-dairy-products-in-eastern-europe (accessed on 20 October 2025).
- Maciuc, V.; Pânzaru, C.; Ciocan-Alupii, M.; Radu-Rusu, C.-G.; Radu-Rusu, R.-M. Comparative Assessment of the Nutritional and Sanogenic Features of Certain Cheese Sorts Originating in Conventional Dairy Farms and in “Mountainous” Quality System Farms. Agriculture 2024, 14, 172. [Google Scholar] [CrossRef]
- Tsafrakidou, P.; Michaelidou, A.M.; Biliaderis, C.G. Fermented Cereal-Based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods 2020, 9, 734. [Google Scholar] [CrossRef]
- Iversen, K.N.; Dicksved, J.; Zoki, C.; Fristedt, R.; Pelve, E.A.; Langton, M.; Landberg, R. The Effects of High Fiber Rye, Compared to Refined Wheat, on Gut Microbiota Composition, Plasma Short Chain Fatty Acids, and Implications for Weight Loss and Metabolic Risk Factors (the RyeWeight Study). Nutrients 2022, 14, 1669. [Google Scholar] [CrossRef]
- blog, V.-B. ’n B. Ancient Russian Fermented Kissel Porridg|Beets & Bones 2018. Available online: https://www.beetsandbones.com/russian-fermented-kissel-porridge/ (accessed on 25 October 2025).
- Puskar, L. Why Eastern Europeans Revere Black Bread. Available online: https://www.greenseashells.com/post/why-eastern-europeans-revere-black-bread (accessed on 30 October 2025).
- 15 Best Sourdough Breads in Europe. Available online: https://www.tasteatlas.com/best-rated-sourdough-breads-in-europe (accessed on 30 October 2025).
- Lee, C.-H.; Ahn, J.; Son, H.-S. Ethnic Fermented Foods of the World: An Overview. J. Ethn. Foods 2024, 11, 39. [Google Scholar] [CrossRef]
- Ignatenko, B.V.; Nikolaeva, M.A.; Eliseev, M.N. History of kvass as a national drink. Tovaroved Prodovol. Tovarov Commod. Spec. Food Prod. 2021, 2, 99–103. [Google Scholar] [CrossRef]
- Dlusskaya, E.; Jänsch, A.; Schwab, C.; Gänzle, M.G. Microbial and Chemical Analysis of a Kvass Fermentation. Eur. Food Res. Technol. 2008, 227, 261–266. [Google Scholar] [CrossRef]
- This Ancient East European Brew Repurposes Leftover Bread—To Great Effect. Available online: https://www.sbs.com.au/food/article/kvass-fermented-drink/gwnxipi2f (accessed on 20 October 2025).
- Borș Wheat Bran Fermented Beverage—Feastern Europe—Recipe. Feastern Europe 2021. Available online: https://feasterneurope.com/bors-recipe/ (accessed on 25 September 2025).
- Pasqualone, A.; Summo, C.; Laddomada, B.; Mudura, E.; Coldea, T.E. Effect of Processing Variables on the Physico-Chemical Characteristics and Aroma of Borş, a Traditional Beverage Derived from Wheat Bran. Food Chem. 2018, 265, 242–252. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Shanmugham, B. Cereal-Based Ethnic Fermented Food Products and Low Alcoholic Beverages: Preparation Methods, Nutritional Quality, and Their Health Benefits. In Ethnic and Indigenous Food Technologies: Role in Climate and Health Resilience; Tiwari, A., Sarma, H., Eds.; Springer Nature: Singapore, 2025; pp. 385–399. ISBN 978-981-96-9286-6. [Google Scholar]
- Ashaolu, T.J.; Varga, L.; Greff, B. Nutritional and Functional Aspects of European Cereal-Based Fermented Foods and Beverages. Food Res. Int. 2025, 209, 116221. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Rutherfurd-Markwick, K.; Zhang, X.-X.; Mutukumira, A.N. Kombucha: Production and Microbiological Research. Foods 2022, 11, 3456. [Google Scholar] [CrossRef]
- Bishop, P.; Pitts, E.R.; Budner, D.; Thompson-Witrick, K.A. Chemical Composition of Kombucha. Beverages 2022, 8, 45. [Google Scholar] [CrossRef]
- Andrade, D.K.A.; Wang, B.; Lima, E.M.F.; Shebeko, S.K.; Ermakov, A.M.; Khramova, V.N.; Ivanova, I.V.; Rocha, R.d.S.; Vaz-Velho, M.; Mutukumira, A.N.; et al. Kombucha: An Old Tradition into a New Concept of a Beneficial, Health-Promoting Beverage. Foods 2025, 14, 1547. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Knez, E.; Kadac-Czapska, K.; Grembecka, M. Effect of Fermentation on the Nutritional Quality of the Selected Vegetables and Legumes and Their Health Effects. Life 2023, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Sarmale, a Symbol of the Delicious Mix Romanian Gastronomy Has to Offer|RBI Insights. Available online: https://www.rbinternational.com/en/raiffeisen/blog/events-lifestyle/sarmale-romanian-gastronomy.html (accessed on 20 October 2025).
- Transylvania Unveiled. Available online: https://www.transylvaniaunveiled.com/blog/sarmale (accessed on 20 October 2025).
- Sarmale de Post (Vegetarian Stuffed Cabbage), Radio Romania International. Available online: https://www.rri.ro/rubrici/secretele-bucatariei-romanesti/sarmale-de-post-3-id594208.html (accessed on 24 October 2025).
- History of Traditional Russian Drink Kvass and Cultural Significance—How To Russia. Available online: https://howtorussia.com/ (accessed on 22 October 2025).
- The History of Kefir: A Journey Through Cultures, Mountains, and Mysteries. Available online: https://kefir.tw/en/the-history-of-kefir-a-journey-through-cultures-mountains-and-mysteries/ (accessed on 1 October 2025).
- Pickling and Preserving in Bulgarian Food Culture|Copernico. Geschichte Und Kulturelles Erbe Im Östlichen Europa. Available online: https://www.copernico.eu/en/articles/pickling-and-preserving-bulgarian-food-culture (accessed on 20 October 2025).
