A Dual-Recognition Electrochemical Sensor Using Bacteria-Imprinted Polymer and Concanavalin A for Sensitive and Selective Detection of Escherichia coli O157:H7
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instruments and Test
2.3. Synthesis of Au@Fc-ConA
2.4. Synthesis of BIP
2.5. Capture and Detection of E. coli O157:H7
2.6. Selectivity
2.7. Real Sample
3. Results
3.1. Characterization of Au@Fc-ConA
3.2. Fabrication and Principle of the Sensor
3.3. Feasibility Assessment and Characterization of the Sensor
3.4. Quantitative Detection of E. coli O157:H7
3.5. Selectivity, Reproducibility, and Stability of the Sensor
3.6. Detection of E. coli O157:H7 in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tibebu, A.; Tamrat, H.; Bahiru, A. Review: Impact of food safety on global trade. Vet. Med. Sci. 2024, 10, e1585. [Google Scholar] [PubMed]
- He, S.; Shi, X. Microbial Food Safety in China: Past, Present, and Future. Foodborne Pathog. Dis. 2021, 18, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Vargas, S.J.R.; Sipes, P.; Tortosa la Osa, S.; Ebner, P. Food safety in the Dominican Republic—The current situation and challenges in the public management system. Food Sci. Nutr. 2024, 12, 8608–8622. [Google Scholar]
- Thompson, L.R.; Sipes, P.; Ebner, P.; Soukhavong, S.; Shively, G. Food safety in Laos: Status, current challenges and opportunities. Int. J. Food Sci. Technol. 2024, 59, 7727–7738. [Google Scholar] [CrossRef]
- Thompson, L.; Vipham, J.; Hok, L.; Ebner, P. Towards improving food safety in Cambodia: Current status and emerging opportunities. Glob. Food Secur. 2021, 31, 100572. [Google Scholar] [CrossRef]
- Kim, S.-O.; Kim, S.-S. Recent (2011–2017) foodborne outbreak cases in the Republic of Korea compared to the United States: A review. Food Sci. Biotechnol. 2021, 30, 185–194. [Google Scholar]
- Alhadlaq, M.A.; Aljurayyad, O.I.; Almansour, A.; Al-Akeel, S.I.; Alzahrani, K.O.; Alsalman, S.A.; Yahya, R.; Al-Hindi, R.R.; Hakami, M.A.; Alshahrani, S.D.; et al. Overview of pathogenic Escherichia coli, with a focus on Shiga toxin-producing serotypes, global outbreaks (1982–2024) and food safety criteria. Gut Pathog. 2024, 16, 57. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, R.; Viswakarma, J.N.; Gupta, V.K. Foodborne illnesses of Escherichia coli O157origin and its control measures. J. Food Sci. Technol. 2022, 60, 1274–1283. [Google Scholar]
- Duan, X.; Shi, X.; He, Z.; Chen, H.; Shi, Z.; Zhao, Z.; Chen, H.; Yu, M.; Guo, C. Conducting polymer functionalized Cu-metal organic framework–based electrochemical immunosensor for rapid and sensitive quantitation of Escherichia coli O157:H7. Microchim. Acta 2024, 191, 740. [Google Scholar] [CrossRef]
- Ghoshal, M.; Ryu, V.; McLandsborough, L. Evaluation of the efficacy of antimicrobials against pathogens on food contact surfaces using a rapid microbial log reduction detection method. Int. J. Food Microbiol. 2022, 373, 109699. [Google Scholar] [CrossRef]
