Effect of Low-Temperature Plasma Activated Water with Different Treatment Times on Myofibrillar Proteins of Thawed Pork
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PAW
2.3. Extraction of MPs and PAW Treatment
2.4. Surface Hydrophobicity Measurement of Carbonyl Value
2.5. Ultraviolet Spectroscopy
2.6. Fluorescence Spectroscopy
2.7. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.8. Total Sulfhydryl Content
2.9. Carbonyl Content
2.10. Secondary Structure of MPs
2.11. Preparation of MP Gels
2.12. Color and Whiteness
2.13. Gel Strength
2.14. Textural Properties
2.15. Moisture Distribution
2.16. Secondary Structure of MPs in Gels
2.17. Molecular Forces
2.18. Microstructure
2.19. Statistical Analysis
3. Results and Discussion
3.1. Surface Hydrophobicity
3.2. Ultraviolet Spectroscopy
3.3. Intrinsic Fluorescence Spectroscopy
3.4. SDS-PAGE
3.5. Total Sulfhydryl Content
3.6. Carbonyl Content
3.7. Secondary Structure
3.8. Color and Whiteness of MP Gels
3.9. Gel Strength
3.10. Moisture Distribution
3.11. Textural Properties
3.12. FTIR
3.13. Molecular Forces
3.14. Microstructure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medic, H.; Djurkin Kusec, I.; Pleadin, J.; Kozacinski, L.; Njari, B.; Hengl, B.; Kusec, G. The Impact of Frozen Storage Duration on Physical, Chemical and Microbiological Properties of Pork. Meat Sci. 2018, 140, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Kim, J.H.; Seo, J.K.; Setyabrata, D.; Kim, Y.H.B. Effects of Aging/freezing Sequence and Freezing Rate on Meat Quality and Oxidative Stability of Pork Loins. Meat Sci. 2018, 139, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bai, Y.H.; Ma, F.; Li, K.; Zhou, H.; Chen, C.G. Combination Treatment of High-pressure and CaCl2 for the Reduction of Sodium Content in Chicken Meat Batters: Effects on Physicochemical Properties and Sensory Characteristics. Int. J. Food Sci. Technol. 2021, 56, 6322–6334. [Google Scholar] [CrossRef]
- Chaijan, M.; Chaijan, S.; Panya, A.; Nisoa, M.; Cheong, L.Z.; Panpipat, W. High Hydrogen Peroxide Concentration-low Exposure Time of Plasma-activated Water (PAW): A Novel Approach for Shelf-life Extension of Asian Sea Bass (Lates calcarifer) Steak. Innov. Food Sci. Emerg. Technol. 2021, 74, 102861. [Google Scholar] [CrossRef]
- Laurita, R.; Gozzi, G.; Tappi, S.; Capelli, F.; Bisag, A.; Laghi, G.; Gherardi, M.; Cellini, B.; Abouelenein, D.; Vittori, S. Effect of plasma activated water (PAW) on rocket leaves decontamination and nutritional value. Innov. Food Sci. Emerg. Technol. 2021, 73, 102805. [Google Scholar] [CrossRef]
- Li, M.Z.; Wang, X.; Shi, T.; Xiong, Z.Y.; Jin, W.A.; Bao, L.; Monto, A.R.; Yuan, L.; Gao, R.C. Mechanism of Plasma-activated Water Promoting the Heat-induced Aggregation of Myofibrillar Protein from Silver Carp (Aristichthys nobilis). Innov. Food Sci. Emerg. Technol. 2024, 91, 103555. [Google Scholar] [CrossRef]
- Qian, J.; Wang, Y.Y.; Zhuang, H.; Yan, W.J.; Zhang, J.H.; Luo, J. Plasma Activated Water-induced Formation of Compact Chicken Myofibrillar Protein Gel Structures with Intrinsically Antibacterial Activity. Food Chem. 2021, 351, 129278. [Google Scholar] [CrossRef]