- 80% Dintre Romani Conserva Muraturi in Casa|Progresiv. Available online: https://revistaprogresiv.ro/arhive/80-dintre-romani-conserva-muraturi-casa/ (accessed on 20 October 2025).
- Fitsum, S.; Gebreyohannes, G.; Sbhatu, D.B. Bioactive Compounds in Fermented Foods: Health Benefits, Safety, and Future Perspectives. Appl. Food Res. 2025, 5, 101097. [Google Scholar] [CrossRef]
- Park, I.; Mannaa, M. Fermented Foods as Functional Systems: Microbial Communities and Metabolites Influencing Gut Health and Systemic Outcomes. Foods 2025, 14, 2292. [Google Scholar] [CrossRef] [PubMed]
- Natural Ingredient Trends. Global Market Overview. Top 10 Trends. Available online: https://www.innovamarketinsights.com/trends/natural-ingredient-trends/ (accessed on 20 October 2025).
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.-B.; Shim, J.-H.; Abd El-Aty, A.M. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides from Food and By-Products: A Review. Front. Nutr. 2021, 8, 815640. [Google Scholar] [CrossRef]
- Ebner, J.; Aşçı Arslan, A.; Fedorova, M.; Hoffmann, R.; Küçükçetin, A.; Pischetsrieder, M. Peptide Profiling of Bovine Kefir Reveals 236 Unique Peptides Released from Caseins during Its Production by Starter Culture or Kefir Grains. J. Proteom. 2015, 117, 41–57. [Google Scholar] [CrossRef]
- Quirós, A.; Hernández-Ledesma, B.; Ramos, M.; Amigo, L.; Recio, I. Angiotensin-Converting Enzyme Inhibitory Activity of Peptides Derived from Caprine Kefir. J. Dairy Sci. 2005, 88, 3480–3487. [Google Scholar] [CrossRef] [PubMed]
- Tagliazucchi, D.; Martini, S.; Solieri, L. Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. Fermentation 2019, 5, 96. [Google Scholar] [CrossRef]
- Jäkälä, P.; Vapaatalo, H. Antihypertensive Peptides from Milk Proteins. Pharmaceuticals 2010, 3, 251–272. [Google Scholar] [CrossRef]
- Helal, A.; Tagliazucchi, D. Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties. Biology 2023, 12, 78. [Google Scholar] [CrossRef]
- Koistinen, V.M.; Mattila, O.; Katina, K.; Poutanen, K.; Aura, A.-M.; Hanhineva, K. Metabolic Profiling of Sourdough Fermented Wheat and Rye Bread. Sci. Rep. 2018, 8, 5684. [Google Scholar] [CrossRef] [PubMed]
- Katina, K.; Arendt, E.; Liukkonen, K.-H.; Autio, K.; Flander, L.; Poutanen, K. Potential of Sourdough for Healthier Cereal Products. Trends Food Sci. Technol. 2005, 16, 104–112. [Google Scholar] [CrossRef]
- Poutanen, K.; Flander, L.; Katina, K. Sourdough and Cereal Fermentation in a Nutritional Perspective. Food Microbiol. 2009, 26, 693–699. [Google Scholar] [CrossRef]
- Şahingil, D.; Atalay, M. Characterization of Antimicrobial Peptide Fraction Producing Lactobacillus Spp. Based on LC/MS-MS and Determination of ACE-Inhibitory Activity in Kefir. J. Agric. Sci. 2022, 28, 372–384. [Google Scholar]
- Hirota, T.; Ohki, K.; Kawagishi, R.; Kajimoto, Y.; Mizuno, S.; Nakamura, Y.; Kitakaze, M. Casein Hydrolysate Containing the Antihypertensive Tripeptides Val-Pro-Pro and Ile-Pro-Pro Improves Vascular Endothelial Function Independent of Blood Pressure-Lowering Effects: Contribution of the Inhibitory Action of Angiotensin-Converting Enzyme. Hypertens. Res. 2007, 30, 489–496. [Google Scholar] [CrossRef]
- Dalabasmaz, S.; de la Torre, E.P.; Gensberger-Reigl, S.; Pischetsrieder, M.; Rodríguez-Ortega, M.J. Identification of Potential Bioactive Peptides in Sheep Milk Kefir through Peptidomic Analysis at Different Fermentation Times. Foods 2023, 12, 2974. [Google Scholar] [CrossRef]
- Pihlanto, A. Lactic Fermentation and Bioactive Peptides. In Lactic Acid Bacteria—R & D for Food, Health and Livestock Purposes; IntechOpen: London, UK, 2013; ISBN 978-953-51-0955-6. [Google Scholar]
- de Oliveira Leite, A.M.; Miguel, M.A.; Peixoto, R.S.; Rosado, A.S.; Silva, J.T.; Paschoalin, V.M. Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Braz J Microbiol. 2013, 44, 341–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skulska, I.V.; Tsisaryk, O.Y. Changes in Protein Substances of Brynza Cheese under the Influence of Partial Replacement of Salt with Potassium Chloride. Sci. Messenger LNU Vet. Med. Biotechnol. Ser. Food Technol. 2020, 22, 50–54. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Kunová, S.; Haščík, P.; Kowalczewski, P.Ł.; Štefániková, J. Diversity of Microbiota in Slovak Summer Ewes’ Cheese “Bryndza”. Open Life Sci. 2021, 16, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Nagyová, Ľ.; Štefániková, J.; Felsöciová, S.; Godočí-ková, L.; Haščí-k, P.; Horská, E.; Kunová, S. The Characteristic of Sheep Cheese “Bryndza” from Different Regions of Slovakia Based on Microbiological Quality. Potravin. Slovak J. Food Sci. 2020, 14, 69–75. [Google Scholar] [CrossRef]
- Manso, M.A.; López-Fandiño, R. Angiotensin I Converting Enzyme-Inhibitory Activity of Bovine, Ovine, and Caprine Kappa-Casein Macropeptides and Their Tryptic Hydrolysates. J. Food Prot. 2003, 66, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, D.; Jena, R.; Choudhury, P.K.; Pattnaik, R.; Mohapatra, S.; Saini, M.R. Milk Derived Antimicrobial Bioactive Peptides: A Review. Int. J. Food Prop. 2016, 19, 837–846. [Google Scholar] [CrossRef]
- Contreras, M.d.M.; Carrón, R.; Montero, M.J.; Ramos, M.; Recio, I. Novel Casein-Derived Peptides with Antihypertensive Activity. Int. Dairy J. 2009, 19, 566–573. [Google Scholar] [CrossRef]
- Bhandari, D.; Rafiq, S.; Gat, Y.; Gat, P.; Waghmare, R.; Kumar, V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int. J. Pept. Res. Ther. 2020, 26, 139–150. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Pinto, D.; Gobbetti, M. Selected Lactic Acid Bacteria Synthesize Antioxidant Peptides during Sourdough Fermentation of Cereal Flours. Appl. Environ. Microbiol. 2012, 78, 1087–1096. [Google Scholar] [CrossRef]
- Maioli, M.; Pes, G.M.; Sanna, M.; Cherchi, S.; Dettori, M.; Manca, E.; Farris, G.A. Sourdough-Leavened Bread Improves Postprandial Glucose and Insulin Plasma Levels in Subjects with Impaired Glucose Tolerance. Acta Diabetol. 2008, 45, 91–96. [Google Scholar] [CrossRef]
- Iversen, K.N.; Jonsson, K.; Landberg, R. The Effect of Rye-Based Foods on Postprandial Plasma Insulin Concentration: The Rye Factor. Front. Nutr. 2022, 9, 91–96. [Google Scholar] [CrossRef]
- Reduction of Post-Prandial Glycaemic Responses Compared with Glucose|EFSA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/3837 (accessed on 21 October 2025).
