Nutrient Intakes in Vegans, Lacto-Ovo-Vegetarians, Orthodox Fasters, and Omnivores in Russia: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethical Statement
2.3. Dietary Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Macronutrients
4.2. Macro Elements
4.3. Trace and Ultratrace Elements
4.4. Water-Soluble Vitamins
4.5. Fat-Soluble Vitamins
4.6. General Considerations
4.7. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Stahler, C. Asks the Vegetarian Resource Group. How Many People Are Vegan? How Many Eat Vegan When Eating Out? 2019. Available online: https://www.vrg.org/nutshell/Polls/2019_adults_veg.htm (accessed on 5 March 2025).
- German Nutrition Society (DGE). 13th DGE-Nutrition Report; German Nutrition Society: Bonn, Germany, 2016. [Google Scholar]
- Baroni, L.; Rizzo, G.; Galchenko, A.V.; Zavoli, M.; Serventi, L.; Battino, M. Health Benefits of Vegetarian Diets: An Insight into the Main Topics. Foods 2024, 13, 2398. [Google Scholar] [CrossRef]
- Veronika, P. The Incredible Vegan Health Report; Viva Health: Bristol, VA, USA, 2016. [Google Scholar]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef]
- Agnoli, C.; Baroni, L.; Bertini, I.; Ciappellano, S.; Fabbri, A.; Papa, M.; Pellegrini, N.; Sbarbati, R.; Scarino, M.L.; Siani, V.; et al. Position Paper on Vegetarian Diets from the Working Group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1037–1052. [Google Scholar] [CrossRef]
- Baroni, L.; Goggi, S.; Battino, M. VegPlate: A Mediterranean-Based Food Guide for Italian Adult, Pregnant, and Lactating Vegetarians. J. Acad. Nutr. Diet. 2018, 118, 2235–2243. [Google Scholar] [CrossRef]
- Leitzmann, C. Vegetarian Diets: What Are the Advantages. In Forum of Nutrition; Elmadfa, I., Ed.; S. Karger AG: Basel, Switzerland, 2005; Volume 57, pp. 147–156. ISBN 978-3-8055-7872-1. [Google Scholar]
- Fraser, G.E. Vegetarian Diets: What Do We Know of Their Effects on Common Chronic Diseases? Am. J. Clin. Nutr. 2009, 89, 1607S–1612S. [Google Scholar] [CrossRef]
- Dyett, P.A.; Sabaté, J.; Haddad, E.; Rajaram, S.; Shavlik, D. Vegan Lifestyle Behaviors. An Exploration of Congruence with Health-Related Beliefs and Assessed Health Indices. Appetite 2013, 67, 119–124. [Google Scholar] [CrossRef]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and Valuation of the Health and Climate Change Cobenefits of Dietary Change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef]
- Bethancourt, H.J.; Kratz, M.; O’Connor, K. Spiritually Motivated Restrictions on Animal Products Have a Limited Impact on Consumption of Healthy Plant-Based Foods. Br. J. Nutr. 2019, 122, 808–819. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Bloomer, R.J. The impact of religious fasting on human health. Nutr. J. 2010, 9, 57. [Google Scholar] [CrossRef]
- Archimandrite Simeon (Kutsas). Church Fast. Why, When and How We Fast. Russian Chronograph. 2001. Available online: https://azbyka.ru/otechnik/antropologiya-i-asketika/tserkovnyj-post-zachem-kogda-i-kak-my-postimsja/ (accessed on 5 March 2025). (In Russian).
- Questions to the Priest. What Can and Cannot Be Done during Great Lent? 2020. Available online: https://foma.ru/chto-mozhno-i-nelzya-v-velikiy-post.html (accessed on 5 March 2025). (In Russian).
- Great Tikhvin Assumption Monastery. Svyatoslov Orthodox Fasting Cuisine; Library of Orthodox Christian: Saint Petersburg, Russia, 1996. (In Russian) [Google Scholar]
- Efanov, A.A. Questions to the Priest. Is It Allowed to Eat Mussels, Squids, and Shrimps During Lent? Thomas. 1 March 2023. Available online: https://foma.ru/mozhno-li-kushat-midii-kalmary-i-krevetki-v-post.html (accessed on 5 March 2025). (In Russian).
- Trinity Temple. Seafood in Lent, 21.12. 2020. Available online: https://thram-m.ru/stati/moreprodukty-v-post/ (accessed on 15 February 2025). (In Russian).
- Hieromonk Job (Gumerov), Questions to the Priest. 2007. Available online: http://pravoslavie.ru/6901.html (accessed on 15 February 2025). (In Russian).