- Wang, L.; Rong, N.; Xi, X.; Wang, M.; Huo, X.; Yuan, J.; Qi, W.; Li, Y.; Lin, J. Power-free colorimetric biosensing of foodborne bacteria in centrifugal tube. Biosens. Bioelectron. 2023, 220, 114905. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Zhao, C.; Li, L.; Song, X.; Xu, K.; Wang, J.; Liu, Y.; Fu, K.; Bao, H.; Song, D.; et al. Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection. Anal. Biochem. 2018, 542, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, K.; Huang, M.; Zeng, M.; Deng, Y.; Li, S.; Chen, H.; Li, W.; Chen, Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front. Bioeng. Biotechnol. 2022, 10, 958134. [Google Scholar] [CrossRef]
- Soliman, M.A.; Azab, M.S.; Hussein, H.A.; Roushdy, M.M.; Abu El-Naga, M.N. FBPP: Software to design PCR primers and probes for nucleic acid base detection of foodborne pathogens. Sci. Rep. 2024, 14, 1229. [Google Scholar] [CrossRef]
- Wu, W.; Yan, Y.; Xie, M.; Liu, Y.; Deng, L.; Wang, H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025, 281, 126918. [Google Scholar] [CrossRef]
- Yadav, A.K.; Verma, D.; Dalal, N.; Kumar, A.; Solanki, P.R. Molecularly imprinted polymer-based nanodiagnostics for clinically pertinent bacteria and virus detection for future pandemics. Biosens. Bioelectron. X 2022, 12, 100257. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Darabi, R.; Baghayeri, M.; Karimi, F.; Fu, L.; Rouhi, J.; Niculina, D.E.; Gündüz, E.S.; Dragoi, E.N. Recent developments in carbon nanomaterials-based electrochemical sensors for methyl parathion detection. J. Food Meas. Charact. 2023, 17, 5371–5389. [Google Scholar] [CrossRef]
- Lin, X.; Liu, P.P.; Yan, J.; Luan, D.; Sun, T.; Bian, X. Dual Synthetic Receptor-Based Sandwich Electrochemical Sensor for Highly Selective and Ultrasensitive Detection of Pathogenic Bacteria at the Single-Cell Level. Anal. Chem. 2023, 95, 5561–5567. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, K.; Zhang, K.; Li, P.; Wang, L.; Wu, C.; Xu, K. Ultrasensitive aflatoxin B1 detection based on vertical organic electrochemical transistor. Food Chem. 2025, 464, 141648. [Google Scholar] [CrossRef]
- Yang, L.; Ding, Y.; Ma, Y.; Wen, J.; Wang, J.; Dai, G.; Mo, F. An electrochemical sensor based on 2D Zn-MOFs and 2D C-Ti3C2Tx composite materials for rapid and direct detection of various foodborne pathogens. Food Chem 2025, 462, 140922. [Google Scholar] [CrossRef]
- Ji, L.; Wang, F.; Qi, Y.; Qiao, F.; Xiong, X.; Liu, Y. Detection of pathogenic gram-negative bacteria using an antimicrobial peptides-modified bipolar electrode-electrochemiluminescence platform. Mikrochim. Acta 2024, 191, 648. [Google Scholar] [CrossRef] [PubMed]
- Mahmodnezhad, S.; Roushani, M.; Karazan, Z.M. An electrochemical sensor based on the molecularly imprinted polymer/single walled carbon nanotube-modified glassy carbon electrode for detection of zineb fungicide in food samples. Food Control 2025, 168, 110919. [Google Scholar]
- Hu, W.; Pei, F.; Du, B.; Wang, J.; Liang, M.; Yang, L.; Liu, B.; Mu, X.; Tong, Z. A fluorescence-electrochemistry dual-mode imprinted sensing platform constructed by boric acid-functionalized MOF@COF core-shell composite for sensitive detection of glycoprotein. Sens. Actuators B Chem. 2024, 407, 135494. [Google Scholar]
