Effects of Farming System on the Rheological Behavior of Rennet-Induced Coagulation in Milk from Skopelos Breed Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Samples Collection and Preparation
2.2. Milk Compositional Analysis
2.3. Rheological Measurements of Rennet-Induced Milk Coagulation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Milk Compositional Characteristics
3.2. Rennet Coagulation Kinetics
3.3. Viscoelastic Properties of Goat Milk Curds
3.4. Apparent Yield Stress of Goat Milk Curds
3.5. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RCT | Rennet coagulation time |
SCC | Somatic cell count |
PCA | Principal component analysis |
References
- Park, Y.W.; Haenlein, G.F. Therapeutic, hypo-allergenic and bioactive potentials of goat milk, and manifestations of food allergy. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 151–179. [Google Scholar] [CrossRef]
- Song, N.; Chen, Y.; Luo, J.; Huang, L.; Tian, H.; Li, C.; Loor, J.J. Negative regulation of αS1-casein (CSN1S1) improves β-casein content and reduces allergy potential in goat milk. J. Dairy Sci. 2020, 103, 9561–9572. [Google Scholar] [CrossRef] [PubMed]
- Nayik, G.A.; Jagdale, Y.D.; Gaikwad, S.A.; Devkatte, A.N.; Dar, A.H.; Dezmirean, D.S.; Bobis, O.; Ranjha, M.M.A.N.; Ansari, M.J.; Hemeg, H.A.; et al. Recent Insights Into Processing Approaches and Potential Health Benefits of Goat Milk and Its Products: A Review. Front. Nutr. 2021, 8, 789117. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, W.M.; Guimarães Gomes, A.C.; de Caldas Nobre, M.S.; de Souza Pereira, Á.M.; dos Santos Pereira, E.V.; dos Santos, K.M.O.; Florentino, E.R.; Alonso Buriti, F.C. Goat milk as a natural source of bioactive compounds and strategies to enhance the amount of these beneficial components. Int. Dairy J. 2023, 137, 105515. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. The effect of feeding systems on the characteristics of products from small ruminants. Small Rumin. Res. 2011, 101, 140–149. [Google Scholar] [CrossRef]
- Boyazoglu, J.; Morand-Fehr, P. Mediterranean dairy sheep and goat products and their quality: A critical review. Small Rumin. Res. 2001, 40, 1–11. [Google Scholar] [CrossRef]
- Morand-Fehr, P.; Fedele, V.; Decandia, M.; Le Frileux, Y. Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Rumin. Res. 2007, 68, 20–34. [Google Scholar] [CrossRef]
- Bozoudi, D.; Kondyli, E.; Claps, S.; Hatzikamari, M.; Michaelidou, A.; Biliaderis, C.G.; Litopoulou-Tzanetaki, E. Compositional characteristics and volatile organic compounds of traditional PDO Feta cheese made in two different mountainous areas of Greece. Int. J. Dairy Technol. 2018, 71, 673–682. [Google Scholar] [CrossRef]
- Inglingstad, R.A.; Steinshamn, H.; Dagnachew, B.S.; Valenti, B.; Criscione, A.; Rukke, E.O.; Devold, T.G.; Skeie, S.B.; Vegarud, G.E. Grazing season and forage type influence goat milk composition and rennet coagulation properties. J. Dairy Sci. 2014, 97, 3800–3814. [Google Scholar] [CrossRef]
- Pazzola, M.; Amalfitano, N.; Bittante, G.; Dettori, M.L.; Vacca, G.M. Composition, coagulation properties, and predicted cheesemaking traits of bulk goat milk from different farming systems, breeds, and stages of production. J. Dairy Sci. 2022, 105, 6724–6738. [Google Scholar] [CrossRef]
- Paschino, P.; Stocco, G.; Dettori, M.L.; Pazzola, M.; Marongiu, M.L.; Pilo, C.E.; Cipolat-Gotet, C.; Vacca, G.M. Characterization of milk composition, coagulation properties, and cheese-making ability of goats reared in extensive farms. J. Dairy Sci. 2020, 103, 5830–5843. [Google Scholar] [CrossRef]
- Akshit, F.N.U.; Deshwal, G.K.; Sharma, H.; Kumar, P.; Maddipatla, D.K.; Singh, M.P.; Goksen, G. Technological challenges in production of goat milk products and strategies to overcome them: A review. Int. J. Food Sci. Technol. 2024, 59, 6–16. [Google Scholar] [CrossRef]
- Pazzola, M. Coagulation Traits of Sheep and Goat Milk. Animals 2019, 9, 540. [Google Scholar] [CrossRef] [PubMed]
- Ikonen, T.; Morri, S.; Tyrisevä, A.M.; Ruottinen, O.; Ojala, M. Genetic and Phenotypic Correlations Between Milk Coagulation Properties, Milk Production Traits, Somatic Cell Count, Casein Content, and pH of Milk. J. Dairy Sci. 2004, 87, 458–467. [Google Scholar] [CrossRef]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Pira, E.; Bittante, G.; Pazzola, M. Milk yield, quality, and coagulation properties of 6 breeds of goats: Environmental and individual variability. J. Dairy Sci. 2018, 101, 7236–7247. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Sherbon, J.W. Genetic variants of alphas1-CN in goat milk: Breed distribution and associations with milk composition and coagulation properties. Small Rumin. Res. 2000, 38, 135–143. [Google Scholar] [CrossRef]
- FAO. FAOSTAT, Food and Agriculture Data. Statistical Databases. 2024. Available online: http://www.fao.org/faostat/en/#data (accessed on 25 January 2025).