- Sanders, T.A.B.; Ellis, F.R.; Dickerson, J.W.T. Studies of Vegans: The Fatty Acid Composition of Plasma Choline Phosphoglycerides, Erythrocytes, Adipose Tissue, and Breast Milk, and Some Indicators of Susceptibility to Ischemic Heart Disease in Vegans and Omnivore Controls. Am. J. Clin. Nutr. 1978, 31, 805–813. [Google Scholar] [CrossRef]
- Saunders, A.V.; Davis, B.C.; Garg, M.L. Omega-3 Polyunsaturated Fatty Acids and Vegetarian Diets. Med. J. Aust. 2012, 1, 22–26. [Google Scholar] [CrossRef]
- Rosell, M.S.; Lloyd-Wright, Z.; Appleby, P.N.; Sanders, T.A.; Allen, N.E.; Key, T.J. Long-Chain n–3 Polyunsaturated Fatty Acids in Plasma in British Meat-Eating, Vegetarian, and Vegan Men. Am. J. Clin. Nutr. 2005, 82, 327–334. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Ranjit, R. Calcium Status among Vegetarians and Vegans. In Proceedings of the Russian Scientific-Practical Conference with In-ternational Participation “Fundamentals of Technological Development of Agriculture”, Orenburg, Russia, 24–25 October 2019; pp. 209–212. [Google Scholar] [CrossRef]
- Haider, L.M.; Schwingshackl, L.; Hoffmann, G.; Ekmekcioglu, C. The Effect of Vegetarian Diets on Iron Status in Adults: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 1359–1374. [Google Scholar] [CrossRef]
- Foster, M.; Chu, A.; Petocz, P.; Samman, S. Effect of Vegetarian Diets on Zinc Status: A Systematic Review and Meta-analysis of Studies in Humans. J. Sci. Food Agric. 2013, 93, 2362–2371. [Google Scholar] [CrossRef]
- Hoeflich, J.; Hollenbach, B.; Behrends, T.; Hoeg, A.; Stosnach, H.; Schomburg, L. The Choice of Biomarkers Determines the Selenium Status in Young German Vegans and Vegetarians. Br. J. Nutr. 2010, 104, 1601–1604. [Google Scholar] [CrossRef]
- Rizzo, G.; Laganà, A.; Rapisarda, A.; La Ferrera, G.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F.; et al. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation. Nutrients 2016, 8, 767. [Google Scholar] [CrossRef]
- Devulapalli, C.S. Vitamin D Intake and Status in Children and Adolescents: Comparing Vegetarian, Vegan, and Omnivorous Diets. Acta Paediatr. 2024, 114, 498–504. [Google Scholar] [CrossRef]
- Niklewicz, A.; Hannibal, L.; Warren, M.; Ahmadi, K.R. A Systematic Review and Meta-analysis of Functional Vitamin B12 Status among Adult Vegans. Nutr. Bull. 2024, 49, 463–479. [Google Scholar] [CrossRef]
- Galchenko, A.; Gapparova, K.; Sidorova, E. The Influence of Vegetarian and Vegan Diets on the State of Bone Mineral Density in Humans. Crit. Rev. Food Sci. Nutr. 2021, 63, 845–861. [Google Scholar] [CrossRef]
- Falchetti, A.; Cavati, G.; Valenti, R.; Mingiano, C.; Cosso, R.; Gennari, L.; Chiodini, I.; Merlotti, D. The Effects of Vegetarian Diets on Bone Health: A Literature Review. Front. Endocrinol. 2022, 13, 899375. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Sherstneva, A.A. Association of Microelementoses with the Risk of Hypochromic Anaemia in Vegetarians and Vegans. In Proceedings of the Biogeochemical Innovations under the Conditions of the Biosphere Technogenesis Correction, Tiraspol, Moldova, 5–7 November 2020; pp. 351–358. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Bennett, S.; Zou, J.; Xu, J.; Zhang, L. The Effects of Different Dietary Patterns on Bone Health. Nutrients 2024, 16, 2289. [Google Scholar] [CrossRef]
- Makedou, K.G.; Vagdatli, E.; Patziarela, E.; Konstantinidou, V.; Poimenidou, E.; Lymperaki, E. Total Antioxidant Capacity, Haematological and Coagulation Parameters after Orthodox Christian Fast. Open Access Maced. J. Med. Sci. 2018, 6, 284–286. [Google Scholar] [CrossRef]