- Zhang, Z.; Ji, H.; Zhuang, X.; Xu, Y.; Liu, J.; Zeng, C.; Ding, W.; Cui, F.; Zhu, S. Multivalent acetylated-sialic acid as recognition elements for the electrochemical sensing of viral antigens. Biosens. Bioelectron. 2025, 268, 116883. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Shi, X.; Wu, Z. Bacteria imprinted electrochemical sensor based on bimetallic silver-gold sea urchin-like hollow nanoparticles for ultrasensitive detection of Listeria monocytogenes. Microchem. J. 2024, 205, 111206. [Google Scholar]
- Liu, Y.; Wang, L.; Li, H.; Zhao, L.; Ma, Y.; Zhang, Y.; Liu, J.; Wei, Y. Rigorous recognition mode analysis of molecularly imprinted polymers—Rational design, challenges, and opportunities. Prog. Polym. Sci. 2024, 150, 101790. [Google Scholar]
- Cavalera, S.; Anfossi, L.; Di Nardo, F.; Baggiani, C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins 2024, 16, 47. [Google Scholar] [CrossRef]
- Xing, R.; Wen, Y.; Dong, Y.; Wang, Y.; Zhang, Q.; Liu, Z. Dual Molecularly Imprinted Polymer-Based Plasmonic Immunosandwich Assay for the Specific and Sensitive Detection of Protein Biomarkers. Anal. Chem. 2019, 91, 9993–10000. [Google Scholar]
- Mi, F.; Guan, M.; Wang, Y.; Chen, G.; Geng, P.; Hu, C. Integration of three non-interfering SERS probes combined with ConA-functionalized magnetic nanoparticles for extraction and detection of multiple foodborne pathogens. Mikrochim. Acta 2023, 190, 103. [Google Scholar]
- Capeletti, L.B.; de Oliveira, J.F.A.; Loiola, L.M.D.; Galdino, F.E.; da Silva Santos, D.E.; Soares, T.A.; de Oliveira Freitas, R.; Cardoso, M.B. Gram-Negative Bacteria Targeting Mediated by Carbohydrate–Carbohydrate Interactions Induced by Surface-Modified Nanoparticles. Adv. Funct. Mater. 2019, 29, 1904216. [Google Scholar]
- Ren, S.; Zhang, X.; Li, Z.; Jian, X.; Zhao, J.; Song, Y.Y. Development of a pulse-induced electrochemical biosensor based on gluconamide for Gram-negative bacteria detection. Mikrochim. Acta 2021, 188, 399. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.S.; Oliveira, M.D.; de Melo, C.P.; Andrade, C.A. Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films. Colloids Surf. B Biointerfaces 2014, 117, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Tantiapibalkun, Y.; Nuchpun, S.; Mekseriwattana, W.; Limsampan, S.; Doungchawee, G.; Jangpatarapongsa, K.; Srikhirin, T.; Katewongsa, K.P. Quantum dots as a fluorescent labeling tool for live-cell imaging of Leptospira. Nanoscale 2024, 16, 13677–13686. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Chen, Y.; Zhou, J.; Liu, H.; Liu, Y.; Qi, Y.; Liang, C.; Ding, P.; Zhu, X.; Wang, A.; et al. Concanavalin A as carrier for sensitive electrochemical immunosensor based on AgNPs-rGO signal amplification. J. Electroanal. Chem. 2024, 961, 118214. [Google Scholar] [CrossRef]
- Ju, C.; Liang, B.; Xu, Q.; Qu, H.; Zhang, A. Determination of Escherichia coli O157:H7 Using a Flower-like Concanavalin A Copper (II) Phosphate Nanocomposite as a Probe for Lateral Flow Biosensing. Anal. Lett. 2022, 56, 669–681. [Google Scholar] [CrossRef]
- Garcia-Herrera, L.F.; McAllister, H.P.; Xiong, H.; Wang, H.; Lord, R.W.; O’Boyle, S.K.; Imamovic, A.; Steimle, B.C.; Schaak, R.E.; Plass, K.E. Multistep Regioselectivity and Non-Kirkendall Anion Exchange of Copper Chalcogenide Nanorods. Chem. Mater. 2021, 33, 3841–3850. [Google Scholar] [CrossRef]
- Gong, L.; Feng, L.; Zheng, Y.; Luo, Y.; Zhu, D.; Chao, J.; Su, S.; Wang, L. Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application. Biosensors 2022, 12, 87. [Google Scholar] [CrossRef]
