Multidrug-Resistant and Potentially Pathogenic Escherichia coli Prevalent in Samples of Different Types of Raw Meat Sold in Informal Markets in Luanda, Angola
Abstract
1. Introduction
2. Materials and Methods
2.1. E. coli Isolates and Identification
2.2. Pulsed Field Gel Electrophoresis (PFGE)
2.3. Antibiotic Susceptibility Profiling
2.4. Detection of Antibiotic Resistance Genes and Virulence Genes by Multiplex-PCR (MPCR)
2.5. Data Analysis and Interpretation
3. Results
3.1. Pulsotyping of the Isolates
3.2. Antibiotic Resistance Profiles
3.3. Presence of Antibiotic Resistance Genes
3.4. Presence of Virulent Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajaei, M.; Moosavy, M.-H.; Gharajalar, S.N.; Khatibi, S.A. Antibiotic Resistance in the Pathogenic Foodborne Bacteria Isolated from Raw Kebab and Hamburger: Phenotypic and Genotypic Study. BMC Microbiol. 2021, 21, 272. [Google Scholar] [CrossRef]
- Garmendia, J.; Frankel, G.; Crepin, V.F. Enteropathogenic and Enterohemorrhagic Escherichia coli Infections: Translocation, Translocation, Translocation. Infect. Immun. 2005, 73, 2573–2585. [Google Scholar] [CrossRef] [PubMed]
- Salamandane, A.; Alves, S.; Chambel, L.M.; Malfeito-Ferreira, M.; Brito, L.C. Characterization of Escherichia coli from Water and Food Sold on the Streets of Maputo: Molecular Typing, Virulence Genes, and Antibiotic Resistance. Appl. Microbiol. 2022, 2, 133–147. [Google Scholar] [CrossRef]
- Zhao, C.; Ge, B.; De Villena, J.; Sudler, R.; Yeh, E.; Zhao, S.; White, D.G.; Wagner, D.; Meng, J. Prevalence of Campylobacter Spp., Escherichia coli, and Salmonella Serovars in Retail Chicken, Turkey, Pork, and Beef from the Greater Washington, D.C., Area. Appl. Environ. Microbiol. 2001, 67, 5431–5436. [Google Scholar] [CrossRef]
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on Major Food-Borne Zoonotic Bacterial Pathogens. J. Trop. Med. 2020, 2020, 4674235. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ban, G.-H.; Hong, Y.W.; Jeong, K.C.; Bae, D.; Kim, S.A. Bacterial Profile of Pork from Production to Retail Based on High-Throughput Sequencing. Food Res. Int. 2024, 176, 113745. [Google Scholar] [CrossRef]
- Siluma, B.J.; Kgatla, E.T.; Nethathe, B.; Ramashia, S.E. Evaluation of Meat Safety Practices and Hygiene among Different Butcheries and Supermarkets in Vhembe District, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2023, 20, 2230. [Google Scholar] [CrossRef]
- Machamba, A.A.L.; Chaves, C.R.S.; Amisse, L.; Macaza, B.; Boaventura, C.; Presse, I.J.; Salamandane, A. Occurrence of Salmonella in Fresh Foods Sold in the City of Nampula, Northern Mozambique. J. Food Qual. 2024, 2024, 9330701. [Google Scholar] [CrossRef]
- Ndjate -Junior, K.; Salamandane, C.; Frei, V.; Salamandane, A.; Vintuar, P. Poor Hygienic Conditions of Butcheries and High Level of Microbiological Contamination of Meat Sold in Nampula City, Mozambique. Food Health 2023, 5, 7. [Google Scholar] [CrossRef]
- Habets, A.; Touzain, F.; Lucas, P.; Huong, N.T.T.; Iguchi, A.; Crombé, F.; Korsak, N.; Piérard, D.; Saulmont, M.; Cox, E.; et al. Identification of Five Serotypes of Enteropathogenic Escherichia coli from Diarrheic Calves and Healthy Cattle in Belgium and Comparative Genomics with Shigatoxigenic E. coli. Vet. Sci. 2022, 9, 492. [Google Scholar] [CrossRef]
- Rojas-Lopez, M.; Monterio, R.; Pizza, M.; Desvaux, M.; Rosini, R. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development. Front. Microbiol. 2018, 9, 440. [Google Scholar] [CrossRef] [PubMed]
- Tabaran, A.; Soulageon, V.; Chirila, F.; Reget, O.L.; Mihaiu, M.; Borzan, M.; Dan, S.D. Pathogenic E. Coli from Cattle as a Reservoir of Resistance Genes to Various Groups of Antibiotics. Antibiotics 2022, 11, 404. [Google Scholar] [CrossRef]
- Cornick, N.A.; Booher, S.L.; Casey, T.A.; Moon, H.W. Persistent Colonization of Sheep by Escherichia coli O157:H7 and Other E. Coli Pathotypes. Appl. Environ. Microbiol. 2000, 66, 4926–4934. [Google Scholar] [CrossRef]
