A Monoclonal Antibody-Based Time-Resolved Fluorescence Microsphere Lateral Flow Immunoassay for Dinotefuran and Clothianidin Detection
Abstract
:1. Introduction
Methods | Detection Target | IC50 (ng/mL) | LOD (ng/mL) | Detection Time (min) | References | |
---|---|---|---|---|---|---|
Instrumental analysis | UPLC-MS/MS | Dinotefuran | - | 0.04 | - | [20] |
UPLC-MS/MS | Clothianidin | 5 | - | [21] | ||
UPLC | Clothianidin | 52.7 | - | [22] | ||
Immunoassay | IcELISA | Dinotefuran | 5.66 | - | >60 | [14] |
DcELISA | Clothianidin | 4.4 | - | >60 | [15] | |
IcELISA | Clothianidin | 4.62 | - | >60 | [16] | |
IcELISA | Clothianidin | 25.6 | - | >60 | [2] | |
ICA | Clothianidin | - | 4 | 5 | [18] | |
TRFIA | Clothianidin | 2.07 | - | - | [2] | |
FPIA | Clothianidin | 87.3 | - | - | [2] |
2. Materials and Methods
2.1. Materials and Instruments
2.2. Methods
2.2.1. Synthesis of Haptens and Antigens
2.2.2. Preparation of Monoclonal Antibodies
2.2.3. Establishment of TRFMs-LFIA
- Preparation of TRFM probes
- 2.
- Fabrication of TRFMs-LFIA strips
- 3.
- Detection process of TRFMs-LFIA
- 4.
- Evaluation of different working conditions
2.2.4. Evaluation of TRFMs-LFIA
- Evaluation of sensitivity
- 2.
- Evaluation of specificity
- 3.
- Evaluation of stability
- 4.
- Evaluation of accuracy
- (1)
- Elimination of matrix effect
- (2)
- Recovery test
2.2.5. Real Sample Detection
3. Results and Discussion
3.1. Synthesis of Haptens and Antigens
3.2. Preparation and Characterization of mAb
3.3. Establishment of TRFMs-LFIA
3.3.1. Characterization of the TRFM Probes
3.3.2. Evaluation of Different Working Conditions
3.4. Evaluation of TRFMs-LFIA
3.4.1. Evaluation of Sensitivity
3.4.2. Evaluation of Specificity
3.4.3. Evaluation of Stability
3.4.4. Evaluation of Accuracy
- Elimination of matrix effect
- 2.
- Recovery test
3.5. Real Sample Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, X.J. Establishment of Three Detection Methods of Chiral Pesticides in Pu’er Tea and Preliminary Study of Microbial Degradation; Kunming Medical University: Kunming, China, 2022. [Google Scholar]
- Li, M. The Preparation of Antibodies and Development of Immunoassays for Clothianidin; Nanjing Agricultural University: Nanjing, China, 2015. [Google Scholar]
- Yuan, H.Z.; Li, W.G. Graphic Illustration of Modern Pesticide Application Technology; China Agricultural Science and Technology Press: Beijing, China, 2013; pp. 91–92. [Google Scholar]
- Honda, H.; Tomizawa, M.; Casida, J.E. Insect nicotinic acetyl-choline receptors: Neonicotinoid binding site specific ityis usually but not always conserved with varied substituents and species. J. Agric. Food Chem. 2006, 54, 3365–3371. [Google Scholar] [PubMed]
- Yin, J.; Liu, T.; Fang, J.; Fang, K.; Zheng, L.; Wang, X. The fate, acute, and subchronic risks of dinotefuran in the water-sediment system: A systematic analysis at the enantiomer level. J. Hazard. Mater. 2023, 443, 130279. [Google Scholar]