- Desalegn, B.B.; Lambert, C.; Riedel, S.; Negese, T.; Biesalski, H.K. Feeding Practices and Undernutrition in 6–23-Month-Old Children of Orthodox Christian Mothers in Rural Tigray, Ethiopia: Longitudinal Study. Nutrients 2019, 11, 138. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Ranjit, R.; Yakovlev, M.Y.; Revyakina, V.A. Nutrition and Somatic Condition of the Staff of the Hospital of St. Alexis during Great Orthodox Lent: A Cross-sectional Study. Trace Elem. Med. 2020, 21, 40–52. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Vrzhesinskaya, O.A.; Kosheleva, O.V.; Beketova, N.A.; Leonenko, S.N.; Kodentsova, V.M.; Gapparova, K.M. Vitamin Sufficiency in Persons after Observance of Orthodox Great Lent. Profil. Med. 2020, 23, 107. [Google Scholar] [CrossRef]
- Sarri, K.O.; Linardakis, M.K.; Bervanaki, F.N.; Tzanakis, N.E.; Kafatos, A.G. Greek Orthodox Fasting Rituals: A Hidden Characteristic of the Mediterranean Diet of Crete. Br. J. Nutr. 2004, 92, 277–284. [Google Scholar] [CrossRef]
- Sarri, K.O.; Tzanakis, N.E.; Linardakis, M.K.; Mamalakis, G.D.; Kafatos, A.G. Effects of Greek Orthodox Christian Church Fasting on Serum Lipids and Obesity. BMC Public Health 2003, 3, 16. [Google Scholar] [CrossRef]
- Sarri, K.; Linardakis, M.; Codrington, C.; Kafatos, A. Does the Periodic Vegetarianism of Greek Orthodox Christians Benefit Blood Pressure? Prev. Med. 2007, 44, 341–348. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Kabir, M.M.; Canale, R.E.; Trepanowski, J.F.; Marshall, K.E.; Farney, T.M.; Hammond, K.G. Effect of a 21 Day Daniel Fast on Metabolic and Cardiovascular Disease Risk Factors in Men and Women. Lipids Health Dis. 2010, 9, 94. [Google Scholar] [CrossRef]
- Lazarou, C.; Matalas, A.-L. A Critical Review of Current Evidence, Perspectives and Research Implications of Diet-Related Traditions of the Eastern Christian Orthodox Church on Dietary Intakes and Health Consequences. Int. J. Food Sci. Nutr. 2010, 61, 739–758. [Google Scholar] [CrossRef]
- Chliaoutakis, J.E.; Drakou, I.; Gnardellis, C.; Galariotou, S.; Carra, H.; Chliaoutaki, M. Greek Christian Orthodox Ecclesiastical Lifestyle: Could It Become a Pattern of Health-Related Behavior? Prev. Med. 2002, 34, 428–435. [Google Scholar] [CrossRef]
- Ocagli, H.; Berti, G.; Rango, D.; Norbiato, F.; Chiaruttini, M.V.; Lorenzoni, G.; Gregori, D. Association of Vegetarian and Vegan Diets with Cardiovascular Health: An Umbrella Review of Meta-Analysis of Observational Studies and Randomized Trials. Nutrients 2023, 15, 4103. [Google Scholar] [CrossRef]
- Koch, C.A.; Kjeldsen, E.W.; Frikke-Schmidt, R. Vegetarian or Vegan Diets and Blood Lipids: A Meta-Analysis of Randomized Trials. Eur. Heart J. 2023, 44, 2609–2622. [Google Scholar] [CrossRef]
- Ivanova, S.; Delattre, C.; Karcheva-Bahchevanska, D.; Benbasat, N.; Nalbantova, V.; Ivanov, K. Plant-Based Diet as a Strategy for Weight Control. Foods 2021, 10, 3052. [Google Scholar] [CrossRef]
- Sun, C.; Li, A.; Xu, C.; Ma, J.; Wang, H.; Jiang, Z.; Hou, J. Comparative Analysis of Fecal Microbiota in Vegetarians and Omnivores. Nutrients 2023, 15, 2358. [Google Scholar] [CrossRef]
- Azzola, L.G.; Fankhauser, N.; Srinivasan, M. Influence of the Vegan, Vegetarian and Omnivore Diet on the Oral Health Status in Adults: A Systematic Review and Meta-Analysis. Evid. Based Dent. 2023, 24, 43–44. [Google Scholar] [CrossRef]
- Pandya, V.S.; Fiorillo, L.; Kalpe, S.; Mehta, V.; Meto, A.; Certo, A.D.; Russo, D.; Gorassini, F.; Mancini, M.; Mancini, A.; et al. Veganism and Oral Health—An Overview through the Perspective. Eur. J. Gen. Dent. 2023, 12, 067–071. [Google Scholar] [CrossRef]
- McCann, C. The Impact of a Vegetarian Diet on Oral Health. BDJ Team 2023, 10, 12–13. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Takalloabdali, S.; Ranjit, R. Impact Of Vegetarianism and Veganism On Oral Health. IJDOS 2021, 8, 2265–2271. [Google Scholar] [CrossRef]