- Alabi, M.A.; Chenia, H.Y.; Lin, J. Antibiotic Use in Livestock: A Driver of Resistance in Africa and the Path to Safer Alternatives. Microbiologyopen 2025, 14, e70122. [Google Scholar] [CrossRef]
- Odey, T.O.J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial Use and Resistance in Food Animal Production: Food Safety and Associated Concerns in Sub-Saharan Africa. Int. Microbiol. 2023, 27, 1–23. [Google Scholar] [CrossRef]
- Almansour, A.M.; Alhadlaq, M.A.; Alzahrani, K.O.; Mukhtar, L.E.; Alharbi, A.L.; Alajel, S.M. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023, 11, 2127. [Google Scholar] [CrossRef]
- Cho, Y.S.; Koo, M.S.; Jang, H.J. Characterization of Diarrheagenic Escherichia coli Isolated from Fresh Beef, Pork, and Chicken Meat in Korean Markets. Microbiol. Biotechnol. Lett. 2020, 48, 121–128. [Google Scholar] [CrossRef]
- Beshiru, A.; Okoh, A.I.; Igbinosa, E.O. Processed Ready-to-Eat (RTE) Foods Sold in Yenagoa Nigeria Were Colonized by Diarrheagenic Escherichia coli Which Constitute a Probable Hazard to Human Health. PLoS ONE 2022, 17, e0266059. [Google Scholar] [CrossRef] [PubMed]
- Saka, H.K.; Dabo, N.T.; Muhammad, B.; García-Soto, S.; Ugarte-Ruiz, M.; Alvarez, J. Diarrheagenic Escherichia coli Pathotypes from Children Younger than 5 Years in Kano State, Nigeria. Front. Public Health 2019, 7, 348. [Google Scholar] [CrossRef]
- Kambire, O.; Adingra, A.A.; Yao, K.M.; Koffi-Nevry, R.; Zwietering, M.H. Prevalence of Virulence Genes Associated with Diarrheagenic Pathotypes of Escherichia coli Isolates from Water, Sediment, Fish, and Crab in Aby Lagoon, Côte d’Ivoire. Int. J. Microbiol. 2017, 2, 9532170. [Google Scholar] [CrossRef]
- Aijuka, M.; Santiago, A.E.; Girón, J.A.; Nataro, J.P.; Buys, E.M. Enteroaggregative Escherichia coli Is the Predominant Diarrheagenic E. Coli Pathotype among Irrigation Water and Food Sources in South Africa. Int. J. Food Microbiol. 2018, 278, 44–51. [Google Scholar] [CrossRef]
- Lima, C.M.; Souza, I.E.G.L.; dos Santos Alves, T.; Leite, C.C.; Evangelista-Barreto, N.S.; de Castro Almeida, R.C. Antimicrobial Resistance in Diarrheagenic Escherichia coli from Ready-to-Eat Foods. J. Food. Sci. Technol. 2017, 54, 3612–3619. [Google Scholar] [CrossRef]
- Taviani, E.; Muchongo, A.; Kim, S.W.; Van Kessel, J.A.S.; Haley, B.J. Genomic Analysis of Antibiotic-Resistant and-Susceptible Escherichia coli Isolated from Bovine Sources in Maputo, Mozambique. Foodborne Pathog. Dis. 2021, 18, 426–435. [Google Scholar] [CrossRef] [PubMed]
- McIver, K.S.; Amoako, D.G.; Abia, A.L.K.; Bester, L.A.; Chenia, H.Y.; Essack, S.Y. Molecular Epidemiology of Antibiotic-Resistant Escherichia coli from Farm-to-Fork in Intensive Poultry Production in KwaZulu-Natal, South Africa. Antibiotics 2020, 9, 850. [Google Scholar] [CrossRef]
- ISO 16649-2; Microbiology of Food and Animal Feeding—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Coli—Part 2: Colony-Count Technique at 44 °C Using-Bromo-4-Chloro-3-Indolyl-D-Glucuronide. International Organization for Standardization: Geneva, Switzerland, 2001.
- Cahango, G.; Salamandane, A.; Silva, A.C.; Muetane, B.A.; Agostinho Béu, H.L.; Pedro, B.S.; Brito, L. Fresh Meat Sold in Five Markets in Luanda (Angola): Food Quality and Safety, Knowledge, and Practices of the Sellers. J. Food Qual. 2025, 2025, 1884452. [Google Scholar] [CrossRef]
- IANORQ. Microbiological Contaminants for Food—Sanitary Requirements; Norma Angolana: Luanda, Angola, 2011. [Google Scholar]
- Salamandane, A.; Malfeito-Ferreira, M.; Brito, L. A High Level of Antibiotic Resistance in Klebsiella and Aeromonas Isolates from Street Water Sold in Mozambique, Associated with the Prevalence of Extended-Spectrum and AmpC ß-Lactamases. J. Environ. Sci. Health Part B 2022, 57, 561–567. [Google Scholar] [CrossRef] [PubMed]
- PNL05 Standard Operating Procedure for Pulsenet PFGE of Escherichia coli O157:H7, Escherichia coli Non-O157 (STEC), Salmonella Serotypes, Shigella Sonnei and Shigella Flexneri; CODE: PNL05; ResearchGate: Berlin, Germany, 2017.
- CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing; An Informational Supplement for Global Application Developed through the Clinical and Laboratory Standards Institute Consensus Process; CLSI: Berwyn, PA, USA, 2021; Volume 27. [Google Scholar]
- Ejaz, H.; Alzahrani, B.; Hamad, M.F.S.; Abosalif, K.O.A.; Junaid, K.; Abdalla, A.E.; Elamir, M.Y.M.; Aljaber, N.J.; Hamam, S.S.M.; Younas, S. Molecular Analysis of the Antibiotic Resistant NDM-1 Gene in Clinical Isolates of Enterobacteriaceae. Clin. Lab. 2020, 66, 409–417. [Google Scholar] [CrossRef]
- Salamandane, A.; Leech, J.; Almeida, R.; Silva, C.; Crispie, F.; Cotter, P.D.; Malfeito-Ferreira, M.; Brito, L. Metagenomic Analysis of the Bacterial Microbiome, Resistome and Virulome Distinguishes Portuguese Serra Da Estrela PDO Cheeses from Similar Non-PDO Cheeses: An Exploratory Approach. Food Res. Int. 2024, 189, 114556. [Google Scholar] [CrossRef] [PubMed]
- Salamandane, A.; Vila-Boa, F.; Malfeito-Ferreira, M.; Brito, L.C. High Fecal Contamination and High Levels of Antibiotic-Resistant Enterobacteriaceae in Water Consumed in the City of Maputo, Mozambique. Biology 2021, 10, 558. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Herrero-Fresno, A.; Ahmed, S.; Hansen, M.H.; Denwood, M.; Zachariasen, C.; Olsen, J.E. Genotype Variation and Genetic Relationship among Escherichia coli from Nursery Pigs Located in Different Pens in the Same Farm. BMC Microbiol. 2017, 17, 5. [Google Scholar] [CrossRef]
- Swings, T.; van Den Bergh, B.; Wuyts, S.; Oeyen, E.; Voordeckers, K.; Verstrepen, K.J.; Fauvart, M.; Verstraeten, N.; Michiels, J. Adaptive Tuning of Mutation Rates Allows Fast Response to Lethal Stress in Escherichia coli. eLife 2017, 6, e22939. [Google Scholar] [CrossRef]
- Parvez, A.K.; Jubyda, F.T.; Ayaz, M.; Sarker, A.; Haque, N.; Khan, M.S.; Mou, T.J.; Rahman, M.A.; Huq, M.A. Microbial- and Plant-Derived Bioactive Peptides and Their Applications against Foodborne Pathogens: Current Status and Future Prospects. Int. J. Microbiol. 2024, 2024, 9978033. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States-Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Gomes, T.A.T.; Elias, W.P.; Scaletsky, I.C.A.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.F.; Ferreira, L.C.S.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef]
- Yeda, R.; Makalliwa, G.; Apondi, E.; Sati, B.; Riziki, L.; Ouma, C.; Anguko, E.; Opot, B.; Okoth, R.; Koech, E.J.; et al. Comparative Prevalence of Diarrheagenic Escherichia coli between Children below Five Years with Close Contact to Food Animals in Kisumu County, Kenya. Pan Afr. Med. J. 2024, 47, 25. [Google Scholar] [CrossRef] [PubMed]
- Paniagua-Contreras, G.L.; Hernández-Jaimes, T.; Monroy-Pérez, E.; Vaca-Paniagua, F.; Díaz-Velásquez, C.; Uribe-García, A.; Vaca, S. Comprehensive Expression Analysis of Pathogenicity Genes in Uropathogenic Escherichia coli Strains. Microb. Pathog. 2017, 103, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Y.; Guan, C.; Li, J.; Yang, H.; Zhao, G.; Liu, C.; Ma, J.; Tang, B. Characterization of an Escherichia coli Isolate Coharboring the Virulence Gene AstA and Tigecycline Resistance Gene Tet(X4) from a Dead Piglet. Pathogens 2023, 12, 903. [Google Scholar] [CrossRef]