- Miles, J.C.; Hua, J.; Sepulveda, M.S.; Krupke, C.H.; Hoverman, J.T. Effects of clothianidin on aquatic communities: Evaluating the impacts of lethal and sublethal exposure to neonicotinoids. PLoS ONE 2017, 12, e0174171. [Google Scholar]
- Wang, Y.H.; Zhang, Y.; Li, W.; Han, Y.; Guo, B. Study on neurotoxicity of dinotefuran, thiamethoxam and imidacloprid against Chinese lizards (Eremias argus). Chemosphere 2019, 217, 150–157. [Google Scholar]
- Jenkins, J.A.; Hartop, K.R.; Bukhari, G.; Howton, D.E.; Smalling, K.L.; Mize, S.V.; Hladik, M.L.; Johnson, D.; Draugelis-Dale, R.O.; Brown, B.L. Juvenile African Clawed Frogs (Xenopus laevis) Express Growth, Metamorphosis, Mortality, Gene Expression, and Metabolic Changes When Exposed to Thiamethoxam and Clothianidin. Int. J. Mol. Sci. 2021, 22, 13291. [Google Scholar] [CrossRef]
- Benchikh, I.; Ziani, K.; Gonzalez, M.A.; Khaled, B.M. Non-acute exposure of neonicotinoids, health risk assessment, and evidence integration: A systematic review. Crit. Rev. Toxicol. 2024, 54, 194–213. [Google Scholar]
- Yao, G.H.; Xing, S.G.; Yao, M.Y.; Zhang, Y.J.; Ling, Y.; Guo, W.; Zhang, F. Comparative analysis of pesticide residue limits in garlic at home and abroad. Chin. J. Food Hyg. 2021, 33, 821–826. [Google Scholar]
- Zhang, W.H.; Qiu, J.; Li, Y.; Xu, Y.Y.; Qian, Y.Z. Comparison study of ginger quality and safety standards at home and abroad. Qual. Saf. Agric. Prod. 2020, 05, 29–35. [Google Scholar]
- Piao, X.Y.; Li, F.G.; Ji, Y. Comparison of maximum residue limits of pesticides on tea in domestic and abroad. Pestic. Sci. Manag. 2021, 42, 19–25. [Google Scholar]
- GB 2763-2021; National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. National Medical Products Administration: Beijing, China, 2021.
- Zhao, F.; Liu, J.; Luo, J. Development of a High-Quality ELISA Method for Dinotefuran Based on a Novel and Newly-Designed Antigen. Molecules 2019, 24, 2426. [Google Scholar] [CrossRef]
- Uchigashima, M.; Watanabe, E.; Ito, S.; Iwasa, S.; Miyake, S. Development of Immunoassay Based on Monoclonal Antibody Reacted with the Neonicotinoid Insecticides Clothianidin and Dinotefuran. Sensors 2012, 12, 15858–15872. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Chen, Y.; Jiao, S.; Lu, X.; Fang, Y.; Liu, Y.; Zhao, Y.; Zhan, X.; Zhu, G.; Guo, Y. A Novel Full-length IgG Recombinant Antibody Highly Specific to Clothianidin and Its Application in Immunochromatographic Assay. Biosensors 2022, 12, 233. [Google Scholar] [CrossRef] [PubMed]
- An, W.J.; Li, M.Q.; Huang, J.X.; Zhuang, J.; Pan, S.H.; Wang, L.; Chen, W.R.; Xie, L.; Chen, J.; Zhou, Z.R.; et al. A Furan Hapten, Colloid Gold Labeled Monoclonal Antibody, and a Furan Colloidal Gold Detection Device. CN Patent no. 111646959B, 15 June 2022. [Google Scholar]
- Li, H.L.; Sun, B.G.; Chen, T. Detection of clothianidin residues in cucumber and apple juice using lateral-flow immunochromatographic assay. Food and Agricultural Immunology 2019, 30, 1112–1122. [Google Scholar]