- Erlich, M.N.; Ghidanac, D.; Blanco Mejia, S.; Khan, T.A.; Chiavaroli, L.; Zurbau, A.; Ayoub-Charette, S.; Almneni, A.; Messina, M.; Leiter, L.A.; et al. A Systematic Review and Meta-Analysis of Randomized Trials of Substituting Soymilk for Cow’s Milk and Intermediate Cardiometabolic Outcomes: Understanding the Impact of Dairy Alternatives in the Transition to Plant-Based Diets on Cardiometabolic Health. BMC Med. 2024, 22, 336. [Google Scholar] [CrossRef]
- Świątek, Ł.; Jeske, J.; Miedziaszczyk, M.; Idasiak-Piechocka, I. The Impact of a Vegetarian Diet on Chronic Kidney Disease (CKD) Progression—A Systematic Review. BMC Nephrol. 2023, 24, 168. [Google Scholar] [CrossRef]
- Narasaki, Y.; Kalantar-Zadeh, K.; Rhee, C.M.; Brunori, G.; Zarantonello, D. Vegetarian Nutrition in Chronic Kidney Disease. Nutrients 2023, 16, 66. [Google Scholar] [CrossRef]
- Janko, R.K.; Haussmann, I.; Patel, A. Vitamin B12 Status in Vegan and Vegetarian Seventh-Day Adventists: A Systematic Review and Meta-Analysis of Serum Levels and Dietary Intake. Am. J. Health Promot. 2025, 39, 162–171. [Google Scholar] [CrossRef]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High Compliance with Dietary Recommendations in a Cohort of Meat Eaters, Fish Eaters, Vegetarians, and Vegans: Results from the European Prospective Investigation into Cancer and Nutrition–Oxford Study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef]
- Tutelyan, V. The Chemical Composition and Caloric Content of Russian Food: A Handbook; DeLi Plus: Moscow, Russia, 2012. (In Russian) [Google Scholar]
- Poortvliet, E.J.; Klensin, J.C.; Kohlmeier, L. Rationale Document for the Eurocode 2 Food Coding System (Version 91/2). Eur. J. Clin. Nutr. 1992, 46 (Suppl. S5), S9–S24. [Google Scholar]
- Scientific Research Institute of Nutrition of the Russian Academy of Medical Sciences; National Medical Research Center for Rehabilitation and Balneology. Guidelines on Methods of Analyzing the Quality and Safety of Food Products; Brandes, Medicine: Moscow, Russia, 1998; ISBN 5-225-02777-6. (In Russian) [Google Scholar]
- Federal Center for State Sanitary and Epidemiological Supervision of the Ministry of Health. Guidelines on Methods of Quality Control and Safety of Biologically Active Food Additives; Ministry of Health of Russia, Federal Center for State Sanitary Epidemiological Surveillance: Moscow, Russia, 2004; ISBN 5-7508-0490-9. (In Russian) [Google Scholar]
- Dubtsov, G. Conclusion on the Effectiveness of Scientific and Technical Development “Method for Analyzing the Nature of Human Nutrition at Home and the Actual Chemical Composition of Diets Generated Using the Nutrilogic Service”; MGUPP: Moscow, Russia, 2018. (In Russian) [Google Scholar]
- El Kinany, K.; Garcia-Larsen, V.; Khalis, M.; Deoula, M.M.S.; Benslimane, A.; Ibrahim, A.; Benjelloun, M.C.; El Rhazi, K. Adaptation and Validation of a Food Frequency Questionnaire (FFQ) to Assess Dietary Intake in Moroccan Adults. Nutr. J. 2018, 17, 61. [Google Scholar] [CrossRef]
- Noor Hafizah, Y.; Ang, L.C.; Yap, F.; Nurul Najwa, W.; Cheah, W.L.; Ruzita, A.T.; Jumuddin, F.A.; Koh, D.; Lee, J.A.C.; Essau, C.A.; et al. Validity and Reliability of a Food Frequency Questionnaire (FFQ) to Assess Dietary Intake of Preschool Children. Int. J. Environ. Res. Public Health 2019, 16, 4722. [Google Scholar] [CrossRef]
- Yaghi, N.; Boulos, C.; Baddoura, R.; Abifadel, M.; Yaghi, C. Validity and Reliability of a Food Frequency Questionnaire for Community Dwelling Older Adults in a Mediterranean Country: Lebanon. Nutr. J. 2022, 21, 40. [Google Scholar] [CrossRef] [PubMed]
- Federal Center for Hygiene and Epidemiology of Rospotrebnadzor. Norms of Physiological Needs for Energy and Nutrients for Various Groups of the Population of the Russian Federation. In Nutritional Guidelines; Russian Consumer Supervision: Moscow, Russia, 2021. (In Russian) [Google Scholar]