- Sukkua, K.; Manothong, S.; Sukhumungoon, P. Seroprevalence and Molecular Epidemiology of EAST1 Gene-Carrying Escherichia coli from Diarrheal Patients and Raw Meats. J. Infect. Dev. Ctries. 2017, 11, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xi, M.; Lv, X.; Xu, Y.; Feng, Y.; Li, Q.; Yang, Q.; Xia, X. Presence and Antimicrobial Susceptibility of Escherichia coli Recovered from Retail Chicken in China. J. Food Prot. 2014, 77, 1773–1777. [Google Scholar] [CrossRef]
- Chaves, C.R.S.; Salamandane, A.; Vieira, E.J.F.; Salamandane, C. Antibiotic Resistance in Fermented Foods Chain: Evaluating the Risks of Emergence of Enterococci as an Emerging Pathogen in Raw Milk Cheese. Int. J. Microbiol. 2024, 2024, 2409270. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef]
- Lalak, A.; Wasyl, D.; Zając, M.; Skarżyńska, M.; Hoszowski, A.; Samcik, I.; Woźniakowski, G.; Szulowski, K. Mechanisms of Cephalosporin Resistance in Indicator Escherichia coli Isolated from Food Animals. Vet. Microbiol. 2016, 194, 69–73. [Google Scholar] [CrossRef]
- Iweriebor, B.C.; Egbule, O.S.; Obi, L.C. The Emergence of Colistin- and Imipenem-Associated Multidrug Resistance in Escherichia coli Isolates from Retail Meat. Pol. J. Microbiol. 2022, 71, 519–528. [Google Scholar] [CrossRef]
- Alvisi, G.; Curtoni, A.; Fonnesu, R.; Piazza, A.; Signoretto, C.; Piccinini, G.; Sassera, D.; Gaibani, P. Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health. Antibiotics 2025, 14, 141. [Google Scholar] [CrossRef]
- Ajulo, S.; Awosile, B. Global Antimicrobial Resistance and Use Surveillance System (GLASS 2022): Investigating the Relationship between Antimicrobial Resistance and Antimicrobial Consumption Data across the Participating Countries. PLoS ONE 2024, 19, e0297921. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Dai, S.; Feng, H.; Karunaratne, S.H.P.P.; Yang, M.; Zhang, Y. Persistence and Potential Risks of Tetracyclines and Their Transformation Products in Two Typical Different Animal Manure Composting Treatments. Environ. Pollut. 2024, 341, 122904. [Google Scholar] [CrossRef]
- Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, 1315497. [Google Scholar] [CrossRef] [PubMed]
- Tyson, G.H.; Nyirabahizi, E.; Crarey, E.; Kabera, C.; Lam, C.; Rice-Trujillo, C.; McDermott, P.F.; Tate, H. Prevalence and Antimicrobial Resistance of Enterococci Isolated from Retail Meats in the United States, 2002 to 2014. Appl. Environ. Microbiol. 2018, 84, e01902-17. [Google Scholar] [CrossRef]
- Clemente, L.; Leão, C.; Moura, L.; Albuquerque, T.; Amaro, A. Prevalence and Characterization of ESBL/AmpC Producing Escherichia coli from Fresh Meat in Portugal. Antibiotics 2021, 10, 1333. [Google Scholar] [CrossRef] [PubMed]
- Jaja, I.F.; Oguttu, J.; Jaja, C.-J.I.; Green, E. Prevalence and Distribution of Antimicrobial Resistance Determinants of Escherichia coli Isolates Obtained from Meat in South Africa. PLoS ONE 2020, 15, e0216914. [Google Scholar] [CrossRef]
- Shatalov, A. Multi-Drug Resistance Pattern of Lactose Non-Fermenting Escherichia coli as Causative Agent of Urine Tract Infections in Luanda, Angola. Open J. Med. Microbiol. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- Kieffer, N.; Nordmann, P.; Aires-de-Sousa, M.; Poirel, L. High Prevalence of Carbapenemase-Producing Enterobacteriaceae among Hospitalized Children in Luanda, Angola. Antimicrob. Agents Chemother. 2016, 60, 6189–6192. [Google Scholar] [CrossRef]