- Liao, X.Y.; Liu, D.H.; Xiang, Q.S.; Ahn, J.; Chen, S.G.; Ye, X.Q.; Ding, T. Inactivation Mechanisms of Non-thermal Plasma on Microbes: A Review. Food Control. 2017, 75, 83–91. [Google Scholar] [CrossRef]
- Zhu, M.M.; Xing, Y.; Zhang, J.; Li, H.J.; Kang, Z.L.; Ma, H.J.; Zhao, S.M.; Jiao, L.X. Low-frequency Alternating Magnetic Field Thawing of Frozen Pork Meat: Effects of Intensity on Quality Properties and Microstructure of Meat and Structure of Myofibrillar Proteins. Meat Sci. 2023, 204, 109241. [Google Scholar] [CrossRef]
- Li, F.F.; Wang, B.; Liu, Q.; Chen, Q.; Zhang, H.W.; Xia, X.F.; Kong, B.H. Changes in Myofibrillar Protein Gel Quality of Porcine Longissimus Muscle Induced by Its Stuctural Modification under Different Thawing Methods. Meat Sci. 2019, 147, 108–115. [Google Scholar] [CrossRef]
- Liu, J.; Arner, A.; Puolanne, E.; Ertbjerg, P. On the Water-holding of Myofibrils: Effect of Sarcoplasmic Protein Denaturation. Meat Sci. 2016, 119, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.L.; Nirasawa, S.; Ji, X.H.; Luo, Y.K.; Liu, H.J. Physicochemical Changes in Myofibrillar Proteins Extracted from Pork Tenderloin Thawed by A High-voltage Electrostatic Field. Food Chem. 2018, 240, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Xiong, Z.Y.; Jin, W.G.; Yuan, L.; Sun, Q.C.; Zhang, Y.H.; Li, X.T.; Gao, R.C. Suppression Mechanism of l-Arginine in the Heat-induced Aggregation of Bighead Carp (Aristichthys nobilis) Myosin: The Significance of Ionic Linkage Effects and Hydrogen Bond Effects. Food Hydrocoll. 2020, 102, 105596. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, J.J.; Li, K.; Chen, X.; Wang, Y.T.; Bai, Y.H. Evaluation of Chickpea Protein Isolate as A Partial Replacement for Phosphate in Pork Meat Batters: Techno-functional Properties and Molecular Characteristic Modifications. Food Chem. 2023, 404, 134585. [Google Scholar] [CrossRef]
- Li, K.; Wang, L.M.; Gao, H.J.; Du, M.T.; Bai, Y.H. Use of Basic Amino Acids to Improve Gel Properties of PSE-like Chicken Meat Proteins Isolated Via Ultrasound-assisted Alkaline Extraction. J. Food Sci. 2023, 88, 5136–5148. [Google Scholar] [CrossRef]
- Cheng, S.S.; Wang, X.H.; Yang, H.M.; Lin, R.; Wang, H.T.; Tan, M.Q. Characterization of Moisture Migration of Beef During Refrigeration Storage by Low-field NMR and Its Relationship to Beef Quality. J. Sci. Food Agric. 2020, 100, 1940–1948. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.Z.; Zhou, F.B.; Sun, D.W.; Zhao, M.M. Effect of Oxidation on the Emulsifying Properties of Myofibrillar Proteins. Food Bioprocess Technol. 2013, 6, 1703–1712. [Google Scholar] [CrossRef]
- Xiong, Z.Y.; Shi, T.; Zhang, W.; Kong, Y.F.; Yuan, L.; Gao, R.C. Improvement of Gel Properties of Low Salt Surimi using Low-dose L-arginine Combined with Oxidized Caffeic Acid. LWT Food Sci. Technol. 2021, 145, 111303. [Google Scholar] [CrossRef]
- Zhou, F.B.; Zhao, M.M.; Su, G.W.; Cui, C.; Sun, W.Z. Gelation of Salted Myofibrillar Protein under Malondialdehyde-induced Oxidative Stress. Food Hydrocoll. 2014, 40, 153–162. [Google Scholar] [CrossRef]