- Federal Center for State Sanitary and Epidemiological Supervision. Recommended Levels of Consumption of Food and Biologically Active Substances: Methodological Recommendations; Russian Consumer Supervision, Federal Center for State Sanitary Epidemiological Surveillance: Moscow, Russia, 2004. (In Russian) [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids and Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Clarys, P.; Deliens, T.; Huybrechts, I.; Deriemaeker, P.; Vanaelst, B.; De Keyzer, W.; Hebbelinck, M.; Mullie, P. Comparison of Nutritional Quality of the Vegan, Vegetarian, Semi-Vegetarian, Pesco-Vegetarian and Omnivorous Diet. Nutrients 2014, 6, 1318–1332. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, H.M.; Rådjursöga, M.; Torstensson, T.; Jansson, L.; Ellegård, L.; Winkvist, A. Urine Metabolite Profiles and Nutrient Intake Based on 4-Day Weighed Food Diary in Habitual Vegans, Vegetarians, and Omnivores. J. Nutr. 2021, 151, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Ho-Pham, L.T.; Nguyen, N.D.; Nguyen, T.V. Effect of Vegetarian Diets on Bone Mineral Density: A Bayesian Meta-Analysis. Am. J. Clin. Nutr. 2009, 90, 943–950. [Google Scholar] [CrossRef]
- Ho-Pham, L.T.; Vu, B.Q.; Lai, T.Q.; Nguyen, N.D.; Nguyen, T.V. Vegetarianism, Bone Loss, Fracture and Vitamin D: A Longitudinal Study in Asian Vegans and Non-Vegans. Eur. J. Clin. Nutr. 2012, 66, 75–82. [Google Scholar] [CrossRef]
- Schüpbach, R.; Wegmüller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient Status and Intake in Omnivores, Vegetarians and Vegans in Switzerland. Eur. J. Nutr. 2017, 56, 283–293. [Google Scholar] [CrossRef]
- Bruns, A.; Nebl, J.; Jonas, W.; Hahn, A.; Schuchardt, J.P. Nutritional Status of Flexitarians Compared to Vegans and Omnivores—A Cross-Sectional Pilot Study. BMC Nutr. 2023, 9, 140. [Google Scholar] [CrossRef]
- Blaurock, J.; Kaiser, B.; Stelzl, T.; Weech, M.; Fallaize, R.; Franco, R.Z.; Hwang, F.; Lovegrove, J.; Finglas, P.M.; Gedrich, K. Dietary Quality in Vegetarian and Omnivorous Female Students in Germany: A Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 1888. [Google Scholar] [CrossRef]
- García-Maldonado, E.; Zapatera, B.; Alcorta, A.; Vaquero, M.P. Metabolic and Nutritional Biomarkers in Adults Consuming Lacto-Ovo Vegetarian, Vegan and Omnivorous Diets in Spain. A Cross-Sectional Study. Food Funct. 2023, 14, 1608–1616. [Google Scholar] [CrossRef]
- Baroni, L.; Bonetto, C.; Rizzo, G.; Galchenko, A.; Guidi, G.; Visaggi, P.; Savarino, E.; Zavoli, M.; De Bortoli, N. Nutrient Composition of Four Dietary Patterns in Italy: Results from an Online Survey (the INVITA Study). Foods 2024, 13, 2103. [Google Scholar] [CrossRef]
- Papadaki, A.; Vardavas, C.; Hatzis, C.; Kafatos, A. Calcium, Nutrient and Food Intake of Greek Orthodox Christian Monks during a Fasting and Non-Fasting Week. Public Health Nutr. 2008, 11, 1022–1029. [Google Scholar] [CrossRef]
- Basilakis, A.; Kiprouli, K.; Mantzouranis, S.; Konstantinidis, T.; Dionisopoulou, M.; Hackl, J.M.; Balogh, D. Nutritional Study in Greek-Orthodox Monasteries—Effect of a 40-Day Religious Fasting. Akt. Ernähr Med. 2002, 27, 250–255. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Petróczi, A.; Folkerts, D.; Kypraiou, M.; Mulrooney, H.; Naughton, D.P.; Persynaki, A.; Zebekakis, P.; Skoutas, D.; et al. Christian Orthodox Fasting in Practice: A Comparative Evaluation between Greek Orthodox General Population Fasters and Athonian Monks. Nutrition 2019, 59, 69–76. [Google Scholar] [CrossRef]
- Kokkinopoulou, A.; Katsiki, N.; Pagkalos, I.; Rodopaios, N.E.; Koulouri, A.-A.; Vasara, E.; Papadopoulou, S.K.; Skepastianos, P.; Dermitzakis, E.; Hassapidou, M.; et al. Nutrient Intake and Risk Factors for Metabolic Syndrome in Christian Orthodox Church Religious Fasters. Nutrients 2023, 15, 2468. [Google Scholar] [CrossRef]