- Mfoutou Mapanguy, C.C.; Adedoja, A.; Kecka, L.G.V.; Vouvoungui, J.C.; Nguimbi, E.; Velavan, T.P.; Ntoumi, F. High Prevalence of Antibiotic-Resistant Escherichia coli in Congolese Students. Int. J. Infect. Dis. 2021, 103, 119–123. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Guo, S.; Chang, W. Prevalence and Characteristics of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae Isolated from Rural Well Water in Taian, China, 2014. Environ. Sci. Pollut. Res. 2015, 22, 11488–11492. [Google Scholar] [CrossRef]
- Salman, S.; Umar, Z.; Xiao, Y. Current Epidemiologic Features and Health Dynamics of ESBL-Producing Escherichia coli in China. Biosaf. Health 2024, 6, 40–49. [Google Scholar] [CrossRef]
- Gundran, R.S.; Cardenio, P.A.; Villanueva, M.A.; Sison, F.B.; Benigno, C.C.; Kreausukon, K.; Pichpol, D.; Punyapornwithaya, V. Prevalence and Distribution of BlaCTX-M, BlaSHV, BlaTEM Genes in Extended- Spectrum β- Lactamase- Producing E. coli Isolates from Broiler Farms in the Philippines. BMC Vet. Res. 2019, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Hörmansdorfer, S.; Messelhäusser, U.; Käsbohrer, A.; Sauter-Louis, C.; Mansfeld, R. Prevalence of Extended-Spectrum β-Lactamase-Producing Escherichia coli on Bavarian Dairy and Beef Cattle Farms. Appl. Environ. Microbiol. 2013, 79, 3027–3032. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.G.; Novais, Â.; Peixe, L.; Machado, E. Atypical Epidemiology of CTX-M-15 among Enterobacteriaceae from a High Diversity of Non-Clinical Niches in Angola. J. Antimicrob. Chemother. 2016, 71, 1169–1173. [Google Scholar] [CrossRef]
- Albrechtova, K.; Kubelova, M.; Mazancova, J.; Dolejska, M.; Literak, I.; Cizek, A. High Prevalence and variability of CTX-M-15-Producing and Fluoroquinolone-Resistant Escherichia Observed in Stray Dogs in Rural Angola. Microb. Drug Resist. 2014, 20, 372–375. [Google Scholar] [CrossRef]
- Lubwama, M.; Kateete, D.; Katende, G.; Kigozi, E.; Orem, J.; Phipps, W.; Bwanga, F. CTX-M, TEM, and SHV Genes in Escherichia coli, Klebsiella Pneumoniae, and Enterobacter Spp Isolated from Hematologic Cancer Patients with Bacteremia in Uganda. Infect. Drug Resist. 2024, 17, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Chika, E.; Charles, E.; Ifeanyichukwu, I.; Michael, A. First Detection of FOX-1 AmpC β-Lactamase Gene Expression Among Escherichia coli Isolated from Abattoir Samples in Abakaliki, Nigeria. Oman Med. J. 2018, 33, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Sun, R.; Liu, X.; Heng, H.; Yang, X.; Xie, M.; Yang, C.; Ye, L.; Chan, E.W.-C.; Zhang, R.; et al. Global Dissemination of Conjugative Virulence Plasmids Co-Harboring Hypervirulence and Multidrug Resistance Genes in Klebsiella Pneumonia. mSystems 2025, 10, e0167524. [Google Scholar] [CrossRef] [PubMed]

| Name of Primer | Nucleotide Sequence | Target Gene | Size (bp) | Final Concentration (µM) |
|---|---|---|---|---|
| MultiTSO-T-For | 5′-CATTTCCGTGTCGCCCTTATTC-3′ | TEM variants (TEM-1 and TEM-2) | 800 | 0.4 |