- Ribet, L.; Dessalles, R.; Lesens, C.; Brusselaers, N.; Durand-Dubief, M. Nutritional Benefits of Sourdoughs: A Systematic Review. Adv. Nutr. 2022, 14, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N. Fermentation’s Pivotal Role in Shaping the Future of Plant-Based Foods: An Integrative Review of Fermentation Processes and Their Impact on Sensory and Health Benefits. Appl. Food Res. 2024, 4, 100468. [Google Scholar] [CrossRef]
- Chaudhary, A.; Bhalla, S.; Patiyal, S.; Raghava, G.P.S.; Sahni, G. FermFooDb: A Database of Bioactive Peptides Derived from Fermented Foods. Heliyon 2021, 7, e06668. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, S.; Huang, K.; Cao, H.; Qiu, W.; Guan, X. Mechanism of the Release and Transformation of Polyphenols during Germination and Fermentation in Millets: Profile and Metabolomics Based Analysis. Food Funct. 2025, 16, 2004–2017. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, O.; Fernando, W.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Role of Phenolic Acid, Tannins, Stilbenes, Lignans and Flavonoids in Human Health—A Review. Int. J. Food Sci. Technol. 2022, 57, 6326–6335. [Google Scholar] [CrossRef]
- Intharuksa, A.; Kuljarusnont, S.; Sasaki, Y.; Tungmunnithum, D. Flavonoids and Other Polyphenols: Bioactive Molecules from Traditional Medicine Recipes/Medicinal Plants and Their Potential for Phytopharmaceutical and Medical Application. Molecules 2024, 29, 5760. [Google Scholar] [CrossRef]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef]
- Ripari, V.; Bai, Y.; Gänzle, M.G. Metabolism of Phenolic Acids in Whole Wheat and Rye Malt Sourdoughs. Food Microbiol. 2019, 77, 43–51. [Google Scholar] [CrossRef]
- Miyagusuku-Cruzado, G.; García-Cano, I.; Rocha-Mendoza, D.; Jiménez-Flores, R.; Giusti, M.M. Monitoring Hydroxycinnamic Acid Decarboxylation by Lactic Acid Bacteria Using High-Throughput UV-Vis Spectroscopy. Molecules 2020, 25, 3142. [Google Scholar] [CrossRef]
- López de Felipe, F. Revised Aspects into the Molecular Bases of Hydroxycinnamic Acid Metabolism in Lactobacilli. Antioxidants 2023, 12, 1294. [Google Scholar] [CrossRef]
- Hu, H.; Li, L.; Ding, S. An Organic Solvent-Tolerant Phenolic Acid Decarboxylase from Bacillus Licheniformis for the Efficient Bioconversion of Hydroxycinnamic Acids to Vinyl Phenol Derivatives. Appl. Microbiol. Biotechnol. 2015, 99, 5071–5081. [Google Scholar] [CrossRef]
- Dissanayake, I.H.; Tabassum, W.; Alsherbiny, M.; Chang, D.; Li, C.G.; Bhuyan, D.J. Lactic Acid Bacterial Fermentation as a Biotransformation Strategy to Enhance the Bioavailability of Phenolic Antioxidants in Fruits and Vegetables: A Comprehensive Review. Food Res. Int. 2025, 209, 116283. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Liu, Y.-H.; Lin, S.-P.; Santoso, S.P.; Jantama, K.; Tsai, T.-Y.; Hsieh, C.-W.; Cheng, K.-C. Development of High-Glucosinolate-Retaining Lactic-Acid-Bacteria-Co-Fermented Cabbage Products. Fermentation 2024, 10, 635. [Google Scholar] [CrossRef]
- Mulțescu, M.; Susman, I.-E.; Culețu, A.; Zamfir, M.; Sanmartin, A.M.; Israel-Roming, F. The influence of starter cultures of lactic acid bacteria on fermentation of white cabbage. AgroLife Sci. J. 2024, 13, 300–309. [Google Scholar] [CrossRef]
- Wei, L.; Marco, M.L. The Fermented Cabbage Metabolome and Its Protection against Cytokine-Induced Intestinal Barrier Disruption of Caco-2 Monolayers. Appl. Environ. Microbiol. 2025, 91, e02234-24. [Google Scholar] [CrossRef] [PubMed]
- Šalić, A.; Šamec, D. Changes in the Content of Glucosinolates, Polyphenols and Carotenoids during Lactic-Acid Fermentation of Cruciferous Vegetables: A Mini Review. Food Chem. X 2022, 16, 100457. [Google Scholar] [CrossRef]
- Rehman, S.; Mufti, I.U.; Ain, Q.U.; Ijaz, B. Bioactive Compounds and Biological Activities of Red Beetroot (Beta vulgaris L.). In Bioactive Compounds in the Storage Organs of Plants; Springer: Cham, Switzerland, 2024; pp. 1–31. ISBN 978-3-031-29006-0. [Google Scholar]
- Jakubczyk, K.; Melkis, K.; Janda-Milczarek, K.; Skonieczna-Żydecka, K. Phenolic Compounds and Antioxidant Properties of Fermented Beetroot Juices Enriched with Different Additives. Foods 2024, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Duyar, S.M.; Sarı, F.; Karaoglan, H.A. Degradation Kinetics of Betalains in Red Beetroot Juices throughout Fermentation Process and Storage. Ital. J. Food Sci. 2024, 36, 229–239. [Google Scholar] [CrossRef]
- Chou, Y.-C.; Lin, H.-W.; Wang, C.-Y.; Hsieh, C.-C.; Santoso, S.P.; Lin, S.-P.; Cheng, K.-C. Enhancing Antioxidant Benefits of Kombucha Through Optimized Glucuronic Acid by Selected Symbiotic Fermentation Culture. Antioxidants 2024, 13, 1323. [Google Scholar] [CrossRef]