- Giaginis, C.; Mantzorou, M.; Papadopoulou, S.K.; Gialeli, M.; Troumbis, A.Y.; Vasios, G.K. Christian Orthodox Fasting as a Traditional Diet with Low Content of Refined Carbohydrates That Promotes Human Health: A Review of the Current Clinical Evidence. Nutrients 2023, 15, 1225. [Google Scholar] [CrossRef] [PubMed]
- Knurick, J.; Johnston, C.; Wherry, S.; Aguayo, I. Comparison of Correlates of Bone Mineral Density in Individuals Adhering to Lacto-Ovo, Vegan, or Omnivore Diets: A Cross-Sectional Investigation. Nutrients 2015, 7, 3416–3426. [Google Scholar] [CrossRef]
- Kristensen, N.B.; Madsen, M.L.; Hansen, T.H.; Allin, K.H.; Hoppe, C.; Fagt, S.; Lausten, M.S.; Gøbel, R.J.; Vestergaard, H.; Hansen, T.; et al. Intake of Macro- and Micronutrients in Danish Vegans. Nutr. J. 2015, 14, 115. [Google Scholar] [CrossRef]
- Allès, B.; Baudry, J.; Méjean, C.; Touvier, M.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of Sociodemographic and Nutritional Characteristics between Self-Reported Vegetarians, Vegans, and Meat-Eaters from the NutriNet-Santé Study. Nutrients 2017, 9, 1023. [Google Scholar] [CrossRef]
- Fallon, N.; Dillon, S.A. Low Intakes of Iodine and Selenium Amongst Vegan and Vegetarian Women Highlight a Potential Nutritional Vulnerability. Front. Nutr. 2020, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and Adequacy of the Vegan Diet. A Systematic Review of the Evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef]
- Jaisee, L.; Mahara, M.B.; Bhatt, G.D.; Bist, B.S.; Chand, N.B. Nutritional Status and Its Associated Factors among Elderly Lacto-Vegetarians of Budhanilkantha Municipality of Bagmati Nepal. South Asian Res. J. Nurs. Health Care 2024, 6, 7–18. [Google Scholar] [CrossRef]
- Sarri, K.O.; Kafatos, A.G.; Higgins, S. Is Religious Fasting Related to Iron Status in Greek Orthodox Christians? Br. J. Nutr. 2005, 94, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Elorinne, A.-L.; Alfthan, G.; Erlund, I.; Kivimäki, H.; Paju, A.; Salminen, I.; Turpeinen, U.; Voutilainen, S.; Laakso, J. Food and Nutrient Intake and Nutritional Status of Finnish Vegans and Non-Vegetarians. PLoS ONE 2016, 11, e0148235. [Google Scholar] [CrossRef]
- Rizzo, N.S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.E. Nutrient Profiles of Vegetarian and Nonvegetarian Dietary Patterns. J. Acad. Nutr. Diet. 2013, 113, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Koufakis, T.; Karras, S.Ν.; Antonopoulou, V.; Angeloudi, E.; Zebekakis, P.; Kotsa, K. Effects of Orthodox Religious Fasting on Human Health: A Systematic Review. Eur. J. Nutr. 2017, 56, 2439–2455. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F.; Gardner, C.D. Gardner Dietary Protein and Amino Acids in Vegetarian Diets—A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef]
- Gardner, C.D.; Hartle, J.C.; Garrett, R.D.; Offringa, L.C.; Wasserman, A.S. Maximizing the Intersection of Human Health and the Health of the Environment with Regard to the Amount and Type of Protein Produced and Consumed in the United States. Nutr. Rev. 2019, 77, 197–215. [Google Scholar] [CrossRef]
- Dietrich, S.; Trefflich, I.; Ueland, P.M.; Menzel, J.; Penczynski, K.J.; Abraham, K.; Weikert, C. Amino Acid Intake and Plasma Concentrations and Their Interplay with Gut Microbiota in Vegans and Omnivores in Germany. Eur. J. Nutr. 2022, 61, 2103–2114. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Dam, A.B.; Petersen, I.L.; Christoffersen, T. Protein Content and Amino Acid Composition in the Diet of Danish Vegans: A Cross-Sectional Study. BMC Nutr. 2023, 9, 131. [Google Scholar] [CrossRef]