| MultiTSO-T-Rev | 5′-CGTTCATCCATAGTTGCCTGAC-3′ | |||
| MultiTSO-S-For | 5′-AGCCGCTTGAGCAAATTAAAC-3′ | SHV variants (including SHV-1) | 713 | 0.4 |
| MultiTSO-S-Rev | 5′-ATCCCGCAGATAAATCACCAC-3′ | |||
| MultiTSO-O-For | 5′-GGCACCAGATTCAACTTTCAAG-3′ | OXA-variants (OXA-1, OXA-4, OXA-30) | 564 | 0.4 |
| MultiTSO-O-Rev | 5′-GACCCCAAGTTTCCTGTAAGTG-3′ | |||
| CTX-MGrp1-For | 5′-TTAGGAARTGTGCCGCTGYA-3′ | Multi CTX-MGroup1 (CTX-M-1, CTX-M-3, CTX-M-15) | 688 | 0.4 |
| CTX-MGrp1-Rev | 5′-CGATATCGTTGGTGGTRCCAT-3′ | |||
| CTX-MGrp9-For | 5′-TCAAGCCTGCCGATCTGGT-3′ | CTX-M—Group 9 (CTX-M-9, CTX-M-14) | 561 | 0.4 |
| CTX-MGrp9-Rev | 5′-TGATTCTCGCCGCTGAAG-3′ | |||
| MultiACC-For | 5′-CACCTCCAGCGACTTGTTAC-3′ | ACC variants (ACC-1 and ACC-2) | 346 | 0.2 |
| MultiACC-Rev | 5′-GTTAGCCAGCATCACGATCC-3′ | |||
| MultiFOX-For | 5′-CTACAGTGCGGGTGGTTT-3′ | FOX variants FOX-1 to FOX-5 | 162 | 0.5 |
| MultiFOX-Rev | 5′-CTATTTGCGGCCAGGTGA-3′ | |||
| MultiMOX-For | 5′-GCAACAACGACAATCCATCCT-3′ | MOX variants MOX-1, MOX-2, CMY-1, CMY-8 to CMY-11, and CMY-19 | 895 | 0.2 |
| MultiMOX-Rev | 5′-GGGATAGGCGTAACTCTCCCAA-3′ | |||
| MultiCIT-For | 5′-CGAAGAGGCAATGACCAGAC-3′ | CIT variants LAT-1 to 3, BIL-1, CMY-2 to 7, CMY-12 to -18, and CMY-21–23 | 538 | 0.3 |
| MultiCIT-Rev | 5′-ACGGACAGGGTTAGGATAGY-3′ | |||
| MultiDHA_For | 5′-TGATGGCACAGCAGGATATTC-3′ | DHA variants | 997 | 0.5 |
| MultiDHA-Rev | 5′-GCTTTGACTCTTTCGGTATTCG-3′ |
| Primer | Sequence | Target Gene/ (Virulence Factor) | Size (bp) | Final Concentration |
|---|---|---|---|---|
| LT-For | 5′-ATT TAC GGC GTT ACT ATC CTC-3′ | lt (LT) | 280 | 0.4 µM |
| LT-Rev | 5′-TTT TGG TCT CGG TCA GAT ATG-3′ | |||
| ST-For | 5′-TCT GTA TTG TCT TTT TCA CC-3′ | st (ST) | 195 | 0.4 µM |
| ST-Rev | 5′-TTA ATA GCA CCC GGT ACA AGC-3′ | |||
| EAE-For | 5′-ACC AGA TCG TAA CGG CTG CCT-3′ | eae (Intimin) | 499 | 0.4 µM |
| EAE-Rev | 5′-AGT TTG GGT TAT AAC GTC TTC ATT G-3′ | |||
| ES-For | 5′-GAG CGA AAT AAT TTA TAT GT-3′ | stx (VT) | 323 | 0.4 µM |
| ES-Rev | 5′-CGA AAT CCC CTC TGT ATT TGC C-3′ | |||
| EAST 11-For | 5′-CCA TCA ACA CAG TAT ATC CGA-3′ | astA (EAST1) | 114 | 0.4 µM |
| EAST 11-Rev | 5′-GGT CGC GAG TGA CGG CTT TGT-3′ |
| Group | Antibiotic | Isolates From Market | |||||
|---|---|---|---|---|---|---|---|
| Catinton | Kifika | Benfica | Km30 | Kikolo | Total | ||
| β-lactams | AUG (20/10 μg) | 19/23 (83%) | 3/10 (30%) | 9/29 (31%) | 16/27 (59%) | 9/10 (90%) | 56/99 (56.6%) |
| FOX (30 μg) | 1/23 (4%) | 2/10 (20%) | 4/29 (14%) | 5/27 (19%) | 1/10 (10%) | 13/99 (13.1%) | |
| CFP (75 μg) | 3/23 (13%) | 1/10 (10%) | 1/29 (3%) | 2/27 (7%) | 0/10 (0%) | 7/99 (7%) | |
| CTX (30 μg) | 4/23 (17%) | 6/10 (60%) | 24/29 (83%) | 24/27 (89%) | 9/10 (90%) | 67/99 (67.7%) | |
| CAZ (30 μg) | 1/23 (4%) | 4/10 (40%) | 6/29 (21%) | 2/27 (7%) | 0/10 (0%) | 13/99 (13.1%) | |
| AMP (10 μg) | 13/23 (57%) | 4/10 (40%) | 13/29 (45%) | 20/27 (74%) | 6/10 (60%) | 56/99 (56.7%) | |
| ATM (30 μg) | 0/23 (0%) | 2/10 (20%) | 1/29 (3%) | 2/27 (7%) | 0/10 (0%) | 5/99 (5.1%) | |
| IMI (10 μg) | 3/23 (13%) | 5/10 (50%) | 5/29 (17%) | 14/27 (52%) | 3/10 (30%) | 30/99 (30.3%) | |
| Non-β-lactams | AZM (15 μg) | 1/23 (4%) | 0/10 (0%) | 5/29 (17%) | 3/27 (11%) | 0/10 (0%) | 9/99 (9.1%) |