- Xu, M.; Portier, L.; Bovee, T.; Zhao, Y.; Guo, Y.; Peters, J. Neonicotinoid Microsphere Immunosensing for Profiling Applications in Honeybees and Bee-Related Matrices. Biosensors 2022, 12, 792. [Google Scholar] [CrossRef]
- Wu, Y.c.; Jiang, B.X.; Shi, Y.H.; Qi, C.Y.; Cao, H.Q.; Tang, J.; Shang, L.N.; Su, Y.L. Simultaneous determination of dinotefuran and its metabolites in vegetables by QuPPe-UPLC-MS/MS. Food Sci. 2018, 39, 262–266. [Google Scholar]
- Li, Q.H.; Ren, L.R.; Yin, M.M.; Chen, F.L.; Li, W.M. Determination and analysis of clothianidin residues in peanut and soil by UPLC-MS/MS. Mod. Agrochem. 2020, 19, 45–48. [Google Scholar]
- Li, G.L.; Gu, S.S.; Liu, B.; Chen, X.L. Determination of clothianidin residue in spinach by QuEChERS-HPLC. Hubei Agric. Sci. 2016, 55, 465–468. [Google Scholar]
- Zhu, L. Development of Time-Resolved Fluorescence Immunochromatographic Assay for Detection of PEDV IgG and IgA Antibody; Huazhong Agricultural University: Wuhan, China, 2021. [Google Scholar]
- Cheng, Y.J.; Xie, B.; Liang, Y.F.; Liu, X.; Chen, H.; Li, J.; Lei, H.; Xiao, Z. A monoclonal antibody-based time-resolved fluorescence microsphere lateral flow immunoassay for paclobutrazol detection. Curr. Res. Food Sci. 2022, 5, 1395–1402. [Google Scholar]
- Chen, B.; Shen, X.; Li, Z.; Wang, J.; Li, X.; Xu, Z.; Shen, Y.; Lei, Y.; Huang, X.; Wang, X.; et al. Antibody Generation and Rapid Immunochromatography Using Time-Resolved Fluorescence Microspheres for Propiconazole: Fungicide Abused as Growth Regulator in Vegetable. Foods 2022, 11, 324. [Google Scholar] [CrossRef]
- Deng, H.M.; Cai, X.J.; Ji, Y.; Yan, D.; Yang, F.; Liu, S.; Deji, Z.; Wang, Y.; Bian, Z.Y.; Tang, G.L.; et al. Development of a lateral flow immunoassay for rapid quantitation of carbendazim in agricultural products. Microchem. J. 2022, 179, 107495. [Google Scholar]
- Xu, J.; Sun, J.D.; Lu, X.; Wang, Y.; Zhang, Y.; Sun, X. A highly sensitive fluorescence immunochromatography strip for thiacloprid in fruits and vegetables using recombinant antibodies. Talanta 2023, 256, 124258. [Google Scholar] [PubMed]
- Wakita, T.; Kinoshita, K.; Yasui, N.; Yamada, E.; Kawahara, N.; Kodaka, K. Synthesis and structure-activity relationships of dinotefuran derivatives: Modification in the nitroguanidine part. J. Pestic. Sci. 2004, 29, 348–355. [Google Scholar]
- Davison, E.K.; McGowan, J.E.; Rennison, D.; Harper, A.D.; Jeong, J.Y.; Mros, S.; Harbison-Price, N.; Van Zuylen, E.M.; Knottenbelt, M.K.; Heikal, A.; et al. C-2 derivatized 8-sulfonamidoquinolines as antibacterial compounds. Bioorganic Med. Chem. 2021, 29, 115837. [Google Scholar]
- Das, T.K.; Narhi, L.O.; Sreedhara, A.; Menzen, T.; Grapentin, C.; Chou, D.K.; Antochshuk, V.; Filipe, V. Stress Factors in mAb Drug Substance Production Processes: Critical Assessment of Impact on Product Quality and Control Strategy. J. Pharm. Sci. 2020, 109, 116–133. [Google Scholar]