- Arsenos, G.; Gelasakis, A.; Pinopoulos, S.; Giannakou, R.; Amarantidis, I. Description and typology of dairy goat farms in Greece. Build. Org. Bridges 2014, 2, 571–574. [Google Scholar]
- ISO 9622: 2013/IDF 141; Milk and Liquid Milk Products, Guidelines for the Application of Mid-Infrared Spectrometry. International Dairy Federation: Schaerbeek, Belgium, 2013.
- Lazaridou, A.; Serafeimidou, A.; Biliaderis, C.G.; Moschakis, T.; Tzanetakis, N. Structure development and acidification kinetics in fermented milk containing oat β-glucan, a yogurt culture and a probiotic strain. Food Hydrocoll. 2014, 39, 204–214. [Google Scholar] [CrossRef]
- Kolenc, B.; Malovrh, Š.; Paveljšek, D.; Rozman, V.; Simčič, M.; Treven, P. Correlations of goat milk coagulation properties between dams and daughters. Int. Dairy J. 2023, 142, 105644. [Google Scholar] [CrossRef]
- Caravaca, F.; Ares, J.L.; Carrizosa, J.; Urrutia, B.; Baena, F.; Jordana, J.; Badaoui, B.; Sànchez, A.; Angiolillo, A.; Amills, M.; et al. Effects of αs1-casein (CSN1S1) and κ-casein (CSN3) genotypes on milk coagulation properties in Murciano-Granadina goats. J. Dairy Res. 2011, 78, 32–37. [Google Scholar] [CrossRef]
- Zullo, A.; Barone, C.M.A.; Chianese, L.; Colatruglio, P.; Occidente, M.; Matassino, D. Protein polymorphisms and coagulation properties of Cilentana goat milk. Small Rumin. Res. 2005, 58, 223–230. [Google Scholar] [CrossRef]
- Hallén, E.; Allmere, T.; Näslund, J.; Andrén, A.; Lundén, A. Effect of genetic polymorphism of milk proteins on rheology of chymosin-induced milk gels. Int. Dairy J. 2007, 17, 791–799. [Google Scholar] [CrossRef]
- Caballero-Villalobos, J.; Perea, J.M.; Angón, E.; Arias, R.; Garzón, A. Coagulation efficiency and its determinant factors: A case study for Manchega ewe milk in the region of Castilla-La Mancha, Spain. J. Dairy Sci. 2018, 101, 3878–3886. [Google Scholar] [CrossRef]
- Clark, S.; Sherbon, J.W. Alphas1-casein, milk composition and coagulation properties of goat milk. Small Rumin. Res. 2000, 38, 123–134. [Google Scholar] [CrossRef]
- Stocco, G.; Pazzola, M.; Dettori, M.L.; Paschino, P.; Bittante, G.; Vacca, G.M. Effect of composition on coagulation, curd firming, and syneresis of goat milk. J. Dairy Sci. 2018, 101, 9693–9702. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; Kelly, A.L. Physical Chemistry of Milk Fat Globules. In Advanced Dairy Chemistry Volume 2 Lipids; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2006; pp. 173–212. [Google Scholar] [CrossRef]
- Schiffer, S.; Scheidler, E.; Kiefer, T.; Kulozik, U. Effect of Temperature, Added Calcium and pH on the Equilibrium of Caseins between Micellar State and Milk Serum. Foods 2021, 10, 822. [Google Scholar] [CrossRef]