- Jiang, S.Q.; Yang, C.J.; Bai, R.; Li, Z.W.; Zhang, L.L.; Chen, Y.; Ye, X.; Wang, S.Y.; Jiang, H.; Ding, W. Modifying Duck Myofibrillar Proteins Using Sodium Bicarbonate Under Cold Plasma Treatment: Impact on the Conformation, Emulsification, and Rheological Properties. Food Hydrocoll. 2024, 150, 109682. [Google Scholar] [CrossRef]
- Inbakumar, S. (Effect of Plasma Treatment on Surface of Protein Fabrics. J. Phys. Conf. Ser. 2010, 208, 012111. [Google Scholar] [CrossRef]
- Li, J.; Xiang, Q.; Liu, X.; Ding, T.; Zhang, X.; Zhai, Y.; Bai, Y. Inactivation of Soybean Trypsin Inhibitor by Dielectric-barrier Discharge (DBD) Plasma. Food Chem. 2017, 232, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.; Roopesh, M.S.; Pan, D.; Du, L. Enhanced Gel Properties of Duck Myofibrillar Protein by Plasma-Activated Water: Through Mild Structure Modifications. Foods 2023, 12, 877. [Google Scholar] [CrossRef] [PubMed]
- Bußler, S.; Rumpold, B.A.; Fröhling, A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Cold Atmospheric Pressure Plasma Processing of Insect Flour from Tenebrio Molitor: Impact on Microbial Load and Quality Attributes in Comparison to Dry Heat Treatment. Innov. Food Sci. Emerg. Technol. 2016, 36, 277–286. [Google Scholar] [CrossRef]
- Cao, Y.; True, A.D.; Chen, J.; Xiong, Y.L. Dual Role (Anti-and Pro-oxidant) of Gallic Acid in Mediating Myofibrillar Protein Gelation and Gel in Vitro Digestion. J. Agric. Food Chem. 2016, 64, 3054–3061. [Google Scholar] [CrossRef]
- Nyaisaba, B.M.; Miao, W.H.; Hatab, S.; Siloam, A.; Chen, M.L.; Deng, S.G. Effects of Cold Atmospheric Plasma on Squid Proteases and Gel Properties of Protein Concentrate from Squid (Argentinus ilex) Mantle. Food Chem. 2019, 291, 68–76. [Google Scholar] [CrossRef]
- Chen, C.C.; Kao, M.C.; Chen, C.J.; Jao, C.H.; Hsieh, J.F. Improvement of Enzymatic Cross-linkin of Ovalbumin and Ovotransferrin Induced by Transglutaminase with Heat and Reducing Agent Pretreatment. Food Chem. 2023, 409, 135281. [Google Scholar] [CrossRef]
- Xiong, G.Q.; Cheng, W.; Ye, L.X.; Du, X.; Zhou, M.; Lin, R.T.; Geng, S.R.; Chen, M.L.; Corke, H.; Cai, Y.Z. Effects of Konjac Glucomannan on Physicochemical Properties of Myofibrillar Protein and Surimi Gels from Grass Carp (Ctenopharyngodon idella). Food Chem. 2009, 116, 413–418. [Google Scholar] [CrossRef]
- Cui, C.; Zhou, X.S.; Zhao, M.M.; Yang, B. Effect of Thermal Treatment on the Enzymatic Hydrolysis of Chicken Proteins. Innov. Food Sci. Emerg. Technol. 2009, 10, 37–41. [Google Scholar] [CrossRef]
- Xia, T.L.; Xu, Y.J.; Zhang, Y.L.; Xu, L.A.; Kong, Y.W.; Song, S.X.; Huang, M.Y.; Bai, Y.; Luan, Y.; Han, M.Y.; et al. Effect of Oxidation on the Process of Thermal Gelation of Chicken Breast Myofibrillar Protein. Food Chem. 2022, 384, 132368. [Google Scholar] [CrossRef]