- Leitão, A.E.; Esteves, G.P.; Mazzolani, B.C.; Smaira, F.I.; Santini, M.H.; Santo André, H.C.; Gualano, B.; Roschel, H. Protein and Amino Acid Adequacy and Food Consumption by Processing Level in Vegans in Brazil. JAMA Netw. Open 2024, 7, e2418226. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Morozova, L.D.; Zaletova, T.S. Evaluation of protein and amino acid requirements, based on biosynthetic needs and nitrogen balance parameters. Vopr. Dietol. 2017, 7, 64–68. (In Russian) [Google Scholar] [CrossRef]
- Sidorova, E.I.; Bubnova, A.M.; Galchenko, A.V. Consumption of Sulfur-Containing Nutrients by Vegans, Vegetarians, People Who Observe Orthodox Lent, and Omnivores, Nauka molodykh (Eruditio Juvenium); Ryazan State Medical University: Ryazan, Russia, 2023; pp. 555–562, (In Russian). [Google Scholar] [CrossRef]
- Maslova, G.; Glinkina, I. Marketing researches of the market of salted and pickled vegetables. In Proceedings of the Priority Vectors of Industrial and Agricultural Development Makeyevka, Voronezh, Russia, 11 April 2019; Voronezh State Agrarian University named after Emperor Peter I: Voronezh, Russia, 2019; pp. 196–200. (In Russian). [Google Scholar]
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented Foods, Health and the Gut Microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef] [PubMed]
- Canoy, T.S.; Wiedenbein, E.S.; Bredie, W.L.P.; Meyer, A.S.; Wösten, H.A.B.; Nielsen, D.S. Solid-State Fermented Plant Foods as New Protein Sources. Annu. Rev. Food Sci. Technol. 2024, 15, 189–210. [Google Scholar] [CrossRef] [PubMed]
- Trefflich, I.; Marschall, H.-U.; di Giuseppe, R.; Ståhlman, M.; Michalsen, A.; Lampen, A.; Abraham, K.; Weikert, C. Associations between Dietary Patterns and Bile Acids—Results from a Cross-Sectional Study in Vegans and Omnivores. Nutrients 2019, 12, 47. [Google Scholar] [CrossRef]
- García-Morant, A.; Cortés-Castell, E.; Palazón-Bru, A.; Martínez-Amorós, N.; Gil-Guillén, V.F.; Rizo-Baeza, M. Macronutrients and Micronutrients in Spanish Adult Vegans (Mediterranean Population). Nutr. Hosp. 2020, 34, 549–558. [Google Scholar] [CrossRef]
- Meyer, B.J.; Mann, N.J.; Lewis, J.L.; Milligan, G.C.; Sinclair, A.J.; Howe, P.R.C. Dietary Intakes and Food Sources of Omega-6 and Omega-3 Polyunsaturated Fatty Acids. Lipids 2003, 38, 391–398. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L.; Lombardo, M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. Int. J. Environ. Res. Public Health 2023, 20, 1683. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Jesch, E.D.; Carr, T.P. Food Ingredients That Inhibit Cholesterol Absorption. Prev. Nutr. Food Sci. 2017, 22, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Zingg, J. Vitamin E: Regulatory Role on Signal Transduction. IUBMB Life 2019, 71, 456–478. [Google Scholar] [CrossRef]
- Gogga, P.; Śliwińska, A.; Aleksandrowicz-Wrona, E.; Małgorzewicz, S. Association between Different Types of Plant-Based Diets and Leptin Levels in Healthy Volunteers. Acta Biochim. Pol. 2019, 66, 77–82. [Google Scholar] [CrossRef]
- Sanders, T.A.B. DHA Status of Vegetarians. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 137–141. [Google Scholar] [CrossRef]
- Deriemaeker, P.; Alewaeters, K.; Hebbelinck, M.; Lefevre, J.; Philippaerts, R.; Clarys, P. Nutritional Status of Flemish Vegetarians Compared with Non-Vegetarians: A Matched Samples Study. Nutrients 2010, 2, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Galchenko, A.; Sidorova, E.; Barinov, A.; Titiov, N.; Skalny, A. The Contribution of Proteins, Fats, Carbohydrates, and Alcohol to the Total Energy Value of the Diet: A Cross-Sectional Study. Potravin. Slovak J. Food Sci. 2021, 15, 33–39. [Google Scholar] [CrossRef]
- Yu, A.Y.L.; Lopez-Olmedo, N.; Popkin, B.M. Analysis of Dietary Trends in Chinese Adolescents from 1991 to 2011. Asia Pac. J. Clin. Nutr. 2018, 27, 1106. [Google Scholar] [CrossRef]