- Koistinen, V.M. Effects of Food Processing and Gut Microbial Metabolism on Whole Grain Phytochemicals: A Metabolomics Approach; Itä-Suomen Yliopisto: Kuopio, Finland, 2019; ISBN 978-952-61-3088-0. [Google Scholar]
- Alkay, Z.; Falah, F.; Cankurt, H.; Dertli, E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024, 13, 1732. [Google Scholar] [CrossRef] [PubMed]
- Saimaiti, A.; Huang, S.-Y.; Xiong, R.-G.; Wu, S.-X.; Zhou, D.-D.; Yang, Z.-J.; Luo, M.; Gan, R.-Y.; Li, H.-B. Antioxidant Capacities and Polyphenol Contents of Kombucha Beverages Based on Vine Tea and Sweet Tea. Antioxidants 2022, 11, 1655. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, P.V.; da Silva Júnior, A.H.; de Oliveira, C.R.S.; Assumpção, C.F.; Ogeda, C.H. Kombucha Benefits, Risks and Regulatory Frameworks: A Review. Food Chem. Adv. 2023, 2, 100288. [Google Scholar] [CrossRef]
- Kiczorowski, P.; Kiczorowska, B.; Samolińska, W.; Szmigielski, M.; Winiarska-Mieczan, A. Effect of Fermentation of Chosen Vegetables on the Nutrient, Mineral, and Biocomponent Profile in Human and Animal Nutrition. Sci. Rep. 2022, 12, 13422. [Google Scholar] [CrossRef]
- Tlais, A.Z.A.; Lemos Junior, W.J.F.; Filannino, P.; Campanaro, S.; Gobbetti, M.; Di Cagno, R. How Microbiome Composition Correlates with Biochemical Changes during Sauerkraut Fermentation: A Focus on Neglected Bacterial Players and Functionalities. Microbiol. Spectr. 2022, 10, e00168-22. [Google Scholar] [CrossRef]
- Garofalo, C.; Osimani, A.; Milanović, V.; Aquilanti, L.; De Filippis, F.; Stellato, G.; Di Mauro, S.; Turchetti, B.; Buzzini, P.; Ercolini, D.; et al. Bacteria and Yeast Microbiota in Milk Kefir Grains from Different Italian Regions. Food Microbiol. 2015, 49, 123–133. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Treuren, W.V.; Han, S.; et al. Gut-Microbiota-Targeted Diets Modulate Human Immune Status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef]
- de Moreno de LeBlanc, A.; del Carmen, S.; Zurita-Turk, M.; Santos Rocha, C.; van de Guchte, M.; Azevedo, V.; Miyoshi, A.; LeBlanc, J.G. Importance of IL-10 Modulation by Probiotic Microorganisms in Gastrointestinal Inflammatory Diseases. Int. Sch. Res. Not. 2011, 2011, 892971. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Wang, P.; Huang, Y.; Wang, F. Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy. Cell. Physiol. Biochem. 2018, 49, 190–205. [Google Scholar] [CrossRef]
- Gou, H.-Z.; Zhang, Y.-L.; Ren, L.-F.; Li, Z.-J.; Zhang, L. How Do Intestinal Probiotics Restore the Intestinal Barrier? Front. Microbiol. 2022, 13, 929346. [Google Scholar] [CrossRef]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on Fermented Foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Koj, K.; Pejcz, E. Rye Dietary Fiber Components upon the Influence of Fermentation Inoculated with Probiotic Microorganisms. Molecules 2023, 28, 1910. [Google Scholar] [CrossRef]
- Williams, B.A.; Grant, L.J.; Gidley, M.J.; Mikkelsen, D. Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health. Int. J. Mol. Sci. 2017, 18, 2203. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Nigam, P.S. Therapeutic and Dietary Support for Gastrointestinal Tract Using Kefir as a Nutraceutical Beverage: Dairy-Milk-Based or Plant-Sourced Kefir Probiotic Products for Vegan and Lactose-Intolerant Populations. Fermentation 2023, 9, 388. [Google Scholar] [CrossRef]
- Negishi, H.; Ichikawa, A.; Takahashi, S.; Kano, H.; Makino, S. Targeted Prebiotic Application of Gluconic Acid-Containing Oligosaccharides Promotes Faecalibacterium Growth through Microbial Cross-Feeding Networks. ISME J. 2025, 19, wraf027. [Google Scholar] [CrossRef]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef]
- Collins, S.M.; Gibson, G.R.; Kennedy, O.B.; Walton, G.; Rowland, I.; Commane, D.M. Development of a Prebiotic Blend to Influence in Vitro Fermentation Effects, with a Focus on Propionate, in the Gut. FEMS Microbiol. Ecol. 2021, 97, fiab101. [Google Scholar] [CrossRef]
- Fehlbaum, S.; Prudence, K.; Kieboom, J.; Heerikhuisen, M.; Van den Broek, T.; Schuren, F.H.J.; Steinert, R.E.; Raederstorff, D. In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota. Int. J. Mol. Sci. 2018, 19, 3097. [Google Scholar] [CrossRef]