- Yuwen, L.; Li, X.; Wu, L.; Luo, Y.; Su, S. Construction of a point-of-care electrochemical biosensor for Escherichia coli 16S rRNA analysis based on MoS2 nanoprobes. Analyst 2023, 148, 6292–6296. [Google Scholar] [CrossRef]
- Chen, X.; Lin, T.; Su, J.; Hou, L.; Zhao, S. Boric acid functionalized Cu2−xSe nanozyme for the immunomagnetic bead-based colorimetric assay of Escherichia coli O157:H7 coupled with smartphone. Microchem. J. 2025, 209, 112713. [Google Scholar] [CrossRef]
- Wu, J.; Wang, R.; Lu, Y.; Jia, M.; Yan, J.; Bian, X. Facile Preparation of a Bacteria Imprinted Artificial Receptor for Highly Selective Bacterial Recognition and Label-Free Impedimetric Detection. Anal. Chem. 2019, 91, 1027–1033. [Google Scholar] [CrossRef]
- El-Wekil, M.M.; Halby, H.M.; Darweesh, M.; Ali, M.E.; Ali, R. An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe3O4 binary hybrid. Sci. Rep. 2022, 12, 12502. [Google Scholar]
- Razmi, N.; Hasanzadeh, M.; Willander, M.; Nur, O. Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. Biosensors 2020, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Cao, F.; Chen, J.; Hong, J.; Deng, D.; Wang, Q.; Sun, Y.; Li, Q.; Xin, H.; Wang, X. Rapid, direct, visualized and antibody-free bacterial detection with extra species identification and susceptibility evaluation capabilities. Biosens. Bioelectron. 2023, 221, 114902. [Google Scholar]
- Wang, R.; Du, Y.; Fu, Y.; Guo, Y.; Gao, X.; Guo, X.; Wei, J.; Yang, Y. Ceria-Based Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. ACS Sens. 2023, 8, 4442–4467. [Google Scholar] [PubMed]
- Xu, X.; Lin, X.; Wang, L.; Ma, Y.; Sun, T.; Bian, X. A Novel Dual Bacteria-Imprinted Polymer Sensor for Highly Selective and Rapid Detection of Pathogenic Bacteria. Biosensors 2023, 13, 868. [Google Scholar] [CrossRef]
- Lim, Y.H.; Foo, H.L.; Loh, T.C.; Mohamad, R.; Abdullah, N. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements. J. Anim. Sci. Biotechnol. 2019, 10, 15. [Google Scholar]
- Lin, X.; Mei, Y.; He, C.; Luo, Y.; Yang, M.; Kuang, Y.; Ma, X.; Zhang, H.; Huang, Q. Electrochemical Biosensing Interface Based on Carbon Dots-Fe3O4 Nanomaterial for the Determination of Escherichia coli O157:H7. Front. Chem. 2021, 9, 769648. [Google Scholar]
- Zain Ul, A.; Wang, L.; Yu, H.; Saleem, M.; Akram, M.; Khalid, H.; Abbasi, N.M.; Yang, X. Synthesis of ethylene diamine-based ferrocene terminated dendrimers and their application as burning rate catalysts. J. Colloid Interface Sci. 2017, 487, 38–51. [Google Scholar]
- Ding, C.; Qian, S.; Wang, Z.; Qu, B. Electrochemical cytosensor based on gold nanoparticles for the determination of carbohydrate on cell surface. Anal. Biochem. 2011, 414, 84–87. [Google Scholar]
- Elancheziyan, M.; Senthilkumar, S. Redox-active gold nanoparticle-encapsulated poly(amidoamine) dendrimer for electrochemical sensing of 4-aminophenol. J. Mol. Liq. 2021, 325, 115131. [Google Scholar]
- Ma, Y.; Lin, X.; Xue, B.; Luan, D.; Jia, C.; Feng, S.; Bian, X.; Zhao, J. Ultrasensitive and Highly Selective Detection of Staphylococcus aureus at the Single-Cell Level Using Bacteria-Imprinted Polymer and Vancomycin-Conjugated MnO2 Nanozyme. Anal. Chem. 2024, 96, 8641–8647. [Google Scholar] [PubMed]