- Zhang, G.; Jing, R.; Guo, L.; Xing, Y.; Xue, M. Analysis technology and application progress of therapeutic monoclonal antibody drugs. Chin. J. New Drugs 2021, 30, 528–534. [Google Scholar]
- Kozlowski, S.; Swann, P. Current and future issues in the manufacturing and development of monoclonal antibodies. Adv. Drug Deliv. Rev. 2006, 58, 707–722. [Google Scholar]
- Majdinasab, M.; Sheikh, Z.M.; Soleimanian, Z.S.; Li, P.; Zhang, Q.; Li, X.; Tang, X.; Li, J. A reliable and sensitive time-resolved fluorescent immunochromatographic assay (TRFICA) for ochratoxin A in agro-products. Food Control 2015, 47, 126–134. [Google Scholar]
- Li, M. Research on Quantitative Detection of Mycotoxins in Milk Development of Test Strips Based on Fluorescence Immunochromatography; Jiangnan University: Wuxi, China, 2022. [Google Scholar]
- Liu, Z.; Hua, Q.; Wang, J.; Liang, Z.; Zhou, Z.; Shen, X.; Lei, H.; Li, X. Prussian blue immunochromatography with portable smartphone-based detection device for zearalenone in cereals. Food Chem. 2022, 369, 131008. [Google Scholar]
- Xie, G.M.; Shen, Y.D.; Sun, Y.M. Research advance on multi-residue determination of pesticides and veterinary drugs based on immunoassay methods. Mod. Agric. Sci. Technol. 2010, 11, 352–354. [Google Scholar]
- Wang, J.; Yu, G.; Sheng, W.; Shi, M.; Guo, B.; Wang, S. Development of an enzyme-linked immunosorbent assay based a monoclonal antibody for the detection of pyrethroids with phenoxybenzene multiresidue in river water. Agric. Food Chem. 2011, 59, 2997–3003. [Google Scholar]
- Xu, Z.L.; Wang, Q.; Lei, H.T.; Eremin, S.A.; Shen, Y.D.; Wang, H.; Beier, R.C.; Yang, J.Y.; Maksimova, K.A.; Sun, Y.M. A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples. Anal. Chim. Acta 2011, 708, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.B.; Cui, P.L.; Liu, J.; Liu, J.X.; Wang, J.P. Production of generic monoclonal antibody and development of chemiluminescence immunoassay for determination of 32 sulfonamides in chicken muscle. Food Chem. 2020, 311, 125966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Wang, N. tudy of matrix effects in pesticide residue analysis in vegetables. Agric. Sci. Technol. Inf. 2023, 7, 156–159. [Google Scholar]
- Cancelliere, R.; Paialunga, E.; Grattagliano, A.; Micheli, L. Label-free electrochemical immunosensors: A practical guide. TrAC Trends Anal. Chem. 2024, 180, 117949. [Google Scholar] [CrossRef]
- Gervais, L.; de Rooij, N.; Delamarche, E. Microfluidic chips for point-of-care immunodiagnostics. Adv. Mater. 2011, 23, H151–H176. [Google Scholar] [CrossRef]
- Duan, X.; Zhao, L.; Dong, H.; Zhao, W.; Liu, S.; Sui, G. Microfluidic Immunoassay System for Rapid Detection and Semi-Quantitative Determination of a Potential Serum Biomarker Mesothelin. ACS Sens. 2019, 4, 2952–2957. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Mobile phone-based biosensing: An emerging “diagnostic and communication” technology. Biosens. Bioelectron. 2018, 92, 549–562. [Google Scholar] [CrossRef]