- Christensen, C.M.; Kok, C.R.; Auchtung, J.M.; Hutkins, R. Prebiotics Enhance Persistence of Fermented-Food Associated Bacteria in in Vitro Cultivated Fecal Microbial Communities. Front. Microbiol. 2022, 13, 908506. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.; Alexander, M.; Gaiani, C.; Lunken, G.; Holmes, A.; Staudacher, H.M.; Theis, S.; Marco, M.L. Design and Reporting of Prebiotic and Probiotic Clinical Trials in the Context of Diet and the Gut Microbiome. Nat. Microbiol. 2024, 9, 2785–2794. [Google Scholar] [CrossRef]
- Gurunathan, S.; Thangaraj, P.; Kim, J.-H. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2024, 13, 89. [Google Scholar] [CrossRef]
- Salek, R.N.; Pleva, P.; Sumczynski, D.; Vinter, Š.; Kopečková, J.; Rejdlová, A.; Lorencová, E. Sauerkraut Juice Fermented with Different Symbiotic Starter Cultures: Comprehensive Assessment of Physicochemical, Rheological, Antioxidant, and Microbiological Characteristics. Front. Sustain. Food Syst. 2025, 9, 1570465. [Google Scholar] [CrossRef]
- Jácome-Silva, L.G.; Marín-Iniesta, F.; Tortosa-Díaz, L.; Planes-Muñoz, D.; López-Nicolas, R. Influence of the Type of Sauerkraut Fermentation with Probiotics Strains on Folate Content, Antioxidant Activity and Sensory Analysis. Appl. Sci. 2025, 15, 9934. [Google Scholar] [CrossRef]
- Bauer, M. Sauerkraut Fermentation: Process, Microbiology, Defects and Spoilage|Industrial Microbiology. Biol. Discuss. 2018. Available online: https://www.biologydiscussion.com/fermentation/sauerkraut-fermentation/sauerkraut-fermentation-process-microbiology-defects-and-spoilage-industrial-microbiology/86694?utm_source=copilot.com (accessed on 30 October 2025).
- Jastrząb, R.; Graczyk, D.; Siedlecki, P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int. J. Mol. Sci. 2021, 22, 13475. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An Evolving Term within the Functional Foods Field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Nasreen, S.; Ali, S.; Andleeb, S.; Summer, M.; Hussain, T.; Imdad, K.; Ara, C.; Tahir, H.M. Mechanisms of Medicinal, Pharmaceutical, and Immunomodulatory Action of Probiotics Bacteria and Their Secondary Metabolites against Disease Management: An Overview. Folia Microbiol. 2024, 69, 549–565. [Google Scholar] [CrossRef]
- Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int. J. Mol. Sci. 2019, 20, 4673. [Google Scholar] [CrossRef]
- Schwarzer, M.; Tlaskalova-Hogenova, H.; Leulier, F.; Schabussova, I. Editorial: Employing Experimental Gnotobiotic Models to Decipher the Host-Microbiota Cross-Talk in Health and Disease. Front. Immunol. 2021, 12, 729052. [Google Scholar] [CrossRef]
- Mukherjee, A.; Farsi, D.N.; Garcia-Gutierrez, E.; Akan, E.; Millan, J.A.S.; Angelovski, L.; Bintsis, T.; Gérard, A.; Güley, Z.; Kabakcı, S.; et al. Impact of Fermented Foods Consumption on Gastrointestinal Wellbeing in Healthy Adults: A Systematic Review and Meta-Analysis. Front. Nutr. 2025, 12, 1668889. [Google Scholar] [CrossRef]
- Chan, M.; Baxter, H.; Larsen, N.; Jespersen, L.; Ekinci, E.I.; Howell, K. Impact of Botanical Fermented Foods on Metabolic Biomarkers and Gut Microbiota in Adults with Metabolic Syndrome and Type 2 Diabetes: A Systematic Review Protocol. BMJ Open 2019, 9, e029242. [Google Scholar] [CrossRef]
- Gill, P.; Staudacher, H.M. Are Postbiotics Key to the Potential Benefits of Fermented Foods? Lancet Gastroenterol. Hepatol. 2023, 8, 509. [Google Scholar] [CrossRef]
- Zdybel, K.; Śliwka, A.; Polak-Berecka, M.; Polak, P.; Waśko, A. Postbiotics Formulation and Therapeutic Effect in Inflammation: A Systematic Review. Nutrients 2025, 17, 2187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, S.; Liang, S.; Xiang, F.; Wang, X.; Lian, H.; Li, B.; Liu, F. Exopolysaccharides of Lactic Acid Bacteria: Structure, Biological Activity, Structure-Activity Relationship, and Application in the Food Industry: A Review. Int. J. Biol. Macromol. 2024, 257, 128733. [Google Scholar] [CrossRef] [PubMed]
- Abitha Eswari, U.; Radhamanalan, G.; Dharumadurai, D. Thermal Methods of Postbiotics Preparation. In Postbiotics; Dharumadurai, D., Ed.; Springer: New York, NY, USA, 2024; pp. 85–91. ISBN 978-1-0716-3421-9. [Google Scholar]
- Da, M.; Sun, J.; Ma, C.; Li, D.; Dong, L.; Wang, L.-S.; Chen, F. Postbiotics: Enhancing Human Health with a Novel Concept. eFood 2024, 5, e180. [Google Scholar] [CrossRef]
- LeBlanc, J.G.; Laiño, J.E.; del Valle, M.J.; Vannini, V.; van Sinderen, D.; Taranto, M.P.; de Valdez, G.F.; de Giori, G.S.; Sesma, F. B-Group Vitamin Production by Lactic Acid Bacteria—Current Knowledge and Potential Applications. J. Appl. Microbiol. 2011, 111, 1297–1309. [Google Scholar] [CrossRef]
- Hugenschmidt, S.; Schwenninger, S.M.; Lacroix, C. Concurrent High Production of Natural Folate and Vitamin B12 Using a Co-Culture Process with Lactobacillus plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochem. 2011, 46, 1063–1070. [Google Scholar] [CrossRef]