| TET (30 μg) | 10/23 (43%) | 4/10 (40%) | 6/29 (21%) | 12/27 (44%) | 4/10 (40%) | 36/99 (36.4%) | |
| CN (10 μg) | 1/23 (4%) | 0/10 (0%) | 1/29 (3%) | 0/27 (0%) | 0/10 (0%) | 2/99 (2%) | |
| CIP (5 μg) | 1/23 (4%) | 2/10 (20%) | 1/29 (3%) | 1/27 (4%) | 0/10 (0%) | 5/99 (5.1%) | |
| Group | Antibiotic | Beef/Markets | |||||
|---|---|---|---|---|---|---|---|
| Catinton | Kifika | Benfica | Km 30 | Kikolo | Total | ||
| β-lactams | AUG (20/10 μg) | 10/10 (100%) | 2/6 (33%) | 3/9 (33%) | 3/9 (33%) | 9/10 (90%) | 27/44 (61%) |
| FOX (30 μg) | 0/10 (0%) | 1/6 (17%) | 1/9 (11%) | 2/9 (22%) | 1/10 (10%) | 5/44 (11%) | |
| CFP (75 μg) | 1/10 (10%) | 0/6 (0%) | 1/9 (11%) | 0/9 (0%) | 0/10 (0%) | 2/44 (5%) | |
| CTX (30 μg) | 1/10 (10%) | 5/6 (83%) | 7/9 (78%) | 7/9 (78%) | 9/10 (90%) | 29/44 (66%) | |
| CAZ (30 μg) | 1/10 (10%) | 3/6 (50%) | 4/9 (44%) | 0/9 (0%) | 0/10 (0%) | 8/44 (18%) | |
| AMP (10 μg) | 8/10 (80%) | 3/6 (50%) | 8/9 (89%) | 8/9 (89%) | 6/10 (60%) | 33/44 (75%) | |
| ATM (30 μg) | 0/10 (0%) | 2/6 (33%) | 1/9 (11%) | 0/9 (11%) | 0/10 (0%) | 3/44 (7%) | |
| IMI (10 μg) | 1/10 (10%) | 3/6 (50%) | 2/9 (22%) | 6/9 (67%) | 3/10 (30%) | 15/44 (34%) | |
| Non-β-lactams | AZM (15 μg) | 0/10 (0%) | 0/6 (0%) | 5/9 (55%) | 0/9 (0%) | 0/10 (0%) | 5/44 (11%) |
| TET (30 μg) | 4/10 (40%) | 3/6 (50%) | 1/9 (11%) | 2/9 (22%) | 4/10 (40%) | 14/44 (31%) | |
| CN (10 μg) | 0/10 (0%) | 0/6 (0%) | 1/9 (11%) | 0/9 (0%) | 0/10 (0%) | 1/44 (2%) | |
| CIP (5 μg) | 0/10 (0%) | 2/6 (33%) | 1/9 (11%) | 0/9 (0%) | 0/10 (0%) | 3/44 (7%) | |
| Group | Antibiotic | Goat/Markets | ||||
|---|---|---|---|---|---|---|
| Catinton | Kifika | Benfica | Km 30 | Total | ||
| β-lactams | AUG (20/10 μg) | 6/7 (86%) | 1/1 (100%) | 3/9 (33%) | 5/9 (56%) | 15/26 (58%) |
| FOX (30 μg) | 0/7 (0%) | 1/1 (100%) | 1/9 (11%) | 2/9 (22%) | 4/26 (15%) | |
| CFP (75 μg) | 0/7 (0%) | 0/1 (0%) | 0/9 (0%) | 0/9 (0%) | 0/26 (0%) | |
| CTX (30 μg) | 0/7 (0%) | 1/1 (100%) | 9/9 (100%) | 8/9 (89%) | 18/26 (69%) | |
| CAZ (30 μg) | 0/7 (0%) | 1/1 (100%) | 1/9 (11%) | 1/9 (11%) | 3/26 (12%) | |
| AMP (10 μg) | 3/7 (43%) | 0/1 (0%) | 3/9 (33%) | 6/9 (67%) | 12/26 (46%) | |
| ATM (30 μg) | 0/7 (0%) | 0/1 (0%) | 0/9 (0%) | 0/9 (0%) | 0/26 (0%) | |
| IMI (10 μg) | 0/7 (0%) | 1/1 (100%) | 2/9 (22%) | 5/9 (56%) | 8/26 (31%) | |
| Non-β-lactams | AZM (15 μg) | 0/7 (0%) | 0/1 (0%) | 0/9 (0%) | 0/9 (0%) | 0/26 (0%) |
| TET (30 μg) | 2/7 (29%) | 1/1 (100%) | 1/9 (11%) | 4/9 (44%) | 8/26 (31%) | |
| CN (10 μg) | 0/7 (0%) | 0/1 (0%) | 0/9 (0%) | 0/9 (0%) | 0/26 (0%) | |
| CIP (5 μg) | 0/7 (0%) | 0/1 (0%) | 0/9 (0%) | 1/9 (11%) | 1/26 (4%) | |
| Group | Antibiotic | Pork/Markets | ||||
|---|---|---|---|---|---|---|
| Catinton | Kifika | Benfica | Km 30 | Total | ||
| β-lactams | AUG (20/10 μg) | 3/6 (50%) | 0/3 (0%) | 2/10 (20%) | 8/10 (80%) | 13/29 (45%) |
| FOX (30 μg) | 1/6 (17%) | 0/3 (0%) | 1/10 (10%) | 1/10 (10%) | 3/29 (10%) | |
| CFP (75 μg) | 2/6 (33%) | 1/3 (33%) | 0/10 (0%) | 2/10 (20%) | 5/29 (17%) | |
| CTX (30 μg) | 3/6 (50%) | 0/3 (0%) | 7/10 (70%) | 9/10 (90%) | 19/29 (66%) | |
| CAZ (30 μg) | 0/6 (0%) | 0/3 (0%) | 1/10 (10%) | 1/10 (10%) | 2/29 (7%) | |
| AMP (10 μg) | 2/6 (33%) | 1/3 (33%) | 2/10 (20%) | 6/10 (60%) | 11/29 (38%) | |
| ATM (30 μg) | 0/6 (0%) | 0/3 (0%) | 0/10 (0%) | 2/10 (20%) | 2/29 (7%) | |