- Nájera, A.; De Renobales, M.; Barron, L. Effects of pH, temperature, CaCl2 and enzyme concentrations on the rennet-clotting properties of milk: A multifactorial study. Food Chem. 2003, 80, 345–352. [Google Scholar] [CrossRef]
- Lopez, M.; Lomholt, S.; Qvist, K. Rheological properties and cutting time of rennet gels. Effect of pH and enzyme concentration. Int. Dairy J. 1998, 8, 289–293. [Google Scholar] [CrossRef]
- Hovjecki, M.; Miloradovic, Z.; Barukčić, I.; Blažić, M.; Miocinovic, J. Rheological Properties of Goat Milk Coagulation as Affected by Rennet Concentration, pH and Temperature. Fermentation 2022, 8, 291. [Google Scholar] [CrossRef]
- McMahon, D.J.; Richardson, G.; Brown, R. Enzymic milk coagulation: Role of equations involving coagulation time and curd firmness in describing coagulation. J. Dairy Sci. 1984, 67, 1185–1193. [Google Scholar] [CrossRef]
- Bencini, R. Factors affecting the clotting properties of sheep milk. J. Sci. Food Agric. 2002, 82, 705–719. [Google Scholar] [CrossRef]
- Auldist, M.J.; Hubble, I.B. Effects of mastitis on raw milk and dairy products. Aust. J. Dairy Technol. 1998, 53, 28–36. [Google Scholar]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Bittante, G.; Pazzola, M. Goat cheese yield and recovery of fat, protein, and total solids in curd are affected by milk coagulation properties. J. Dairy Sci. 2020, 103, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Lucey, J.A. Formation and Physical Properties of Milk Protein Gels. J. Dairy Sci. 2002, 85, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Lucey, J.A. The relationship between rheological parameters and whey separation in milk gels. Food Hydrocoll. 2001, 15, 603–608. [Google Scholar] [CrossRef]
- van Vliet, T.; van Dijk, H.J.M.; Zoon, P.; Walstra, P. Relation between syneresis and rheological properties of particle gels. Colloid Polym. Sci. 1991, 269, 620–627. [Google Scholar] [CrossRef]
- Daviau, C.; Famelart, M.-H.; Pierre, A.; Goudédranche, H.; Maubois, J.-L. Rennet coagulation of skim milk and curd drainage: Effect of pH, casein concentration, ionic strength and heat treatment. Lait 2000, 80, 397–415. [Google Scholar] [CrossRef]
Fat | TP 1 | Cas | TS | SCC | pH | RCT | TG′=20Pa | G′max | IE | G′1Hz | G″1Hz | tanδ1Hz | η*1Hz | τy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fat | −0.199 | 0.061 | 0.920 ** | −0.047 | 0.339 ** | −0.090 | −0.058 | 0.085 | −0.154 | 0.081 | 0.076 | 0.018 | 0.081 | 0.009 | |
TP | 0.095 | 0.856 ** | −0.247 * | −0.144 | −0.219 * | 0.028 | −0.247 * | 0.589 ** | 0.076 | 0.602 ** | 0.615 ** | 0.261 * | 0.603 ** | 0.599 ** | |
Cas | 0.140 | 0.859 ** | −0.222 * | −0.176 | −0.141 | 0.042 | −0.222 * | 0.648 ** | 0.061 | 0.661 ** | 0.676 ** | 0.324 ** | 0.662 ** | 0.689 ** | |
TS | 0.839** | 0.466 ** | 0.461 ** | −0.088 | 0.379 ** | −0.065 | −0.100 | 0.234 * | −0.153 | 0.231 * | 0.231 * | 0.103 | 0.231 * | 0.147 | |