- Estévez, M. Protein Carbonyls in Meat Systems: A Review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhao, S.M.; Xiong, S.B.; Die, B.J.; Qin, L.H. Role of Secondary Structures in the Gelation of Porcine Myosin at Different pH Values. Meat Sci. 2008, 80, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Bellissent-Funel, M.C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A.E. Water Determines the Structure and Dynamics of Proteins. Chem. Rev. 2016, 116, 7673–7697. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Liu, Y.; Meng, D.; Wang, D.; Blanchard, C.L.; Zhou, Z. Effect of Atmospheric Cold Plasma on Structure, Activity, and Reversible Assembly of the Phytoferritin. Food Chem. 2018, 264, 41–48. [Google Scholar] [CrossRef]
- Zou, Q.; Liu, Y.D.; Luo, L.H.; Chen, Y.Y.; Zheng, Y.H.; Ran, G.L.; Liu, D.Y. Screening of Optimal Konjac Glucomannan-Protein Composite Gel Formulations to Mimic the Texture and Appearance of Tripe. Gels 2024, 10, 528. [Google Scholar] [CrossRef]
- Zheng, J.B.; Han, Y.R.; Ge, G.; Zhao, M.M.; Sun, W.Z. Partial substitution of NaCl with Chloride Salt Mixtures: Impact on Oxidative Characteristics of Meat Myofibrillar Protein and Their Rheological Properties. Food Hydrocoll. 2019, 96, 36–42. [Google Scholar] [CrossRef]
- Wei, H.Y.; Luo, K.X.; Fu, R.H.; Lin, X.D.; Feng, A.G. Impact of the Magnetic Field-assisted Freezing on the Moisture Content, Water Migration Degree, Microstructure, Fractal Dimension, and the Quality of the Frozen Tilapia. Food Sci. Nutr. 2022, 10, 122–132. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Bhandari, B.; Gao, Z.X. Effects of Malondialdehyde-induced Protein Modification on Water Functionality and Physicochemical State of Fish Myofibrillar Protein Gel. Food Res. Int. 2016, 86, 131–139. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Regenstein, J.M.; Zhou, P.; Yang, Y.L. Effects of High Intensity Ultrasound Modification on Physicochemical Property and Water in Myofibrillar Protein Gel. Ultrason. Sonochemistry 2017, 34, 960–967. [Google Scholar] [CrossRef]
- Li, J.Q.; Rao, W.; Sun, Y.Y.; Zhou, C.Y.; Xia, Q.; He, J.; Pan, D.D.; Du, L.H. Structural and gel property changes in chicken myofibrillar protein induced by argon cold plasma-activated water: With a molecular docking perspective. Food Res. Int. 2024, 197, 115271. [Google Scholar] [CrossRef]
- Chen, J.Y.; Ren, Y.X.; Zhang, K.S.; Xiong, Y.L.L.; Wang, Q.; Shang, K.; Zhang, D. Site-specific Incorporation of Sodium Tripolyphosphate into Myofibrillar Protein from Mantis Shrimp (Oratosquilla oratoria) Promotes Protein Crosslinking and Gel Network Formation. Food Chem. 2020, 312, 126113. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xu, W.M.; Liu, Q.; Zou, Y.; Wang, D.Y.; Zhang, J.H. Dielectric Barrier Discharge Cold Plasma Treatment of Pork Loin: Effects on Muscle Physicochemical Properties and Emulsifying Properties of Pork Myofibrillar Protein. LWT Food Sci. Technol. 2022, 162, 113484. [Google Scholar] [CrossRef]