- Deptula, P.; Chamlagain, B.; Edelmann, M.; Sangsuwan, P.; Nyman, T.A.; Savijoki, K.; Piironen, V.; Varmanen, P. Food-Like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium Freudenreichii 2067 without DMBI, the Lower Ligand Base, or Cobalt Supplementation. Front. Microbiol. 2017, 8, 368. [Google Scholar] [CrossRef]
- Reale, A.; Konietzny, U.; Coppola, R.; Sorrentino, E.; Greiner, R. The Importance of Lactic Acid Bacteria for Phytate Degradation during Cereal Dough Fermentation. J. Agric. Food Chem. 2007, 55, 2993–2997. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, Y.; Li, J.; Ravichandran, V.; Wang, L.; Huang, Q.; Chen, C.; Ni, H.; Yin, J. Effects of Phytic Acid-Degrading Bacteria on Mineral Element Content in Mice. Front. Microbiol. 2021, 12, 753195. [Google Scholar] [CrossRef] [PubMed]
- Molina, G.E.S.; Ras, G.; da Silva, D.F.; Duedahl-Olesen, L.; Hansen, E.B.; Bang-Berthelsen, C.H. Metabolic Insights of Lactic Acid Bacteria in Reducing Off-Flavors and Antinutrients in Plant-Based Fermented Dairy Alternatives. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70134. [Google Scholar] [CrossRef]
- Keyvan, E.; Adesemoye, E.; Champomier-Vergès, M.-C.; Chanséaume-Bussiere, E.; Mardon, J.; Nikolovska Nedelkoska, D.; Palamutoglu, R.; Russo, P.; Sarand, I.; Songre-Ouattara, L.; et al. Vitamins Formed by Microorganisms in Fermented Foods: Effects on Human Vitamin Status—A Systematic Narrative Review. Front. Nutr. 2025, 12, 1653666. [Google Scholar] [CrossRef] [PubMed]
- Sorathiya, K.B.; Melo, A.; Hogg, M.C.; Pintado, M. Organic Acids in Food Preservation: Exploring Synergies, Molecular Insights, and Sustainable Applications. Sustainability 2025, 17, 3434. [Google Scholar] [CrossRef]
- Gan, J.; Kong, X.; Wang, K.; Chen, Y.; Du, M.; Xu, B.; Xu, J.; Wang, Z.; Cheng, Y.; Yu, T. Effect of Fermentation Using Different Lactic Acid Bacteria Strains on the Nutrient Components and Mineral Bioavailability of Soybean Yogurt Alternative. Front. Nutr. 2023, 10, 1198456. [Google Scholar] [CrossRef]
- Gasaly, N.; Hermoso, M.A.; Gotteland, M. Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2021, 22, 3061. [Google Scholar] [CrossRef]
- Xiao, S.; Jiang, S.; Qian, D.; Duan, J. Modulation of Microbially Derived Short-Chain Fatty Acids on Intestinal Homeostasis, Metabolism, and Neuropsychiatric Disorder. Appl. Microbiol. Biotechnol. 2020, 104, 589–601. [Google Scholar] [CrossRef]
- Künili, İ.E.; Akdeniz, V.; Akpınar, A.; Budak, Ş.Ö.; Curiel, J.A.; Guzel, M.; Karagözlü, C.; Berkel Kasikci, M.; Caruana, G.P.M.; Starowicz, M.; et al. Bioactive Compounds in Fermented Foods: A Systematic Narrative Review. Front. Nutr. 2025, 12, 1625816. [Google Scholar] [CrossRef]
- de Carvalho, A.P.A.; Conte-Junior, C.A. Health and Bioactive Compounds of Fermented Foods and By-Products. Fermentation 2024, 10, 13. [Google Scholar] [CrossRef]
- Zhang, J.; Cianciosi, D.; Islam, M.O.; Zhang, L. Editorial: Intervention Effects of Food-Derived Polyphenols and Bioactive Peptides on Chronic Inflammation. Front. Nutr. 2024, 11, 1493706. [Google Scholar] [CrossRef] [PubMed]
- Iorizzo, M.; Di Martino, C.; Letizia, F.; Crawford, T.W.; Paventi, G. Production of Conjugated Linoleic Acid (CLA) by Lactiplantibacillus Plantarum: A Review with Emphasis on Fermented Foods. Foods 2024, 13, 975. [Google Scholar] [CrossRef]
- Naseeb, J.; Kanwal, M.; Aldalali, S.; Sarwar, A.; Jamal, S.B.; Yang, Z.; Aziz, T.; Alharbi, M.; Shami, A.; Al-Asmari, F.; et al. Metabolic and Enzymatic Characterization of Linoleic Acid Biotransformation by Lactiplantibacillus plantarum NGML2 to Conjugated Linoleic Acid and Different Metabolites. World J. Microbiol. Biotechnol. 2025, 41, 193. [Google Scholar] [CrossRef]
- Rashidbeygi, E.; Samarin, M.M.; Sheikhhossein, F.; Khalilkhaneh, A.H.; Gholizadeh, M.; Lohrasbi, N.; Abbasi, A.; Bazyar, H.; Askari, G.; Amini, M.R. The Effect of Kefir Consumption on Blood Pressure and C-Reactive Protein: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Endocrinol. Diabetes Metab. 2025, 8, e70124. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Martini, S.; Shamsia, S.; Helal, A.; Conte, A. Biological Activities and Peptidomic Profile of in Vitro-Digested Cow, Camel, Goat and Sheep Milk. Int. Dairy J. 2018, 81, 19–27. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Kefir’s Laxative Effects: Friend Or Foe?|MedShun. Available online: https://medshun.com/article/does-kefir-have-laxative-properties (accessed on 27 October 2025).