SCC | 0.026 | −0.037 | −0.115 | 0.022 | 0.180 | 0.183 | 0.264 * | −0.277 * | −0.154 | −0.275 * | −0.233 * | 0.199 | −0.271 * | −0.289 ** | |
pH | 0.026 | −0.190 | −0.056 | −0.102 | 0.174 | 0.502 ** | 0.501 ** | −0.377 ** | −0.324 ** | −0.370 ** | −0.356 ** | 0.035 | −0.369 ** | −0.336 ** | |
RCT | −0.026 | 0.283 * | 0.349 ** | 0.115 | 0.028 | 0.480 ** | 0.863 ** | −0.490 ** | −0.255 * | −0.465 ** | −0.431 ** | 0.208 | −0.462 ** | −0.267* | |
TG′=20Pa | −0.026 | 0.099 | 0.167 | 0.018 | 0.045 | 0.448 ** | 0.922 ** | −0.686 ** | −0.335 ** | −0.667 ** | −0.635 ** | 0.113 | −0.664 ** | −0.412 ** | |
G′max | −0.052 | 0.426 ** | 0.352 ** | 0.198 | −0.199 | −0.456 ** | −0.575 ** | −0.699 ** | 0.356 ** | 0.999 ** | 0.989 ** | 0.178 | 0.999 ** | 0.770 ** | |
IE | 0.052 | −0.110 | −0.087 | −0.118 | −0.164 | −0.335 ** | −0.498 ** | −0.566 ** | 0.429 ** | 0.352 ** | 0.340 ** | 0.001 | 0.352 ** | 0.091 | |
G′1Hz | −0.139 | 0.451 ** | 0.376 ** | 0.204 | −0.209 | −0.452 ** | −0.547 ** | −0.679 ** | 0.999 ** | 0.415 ** | 0.990 ** | 0.187 | 1.000 ** | 0.777 ** | |
G″1Hz | 0.049 | 0.525 ** | 0.435 ** | 0.248 * | −0.191 | −0.406 ** | −0.493 ** | −0.639 ** | 0.980 ** | 0.403 ** | 0.982 ** | 0.315 ** | 0.992 ** | 0.735 ** | |
tanδ1Hz | 0.055 | 0.457 ** | 0.357 ** | 0.251 * | 0.067 | 0.247 * | 0.354 ** | 0.269 * | −0.047 | −0.048 | −0.040 | 0.139 | 0.197 | −0.063 | |
η*1Hz | 0.013 | 0.463 ** | 0.384 ** | 0.215 | −0.177 | −0.437 ** | −0.545 ** | −0.679 ** | 0.997 ** | 0.430 ** | 0.997 ** | 0.984 ** | −0.013 | 0.774 ** | |
τy | 0.002 | 0.515 ** | 0.416 ** | 0.195 | −0.167 | −0.291 * | −0.224 * | −0.344 ** | 0.727 ** | 0.043 | 0.740 ** | 0.700 ** | −0.188 | 0.732 ** |
Extensive System | Intensive System | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent Variable | Model | Predictors | R | R2 | R2 Change | F Change | Sig. F Change | Model | Predictors | R | R2 | R2 Change | F Change | Sig. F Change |
RCT 1 | 1 | pH | 0.480 | 0.231 | 0.231 | 21.312 | <0.001 | 1 | pH | 0.502 | 0.252 | 0.252 | 27.669 | <0.001 |
2 | pH, TP | 0.613 | 0.376 | 0.145 | 16.292 | <0.001 | 2 | pH, Fat | 0.574 | 0.329 | 0.077 | 9.247 | 0.003 | |
TG′=20Pa | 1 | pH | 0.448 | 0.201 | 0.201 | 17.878 | <0.001 | 1 | pH | 0.501 | 0.251 | 0.251 | 27.552 | <0.001 |
2 | pH, TS | 0.592 | 0.350 | 0.098 | 12.261 | <0.001 | ||||||||
G′max | 1 | pH | 0.456 | 0.208 | 0.208 | 18.687 | <0.001 | 1 | Cas | 0.648 | 0.420 | 0.420 | 59.442 | <0.001 |
2 | pH, TP | 0.573 | 0.328 | 0.120 | 12.450 | <0.001 | 2 | Cas, pH | 0.710 | 0.504 | 0.083 | 13.607 | <0.001 | |
3 | Cas, pH, TS | 0.734 | 0.539 | 0.035 | 6.125 | 0.015 | ||||||||
IE | 1 | pH | 0.335 | 0.112 | 0.112 | 9.000 | 0.004 | 1 | pH | 0.324 | 0.105 | 0.105 | 9.626 | 0.003 |
G′1Hz | 1 | pH | 0.452 | 0.204 | 0.204 | 18.217 | <0.001 | 1 | Cas | 0.661 | 0.437 | 0.437 | 63.649 | <0.001 |