Analytes | Structure | IC50 (ng/mL) | CR (%) |
---|---|---|---|
Dinotefuran | 0.61 | 100.0 | |
Clothianidin | 0.94 | - | |
Tetrahydrofuran | >1000 | <0.1 | |
Diuron | >1000 | <0.1 | |
Acetamiprid | >1000 | <0.1 | |
Nitenpyram | >1000 | <0.1 | |
Thiacloprid | 111.70 | 0.6 | |
Thiamethoxam | >1000 | <0.1 | |
Imidacloprid | 50.82 | 1.2 |
Samples | Pesticide Standard | Additive Amount (ng/g) | Level in Dilution (ng/mL) | Mean ± SD (ng/mL) | Recovery Rates (%) | CV (%) |
---|---|---|---|---|---|---|
Wheat | Dinotefuran | 2 | 0.25 | 0.259 ± 0.02 | 103.6 | 7.7 |
8 | 1 | 1.058 ± 0.02 | 105.8 | 1.9 | ||
24 | 3 | 3.051 ± 0.26 | 101.7 | 8.5 | ||
Clothianidin | 2 | 0.25 | 0.274 ± 0.01 | 109.6 | 3.6 | |
8 | 1 | 1.062 ± 0.06 | 106.2 | 5.6 | ||
24 | 3 | 3.380 ± 0.24 | 112.7 | 7.1 | ||
Cucumber | Dinotefuran | 1 | 0.25 | 0.266 ± 0.03 | 106.4 | 11.3 |
4 | 1 | 1.078 ± 0.03 | 107.8 | 2.8 | ||
12 | 3 | 2.679 ± 0.30 | 89.3 | 11.2 | ||
Clothianidin | 1 | 0.25 | 0.220 ± 0.01 | 88.0 | 4.5 | |
4 | 1 | 1.009 ± 0.04 | 100.9 | 4.0 | ||
12 | 3 | 2.688 ± 0.31 | 89.6 | 11.5 | ||
Cabbage | Dinotefuran | 1 | 0.25 | 0.233 ± 0.01 | 93.2 | 4.3 |
4 | 1 | 0.980 ± 0.03 | 98.0 | 3.1 | ||
12 | 3 | 2.772 ± 0.34 | 92.4 | 12.3 | ||
Clothianidin | 1 | 0.25 | 0.249 ± 0.01 | 99.6 | 4.0 | |
4 | 1 | 0.982 ± 0.05 | 98.2 | 5.1 | ||
12 | 3 | 2.691 ± 0.30 | 89.7 | 11.1 |
Samples | Number | TRFMs-LFIA (ng/g) | UPLC-MS/MS (ng/g) | |
---|---|---|---|---|
Calculated by Dinotefuran | Dinotefuran | Clothianidin | ||
Wheat | 1 | ND * | ND | ND |
2 | ND | ND | ND | |
3 | 17.87 | ND | 18.65 | |
4 | 14.63 | 4.55 | 10.39 | |
Cucumber | 1 | ND | ND | ND |
2 | ND | ND | ND | |
3 | 6.93 | ND | 7.5 | |
4 | 18.35 | ND | 19.91 | |
Cabbage | 1 | ND | ND | ND |
2 | 2.25 | ND | 2.93 | |
3 | 21.29 | ND | 23.4 | |
4 | 8.57 | 4.12 | 3.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Chen, H.; Nie, Y.; Zhou, M.; Huang, J.; Xiao, Z. A Monoclonal Antibody-Based Time-Resolved Fluorescence Microsphere Lateral Flow Immunoassay for Dinotefuran and Clothianidin Detection. Foods 2025, 14, 1174. https://doi.org/10.3390/foods14071174
Qin L, Chen H, Nie Y, Zhou M, Huang J, Xiao Z. A Monoclonal Antibody-Based Time-Resolved Fluorescence Microsphere Lateral Flow Immunoassay for Dinotefuran and Clothianidin Detection. Foods. 2025; 14(7):1174. https://doi.org/10.3390/foods14071174
Chicago/Turabian StyleQin, Lehong, Haojie Chen, Yingxiang Nie, Mengxin Zhou, Junjun Huang, and Zhili Xiao. 2025. "A Monoclonal Antibody-Based Time-Resolved Fluorescence Microsphere Lateral Flow Immunoassay for Dinotefuran and Clothianidin Detection" Foods 14, no. 7: 1174. https://doi.org/10.3390/foods14071174
APA StyleQin, L., Chen, H., Nie, Y., Zhou, M., Huang, J., & Xiao, Z. (2025). A Monoclonal Antibody-Based Time-Resolved Fluorescence Microsphere Lateral Flow Immunoassay for Dinotefuran and Clothianidin Detection. Foods, 14(7), 1174. https://doi.org/10.3390/foods14071174