- Ki, J.-H.; Jung, K.-O.; Lee, H.-S.; Hwang, I.-K.; Kim, Y.-J.; Park, K.-Y. Effects of Kimchi on Stomach and Colon Health of Helicobacter pylori—Infected Volunteers|DBpia. Prev. Nutr. Food Sci. 2004, 9, 161–166. [Google Scholar]
- Gao, Y.; Liu, Y.; Ma, T.; Liang, Q.; Sun, J.; Wu, X.; Song, Y.; Nie, H.; Huang, J.; Mu, G. Fermented Dairy Products as Precision Modulators of Gut Microbiota and Host Health: Mechanistic Insights, Clinical Evidence, and Future Directions. Foods 2025, 14, 1946. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Kaur, G.; Ali, S.A. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. Fermentation 2022, 8, 425. [Google Scholar] [CrossRef]
- Saleem, G.N.; Gu, R.; Qu, H.; Bahar Khaskheli, G.; Rashid Rajput, I.; Qasim, M.; Chen, X. Therapeutic Potential of Popular Fermented Dairy Products and Its Benefits on Human Health. Front. Nutr. 2024, 11, 1328620. [Google Scholar] [CrossRef]
- Laiño, J.; Villena, J.; Kanmani, P.; Kitazawa, H. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells. Microorganisms 2016, 4, 27. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Saika, A.; Nagatake, T.; Matsunaga, A.; Kunisawa, J.; Katakura, Y.; Yamasaki-Yashiki, S. Mechanisms Underlying Enhanced IgA Production in Peyer’s Patch Cells by Membrane Vesicles Derived from Lactobacillus Sakei. Biosci. Biotechnol. Biochem. 2021, 85, 1536–1545. [Google Scholar] [CrossRef]
- Carasi, P.; Racedo, S.M.; Jacquot, C.; Romanin, D.E.; Serradell, M.A.; Urdaci, M.C. Impact of Kefir Derived Lactobacillus Kefiri on the Mucosal Immune Response and Gut Microbiota. J. Immunol. Res. 2015, 2015, 361604. [Google Scholar] [CrossRef] [PubMed]
- Yamane, T.; Sakamoto, T.; Nakagaki, T.; Nakano, Y. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells. Foods 2018, 7, 48. [Google Scholar] [CrossRef]
- Paul, A.K.; Lim, C.L.; Apu, M.A.I.; Dolma, K.G.; Gupta, M.; de Lourdes Pereira, M.; Wilairatana, P.; Rahmatullah, M.; Wiart, C.; Nissapatorn, V. Are Fermented Foods Effective against Inflammatory Diseases? Int. J. Environ. Res. Public Health 2023, 20, 2481. [Google Scholar] [CrossRef]
- Kim, J.; Choi, K.-B.; Park, J.H.; Kim, K.H. Metabolite Profile Changes and Increased Antioxidative and Antiinflammatory Activities of Mixed Vegetables after Fermentation by Lactobacillus Plantarum. PLoS ONE 2019, 14, e0217180. [Google Scholar] [CrossRef]
- Oliviero, T.; Verkerk, R.; Dekker, M. Isothiocyanates from Brassica Vegetables—Effects of Processing, Cooking, Mastication, and Digestion. Mol. Nutr. Food Res. 2018, 62, 1701069. [Google Scholar] [CrossRef] [PubMed]
- Galena, A.E.; Chai, J.; Zhang, J.; Bednarzyk, M.; Perez, D.; Ochrietor, J.D.; Jahan-Mihan, A.; Arikawa, A.Y. The Effects of Fermented Vegetable Consumption on the Composition of the Intestinal Microbiota and Levels of Inflammatory Markers in Women: A Pilot and Feasibility Study. PLoS ONE 2022, 17, e0275275. [Google Scholar] [CrossRef]
- Hamadou, M. Bioactive Peptides and Metabolic Health: A Mechanistic Review of the Impact on Insulin Sensitivity, Lipid Profiles, and Inflammation. Appl. Food Res. 2025, 5, 101056. [Google Scholar] [CrossRef]
- Ma, Z.F.; Fu, C.; Lee, Y.Y. The Modulatory Role of Bioactive Compounds in Functional Foods on Inflammation and Metabolic Pathways in Chronic Diseases. Foods 2025, 14, 821. [Google Scholar] [CrossRef]
- Chan, M.; Larsen, N.; Baxter, H.; Jespersen, L.; Ekinci, E.I.; Howell, K. The Impact of Botanical Fermented Foods on Metabolic Syndrome and Type 2 Diabetes: A Systematic Review of Randomised Controlled Trials. Nutr. Res. Rev. 2024, 37, 396–415. [Google Scholar] [CrossRef]
- Bellikci-Koyu, E.; Sarer-Yurekli, B.P.; Karagozlu, C.; Aydin-Kose, F.; Ozgen, A.G.; Buyuktuncer, Z. Probiotic Kefir Consumption Improves Serum Apolipoprotein A1 Levels in Metabolic Syndrome Patients: A Randomized Controlled Clinical Trial. Nutr. Res. 2022, 102, 59–70. [Google Scholar] [CrossRef]
- Lange, E.; Pałkowska-Goździk, E.; Kęszycka, P. The Influence of Various Types of Functional Bread on Postprandial Glycemia in Healthy Adults. Appl. Sci. 2024, 14, 11900. [Google Scholar] [CrossRef]
- Gil-Cardoso, K.; Saldaña, G.; Luengo, E.; Pastor, J.; Virto, R.; Alcaide-Hidalgo, J.M.; del Bas, J.M.; Arola, L.; Caimari, A. Consumption of Sourdough Breads Improves Postprandial Glucose Response and Produces Sourdough-Specific Effects on Biochemical and Inflammatory Parameters and Mineral Absorption. J. Agric. Food Chem. 2021, 69, 3044–3059. [Google Scholar] [CrossRef]
- Stamataki, N.S.; Yanni, A.E.; Karathanos, V.T. Bread Making Technology Influences Postprandial Glucose Response: A Review of the Clinical Evidence. Br. J. Nutr. 2017, 117, 1001–1012. [Google Scholar] [CrossRef]
- Biçer, Y.; Telli, A.E.; Turkal, G.; Telli, N.; Uçar, G. From Raw to Fermented: Uncovering the Microbial Wealth of Dairy. Fermentation 2025, 11, 552. [Google Scholar] [CrossRef]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented Foods in a Global Age: East Meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef]
- Tlais, A.Z.A.; Kanwal, S.; Filannino, P.; Acin Albiac, M.; Gobbetti, M.; Di Cagno, R. Effect of Sequential or Ternary Starters-Assisted Fermentation on the Phenolic and Glucosinolate Profiles of Sauerkraut in Comparison with Spontaneous Fermentation. Food Res. Int. 2022, 156, 111116. [Google Scholar] [CrossRef]
- Kołożyn-Krajewska, D.; Dolatowski, Z. Tradycyjne i Regionalne Technologie oraz Produkty w Żywieniu Człowieka: Monografia; Wydawnictwo Naukowe PTTŻ: Kraków, Poland, 2008. [Google Scholar]
- Chourasia, R.; Chiring Phukon, L.; Abedin, M.M.; Padhi, S.; Singh, S.P.; Rai, A.K. Bioactive Peptides in Fermented Foods and Their Application: A Critical Review. Syst. Microbiol. Biomanufacturing 2023, 3, 88–109. [Google Scholar] [CrossRef]
- Is There Too Much Salt in Lacto-Fermentations? Available online: https://revolutionfermentation.com/en/blogs/fermented-vegetables/too-much-salt-lacto-fermentation/ (accessed on 27 October 2025).