2 | pH, TP | 0.585 | 0.342 | 0.138 | 14.721 | <0.001 | 2 | Cas, pH | 0.718 | 0.515 | 0.078 | 13.058 | 0.001 | |
3 | Cas, pH, TS | 0.739 | 0.546 | 0.031 | 5.482 | 0.022 | ||||||||
G″1Hz | 1 | TP | 0.525 | 0.275 | 0.275 | 26.976 | <0.001 | 1 | Cas | 0.676 | 0.457 | 0.457 | 68.885 | <0.001 |
2 | TP, pH | 0.610 | 0.373 | 0.097 | 10.847 | 0.002 | 2 | Cas, pH | 0.725 | 0.526 | 0.069 | 11.850 | 0.001 | |
3 | Cas, pH, TS | 0.734 | 0.552 | 0.026 | 4.697 | 0.033 | ||||||||
tanδ1Hz | 1 | TP | 0.457 | 0.209 | 0.209 | 18.764 | <0.001 | 1 | Cas | 0.324 | 0.105 | 0.105 | 9.649 | 0.003 |
2 | TP, pH | 0.570 | 0.325 | 0.116 | 11.997 | <0.001 | 2 | Cas, SCC | 0.416 | 0.173 | 0.068 | 6.625 | 0.012 | |
η*1Hz | 1 | TP | 0.463 | 0.214 | 0.214 | 19.362 | <0.001 | 1 | Cas | 0.662 | 0.439 | 0.439 | 64.055 | <0.001 |
2 | TP, pH | 0.584 | 0.340 | 0.126 | 13.396 | <0.001 | 2 | Cas, pH | 0.718 | 0.516 | 0.078 | 12.973 | 0.001 | |
3 | Cas, pH, TS | 0.739 | 0.547 | 0.031 | 5.397 | 0.023 | ||||||||
τy | 1 | TP | 0.515 | 0.265 | 0.265 | 25.576 | <0.001 | 1 | Cas | 0.689 | 0.475 | 0.475 | 74.221 | <0.001 |
2 | Cas, pH | 0.730 | 0.533 | 0.058 | 10.075 | 0.002 |
PC1 (30.6% 2) | PC2 (26.2%) | PC3 (12.6%) | PC4 (9.4%) | |
---|---|---|---|---|
Fat | 0.590 | −0.753 | ||
Cas 3 | 0.851 | 0.401 | ||
TS | 0.861 | −0.449 | ||
SCC | 0.607 | |||
pH | 0.665 | |||
RCT | 0.822 | |||
TG′=20Pa | 0.892 | |||
G’max | −0.787 | 0.504 | ||
IE | −0.550 | 0.496 | ||
tanδ1Hz | 0.662 | 0.440 | ||
τy | −0.587 | 0.441 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsiou, K.; Andreadis, M.; Manessis, G.; Lazaridou, A.; Biliaderis, C.G.; Basdagianni, Z.; Bossis, I.; Moschakis, T. Effects of Farming System on the Rheological Behavior of Rennet-Induced Coagulation in Milk from Skopelos Breed Goats. Foods 2025, 14, 1316. https://doi.org/10.3390/foods14081316
Kotsiou K, Andreadis M, Manessis G, Lazaridou A, Biliaderis CG, Basdagianni Z, Bossis I, Moschakis T. Effects of Farming System on the Rheological Behavior of Rennet-Induced Coagulation in Milk from Skopelos Breed Goats. Foods. 2025; 14(8):1316. https://doi.org/10.3390/foods14081316
Chicago/Turabian StyleKotsiou, Kali, Marios Andreadis, Georgios Manessis, Athina Lazaridou, Costas G. Biliaderis, Zoitsa Basdagianni, Ioannis Bossis, and Thomas Moschakis. 2025. "Effects of Farming System on the Rheological Behavior of Rennet-Induced Coagulation in Milk from Skopelos Breed Goats" Foods 14, no. 8: 1316. https://doi.org/10.3390/foods14081316
APA StyleKotsiou, K., Andreadis, M., Manessis, G., Lazaridou, A., Biliaderis, C. G., Basdagianni, Z., Bossis, I., & Moschakis, T. (2025). Effects of Farming System on the Rheological Behavior of Rennet-Induced Coagulation in Milk from Skopelos Breed Goats. Foods, 14(8), 1316. https://doi.org/10.3390/foods14081316