- Cai, S.; Singh, B.R. Identification of Beta-turn and Random Coil Amide III Infrared Bands for Secondary Structure Estimation of Proteins. Biophys. Chem. 1999, 80, 7–20. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Mujumdar, A.S.; Chen, B. Effects of Electric and Magnetic Field on Freezing Characteristics of Gel Model Food. Food Res. Int. 2023, 166, 112566. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, S.C.; Jia, X.W.; Wang, H.; Zhang, H.; Liu, Q.; Kong, B.H. Thermal Gelling Properties and Structural Properties of Myofibrillar Protein Including Thermo-reversible and Thermo-irreversible Curdlan Gels. Food Chem. 2020, 311, 126018. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, J.; Lv, Y.; Su, Y.; Chang, C.; Gu, L.; Yang, Y.; Li, J. Influence of Konjac Glucomannan on the Emulsion-filled/Non-filled Chicken Gel: Study on Intermolecular Forces, Microstructure and Gelling Properties. Food Hydrocoll. 2022, 124, 107269. [Google Scholar] [CrossRef]
- Farouk, M.M.; Wieliczko, K.; Lim, R.; Turnwald, S.; Macdonald, G.A. Cooked sausage Batter Cohesiveness as Affected by Sarcoplasmic Proteins. Meat Sci. 2002, 61, 85–90. [Google Scholar] [CrossRef]
- Zhu, Z.W.; Lanier, T.C.; Farkas, B.E. High Pressure Effects on Heat-induced Gelation of Threadfin Bream (Nemipterus spp.) Surimi. J. Food Eng. 2015, 146, 23–27. [Google Scholar] [CrossRef]
L* | a* | b* | W | |
---|---|---|---|---|
CK | 76.75 ± 1.26 d | −2.45 ± 0.17 c | −3.52 ± 0.64 c | 76.35 ± 1.32 d |
PAW5s | 80.32 ± 0.38 c | −2.38 ± 0.02 c | −2.59 ± 0.05 abc | 80.01 ± 0.36 c |
PAW10s | 81.47 ± 0.53 c | −1.87 ± 0.11 b | −3.32 ± 0.48 bc | 81.08 ± 0.43 c |
PAW15s | 83.03 ± 0.36 b | −1.83 ± 0.04 b | −2.54 ± 0.44 abc | 82.74 ± 0.32 b |
PAW20s | 85.28 ± 0.63 a | −1.59 ± 0.02 a | −1.89 ± 0.41 a | 85.06 ± 0.59 a |
PAW25s | 83.11 ± 0.79 b | −2.04 ± 0.14 b | −2.38 ± 0.81 ab | 82.82 ± 0.85 b |
P2b | P21 | P22 | |
---|---|---|---|
CK | 0.825 ± 0.195 a | 92.573 ± 0.229 b | 6.662 ± 0.128 a |
PAW5s | 0.867 ± 0.783 a | 94.798 ± 0.310 a | 4.335 ± 0.493 b |
PAW10s | 0.700 ± 0.056 a | 96.287 ± 0.173 a | 3.014 ± 0.115 b |
PAW15s | 0.797 ± 0.128 a | 96.815 ± 0.130 a | 2.389 ± 0.009 b |
PAW20s | 0.698 ± 0.142 a | 95.965 ± 0.231 a | 3.336 ± 0.368 b |
PAW`25s | 0.749 ± 0.147 a | 95.362 ± 2.428 a | 3.889 ± 2.459 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, M.; Hao, F.; Sun, S.; Li, K.; Xiang, Q.; Li, J.; Cao, L.; Bai, Y. Effect of Low-Temperature Plasma Activated Water with Different Treatment Times on Myofibrillar Proteins of Thawed Pork. Foods 2025, 14, 970. https://doi.org/10.3390/foods14060970
Du M, Hao F, Sun S, Li K, Xiang Q, Li J, Cao L, Bai Y. Effect of Low-Temperature Plasma Activated Water with Different Treatment Times on Myofibrillar Proteins of Thawed Pork. Foods. 2025; 14(6):970. https://doi.org/10.3390/foods14060970
Chicago/Turabian StyleDu, Manting, Fangge Hao, Shunyang Sun, Ke Li, Qisen Xiang, Junguang Li, Lichuang Cao, and Yanhong Bai. 2025. "Effect of Low-Temperature Plasma Activated Water with Different Treatment Times on Myofibrillar Proteins of Thawed Pork" Foods 14, no. 6: 970. https://doi.org/10.3390/foods14060970
APA StyleDu, M., Hao, F., Sun, S., Li, K., Xiang, Q., Li, J., Cao, L., & Bai, Y. (2025). Effect of Low-Temperature Plasma Activated Water with Different Treatment Times on Myofibrillar Proteins of Thawed Pork. Foods, 14(6), 970. https://doi.org/10.3390/foods14060970