- Liu, X.; Ma, J.; Fan, G. Microbiological Safety and Quality of Fermented Products. Foods 2023, 12, 2204. [Google Scholar] [CrossRef] [PubMed]
- Dees, J. Fermented Foods Part 2: The Joys and (Few) Risks of At-Home Fermentation. Joyf. Microbe 2019. Available online: https://joyfulmicrobe.com/fermented-foods-part-2/?utm_source=copilot.com (accessed on 25 October 2025).
- Shi, H.; An, F.; Lin, H.; Li, M.; Wu, J.; Wu, R. Advances in Fermented Foods Revealed by Multi-Omics: A New Direction toward Precisely Clarifying the Roles of Microorganisms. Front. Microbiol. 2022, 13, 1044820. [Google Scholar] [CrossRef] [PubMed]
| Food | Representative Peptide(s) or Class | Reported Bioactivity | Key Reference(s) Cited |
|---|---|---|---|
| Kefir | Tripeptides Val–Pro–Pro (VPP) and Ile–Pro–Pro (IPP); multiple casein-derived peptides (LC–MS identified) | ACE-inhibitory (antihypertensive), antioxidant, immunomodulatory (varies by peptide) | [54,55,56] |
| Bryndza (sheep-milk cheese) | Casein-derived peptides (including motifs similar to VPP/IPP reported in ripened cheeses); specific peptide sequencing in bryndza is limited | ACE-inhibitory, antioxidant (reported for ripened cheeses generally) | [57,58] |
| Rye sourdough | A range of small peptides (LC–MS identified) derived from rye storage proteins and glutenins | Antioxidant and modest ACE-inhibitory activities reported; contribute to improved digestibility and lower postprandial glycemia | [59,60,61] |
| Mechanism | Proposed Effects | Key References |
|---|---|---|
| Competitive exclusion of pathogens | LAB adheres to intestinal mucosa, inhibiting E. coli, Salmonella, Listeria spp. via bacteriocins and organic acids | [104,105] |
| Modulation of mucosal immunity | Increased secretion of IgA, IL-10; downregulation of proinflammatory cytokines | [106] |
| Enhancement of intestinal barrier | LAB upregulates tight-junction proteins (occludin, claudin) and short-chain fatty acid (SCFA) production | [107,108] |
| Influence on gut microbiota | Fermented foods increase microbial diversity and beneficial genera (e.g., Bifidobacterium, Faecalibacterium) in human trials | [105,109] |
| Region | Common Substrates | Microbial Diversity | Nutritional Role | Environmental Advantages |
|---|---|---|---|---|
| Eastern Europe | Vegetables (e.g., sauerkraut), cereals (e.g., rye sourdough, kvass), dairy (e.g., kefir) | Mixed cultures: lactic acid bacteria (LAB), yeasts, acetic acid bacteria | Rich in fiber, bioactive peptides, organic acids, probiotics; supports gut health and immune tone | Adapted to cold climates and seasonal scarcity; preservation-focused |
| Asia | Soy (e.g., miso, tempeh), pulses, rice, vegetables | Spontaneous or starter-enhanced LAB, fungi (Aspergillus, Rhizopus), yeasts | High in plant protein, umami compounds, and microbial metabolites; supports digestion and metabolic health | Tropical to temperate climates; fermentation used for flavor, preservation, and protein enhancement |
| Western (Industrial) | Primarily dairy (e.g., yogurt, cheese | Defined starter cultures: single-strain LAB (e.g., Lactobacillus delbrueckii, Streptococcus thermophilus) | Consistent probiotic delivery, calcium, B vitamins; less microbial diversity | Refrigeration-based preservation; less seasonal dependence; focused on standardization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zugravu, C.-A.; Constantin, C. Eastern European Fermented Foods: Nutritional Value, Functional Potential, and Cultural Heritage. Foods 2026, 15, 28. https://doi.org/10.3390/foods15010028
Zugravu C-A, Constantin C. Eastern European Fermented Foods: Nutritional Value, Functional Potential, and Cultural Heritage. Foods. 2026; 15(1):28. https://doi.org/10.3390/foods15010028
Chicago/Turabian StyleZugravu, Corina-Aurelia, and Ciprian Constantin. 2026. "Eastern European Fermented Foods: Nutritional Value, Functional Potential, and Cultural Heritage" Foods 15, no. 1: 28. https://doi.org/10.3390/foods15010028
APA StyleZugravu, C.-A., & Constantin, C. (2026). Eastern European Fermented Foods: Nutritional Value, Functional Potential, and Cultural Heritage. Foods, 15(1), 28. https://doi.org/10.3390/foods15010028