- Bu, S.; Wang, K.; Li, Z.; Wang, C.; Hao, Z.; Liu, W.; Wan, J. An electrochemical biosensor based on methylene blue-loaded nanocomposites as signal-amplifying tags to detect pathogenic bacteria. Analyst 2020, 145, 4328–4334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Du, M.; Cheng, X.; Dou, X.; Zhou, J.; Wu, J.; Xie, X.; Zhu, M. A disposable paper-based electrochemical biosensor decorated by electrospun cellulose acetate nanofibers for highly sensitive bio-detection. Analyst 2024, 149, 2436–2444. [Google Scholar] [PubMed]
- Bazsefidpar, S.; Freitas, M.; Pereira, C.R.; Gutiérrez, G.; Serrano-Pertierra, E.; Nouws, H.P.A.; Matos, M.; Delerue-Matos, C.; Blanco-López, M.C. Fe3O4@Au Core–Shell Magnetic Nanoparticles for the Rapid Analysis of E. coli O157:H7 in an Electrochemical Immunoassay. Biosensors 2023, 13, 567. [Google Scholar] [CrossRef]
- Dai, G.; Li, Y.; Li, Z.; Zhang, J.; Geng, X.; Zhang, F.; Wang, Q.; He, P. Zirconium-Based Metal–Organic Framework and Ti3C2Tx Nanosheet-Based Faraday Cage-Type Electrochemical Aptasensor for Escherichia coli Detection. ACS Appl. Nano Mater. 2022, 5, 9201–9208. [Google Scholar]
- Li, Z.; Zhang, X.; Qi, H.; Huang, X.; Shi, J.; Zou, X. A novel renewable electrochemical biosensor based on mussel-inspired adhesive protein for the detection of Escherichia coli O157:H7 in food. Sens. Actuators B Chem. 2022, 372, 132601. [Google Scholar]
- Ramesh, M.; Umamatheswari, S.; Vivek, P.M.; Sankar, C.; Jayavel, R. Synthesis of silver-bismuth oxide encapsulated hydrazone functionalized chitosan (AgBi2O3/FCS) nanocomposite for electrochemical sensing of glucose, H2O2 and Escherichia coli O157:H7. Int. J. Biol. Macromol. 2024, 264, 130533. [Google Scholar]
Sample | Added (CFU mL−1) | Found (mean ± SD/CFU mL−1) | Recovery (%) |
---|---|---|---|
milk | 10 | 10.17 ± 2.03 | 101.75 |
102 | 94.16 ± 18.88 | 94.16 | |
103 | 1106.07 ± 305.93 | 110.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, X.; Ma, Y.; Li, H.; Sun, S.; Shi, L.; Yan, J.; Luan, D.; Zhao, Y.; Bian, X. A Dual-Recognition Electrochemical Sensor Using Bacteria-Imprinted Polymer and Concanavalin A for Sensitive and Selective Detection of Escherichia coli O157:H7. Foods 2025, 14, 1099. https://doi.org/10.3390/foods14071099
Niu X, Ma Y, Li H, Sun S, Shi L, Yan J, Luan D, Zhao Y, Bian X. A Dual-Recognition Electrochemical Sensor Using Bacteria-Imprinted Polymer and Concanavalin A for Sensitive and Selective Detection of Escherichia coli O157:H7. Foods. 2025; 14(7):1099. https://doi.org/10.3390/foods14071099
Chicago/Turabian StyleNiu, Xuejie, Yuanbing Ma, Hui Li, Shuang Sun, Luoyuan Shi, Juan Yan, Donglei Luan, Yong Zhao, and Xiaojun Bian. 2025. "A Dual-Recognition Electrochemical Sensor Using Bacteria-Imprinted Polymer and Concanavalin A for Sensitive and Selective Detection of Escherichia coli O157:H7" Foods 14, no. 7: 1099. https://doi.org/10.3390/foods14071099
APA StyleNiu, X., Ma, Y., Li, H., Sun, S., Shi, L., Yan, J., Luan, D., Zhao, Y., & Bian, X. (2025). A Dual-Recognition Electrochemical Sensor Using Bacteria-Imprinted Polymer and Concanavalin A for Sensitive and Selective Detection of Escherichia coli O157:H7. Foods, 14(7), 1099. https://doi.org/10.3390/foods14071099