| IMI (10 μg) | 2/6 (33%) | 1/3 (33%) | 1/10 (10%) | 3/10 (30%) | 7/29 (24%) | |
| Non-β-lactams | AZM (15 μg) | 1/6 (17%) | 0/3 (0%) | 0/10 (0%) | 3/10 (30%) | 4/29 (14%) |
| TET (30 μg) | 4/6 (67%) | 0/3 (0%) | 3/10 (30%) | 6/10 (60%) | 13/29 (45%) | |
| CN (10 μg) | 1/6 (17%) | 0/3 (0%) | 0/10 (0%) | 0/10 (0%) | 1/29 (3%) | |
| CIP (5 μg) | 1/6 (17%) | 0/3 (0%) | 0/10 (0%) | 0/10 (0%) | 1/29 (3%) | |
| Subgroup | Antibiotic-Resistant Gene Variants | Number of Isolates (%) | |||||
|---|---|---|---|---|---|---|---|
| Catinton | Kifica | Benfica | Km 30 | Kikolo | Total | ||
| ESBL | BlaTEM | 0 | 1 (1%) | 0 | 1 (1%) | 0 | 2 (2%) |
| BlaOXA | 0 | 0 | 2 (2%) | 1 (1%) | 0 | 3 (3%) | |
| BlaSHV | 0 | 1 (1%) | 4 (4%) | 0 | 0 | 5 (5.1%) | |
| BlaMCTX-M1 | 4 (4.04%) | 0 | 0 | 4 (4%) | 2 (2%) | 10 (10.1%) | |
| BlaMCTX-M G9 | 0 | 1 (1%) | 5 (5.1%) | 0 | 0 | 6 (6.1%) | |
| Total ESBL genes | 4 (4%) | 3 (3%) | 11 (11.1%) | 6 (6.1%) | 2 (2%) | 26 (26.3%) | |
| β-lactam ampC | BlaACC variants | 4 (4.04%) | 0 | 5 (5.1%) | 2 (2%) | 11 (11.1%) | |
| BlaFOX | 7 (7.07%) | 0 | 8 (8.08%) | 7 (7.1%) | 5 (5.1%) | 27 (27.3%) | |
| BlaMOX | 3 (3.03%) | 0 | 0 | 1 (1%) | 0 | 4 (4%) | |
| BlaCIT | 0 | 0 | 0 | 0 | 0 | ||
| BlaDHA | 0 | 0 | 0 | 0 | 0 | ||
| Total ampC genes | 14 (14.1%) | 0 | 13 (13.1%) | 10 (10.1%) | 5 (5.1%) | 42 (42.4%) | |
| Total β-lactam encoding genes | 18 (18.2%) | 3 (3%) | 24 (24.2%) | 16 (16.2%) | 7 (7.1%) | 68 (68.7%) | |
| Virulence Gene | Number of Isolates (%) | |||||
|---|---|---|---|---|---|---|
| Catinton | Kifika | Benfica | Km 30 | Kikolo | Total | |
| astA | 6/23 (26%) | 2/10 (20%) | 12/29 (41%) | 12/27 (44%) | 4/11 (36%) | 36/99 (36%) |
| st | 0/23 (0%) | 1/10 (10%) | 7/29 (24%) | 1/27 (4%) | 0/11 (0%) | 9/99 (9%) |
| stx | 8/23 (34%) | 1/10 (10%) | 11/29 (38%) | 1/27 (4%) | 1/11 (9%) | 22/99 (22%) |
| lt | 0/23 (0%) | 2/10 (20%) | 16/29 (55%) | 4/27 (15%) | 0/11 (0%) | 22/99 (22%) |
| eae | 0/23 (0%) | 1/10 (10%) | 11/29 (38%) | 5/27 (18%) | 0/11 (0%) | 17/99 (17%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cahango, G.; Chambel, L.; Brito, L.; Salamandane, A. Multidrug-Resistant and Potentially Pathogenic Escherichia coli Prevalent in Samples of Different Types of Raw Meat Sold in Informal Markets in Luanda, Angola. Foods 2026, 15, 174. https://doi.org/10.3390/foods15010174
Cahango G, Chambel L, Brito L, Salamandane A. Multidrug-Resistant and Potentially Pathogenic Escherichia coli Prevalent in Samples of Different Types of Raw Meat Sold in Informal Markets in Luanda, Angola. Foods. 2026; 15(1):174. https://doi.org/10.3390/foods15010174
Chicago/Turabian StyleCahango, Gomes, Lélia Chambel, Luisa Brito, and Acácio Salamandane. 2026. "Multidrug-Resistant and Potentially Pathogenic Escherichia coli Prevalent in Samples of Different Types of Raw Meat Sold in Informal Markets in Luanda, Angola" Foods 15, no. 1: 174. https://doi.org/10.3390/foods15010174
APA StyleCahango, G., Chambel, L., Brito, L., & Salamandane, A. (2026). Multidrug-Resistant and Potentially Pathogenic Escherichia coli Prevalent in Samples of Different Types of Raw Meat Sold in Informal Markets in Luanda, Angola. Foods, 15(1), 174. https://doi.org/10.3390/foods15010174