- Levy-Costa, R.B.; Sichieri, R.; Pontes, N.D.S.; Monteiro, C.A. Disponibilidade Domiciliar de Alimentos No Brasil: Distribuição e Evolução (1974-2003). Rev. Saúde Pública 2005, 39, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Ströhle, A.; Waldmann, A.; Koschizke, J.; Leitzmann, C.; Hahn, A. Diet-Dependent Net Endogenous Acid Load of Vegan Diets in Relation to Food Groups and Bone Health-Related Nutrients: Results from the German Vegan Study. Ann. Nutr. Metab. 2011, 59, 117–126. [Google Scholar] [CrossRef]
- Bickelmann, F.V.; Leitzmann, M.F.; Keller, M.; Baurecht, H.; Jochem, C. Calcium Intake in Vegan and Vegetarian Diets: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 10659–10677. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Weaver, C.M. Calcium Absorption from Kale. Am. J. Clin. Nutr. 1990, 51, 656–657. [Google Scholar] [CrossRef]
- Heaney, R.P.; Recker, R.R.; Weaver, C.M. Absorbability of Calcium Sources: The Limited Role of Solubility. Calcif. Tissue Int. 1990, 46, 300–304. [Google Scholar]
- Weaver, C.M.; Proulx, W.R.; Heaney, R. Choices for Achieving Adequate Dietary Calcium with a Vegetarian Diet. Am. J. Clin. Nutr. 1999, 70, 543S–548S. [Google Scholar] [CrossRef]
- Ford, E.S.; Mokdad, A.H. Dietary Magnesium Intake in a National Sample of U.S. Adults. J. Nutr. 2003, 133, 2879–2882. [Google Scholar] [CrossRef]
- Workinger, J.; Doyle, R.; Bortz, J. Challenges in the Diagnosis of Magnesium Status. Nutrients 2018, 10, 1202. [Google Scholar] [CrossRef] [PubMed]
- Galchenko, A.V.; Nazarova, A.M. Macroelements in nutrition of vegetarians and vegans. Trace Elem. Med. 2019, 20, 3–17. (In Russian) [Google Scholar] [CrossRef]
- Śliwińska, A.; Luty, J.; Aleksandrowicz-Wrona, E.; Małgorzewicz, S. Iron Status and Dietary Iron Intake in Vegetarians. Adv. Clin. Exp. Med. 2018, 27, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- DeLoughery, T.G. Iron Deficiency Anemia. Med. Clin. N. Am. 2017, 101, 319–332. [Google Scholar] [CrossRef]
- Saunders, A.V.; Craig, W.J.; Baines, S.K.; Posen, J.S. Iron and Vegetarian Diets. Med. J. Aust. 2013, 199, S11–S16. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Nazarova, A.M. Essential trace and ultra trace elements in nutrition of vegetarians and vegans. Part 1. iron, zinc, copper, manganese. Trace Elem. Med. 2019, 20, 14–23. [Google Scholar] [CrossRef]
- Eveleigh, E.R.; Coneyworth, L.J.; Avery, A.; Welham, S.J.M. Vegans, Vegetarians, and Omnivores: How Does Dietary Choice Influence Iodine Intake? A Systematic Review. Nutrients 2020, 12, 1606. [Google Scholar] [CrossRef]
- Nicol, K.; Nugent, A.P.; Woodside, J.V.; Hart, K.H.; Bath, S.C. Iodine and Plant-Based Diets: A Narrative Review and Calculation of Iodine Content. Br. J. Nutr. 2024, 131, 265–275. [Google Scholar] [CrossRef]
- Pobilat, A.E.; Voloshin, E.I. Monitoring of iodine in the soil–plant system (review). Bull. KrasGAU 2020, 10, 101–108. (In Russian) [Google Scholar] [CrossRef]
- Gerasimov, G.; van der Haar, F.; Lazarus, J. Sustainable Universal Salt Iodization Strategies Resulted in Helthier Diets and Virtual Elimination of Iodine Deficiency in Countries of Eastern Europe and Central Asia. In Proceedings of the Sustainable Food Systems for Healthy Diets in Europe and Central Asia, Budapest, Hungary, 4–5 December 2017. [Google Scholar]
- Hokin, B.; Adams, M.; Ashton, J.; Louie, H. Comparison of the Dietary Cobalt Intake in Three Different Australian Diets. Asia Pac. J. Clin. Nutr. 2004, 13, 289–291. [Google Scholar] [PubMed]
- Galchenko, A.V.; Nazarova, A.M. Essential trace and ultra trace elements in nutrition of vegetarians and vegans. Part 2. iodine, selenium, chromium, molybdenum, cobalt. Trace Elem. Med. 2020, 21, 13–22. (In Russian) [Google Scholar] [CrossRef]
- Hunt, J.R.; Vanderpool, R.A. Apparent Copper Absorption from a Vegetarian Diet. Am. J. Clin. Nutr. 2001, 74, 803–807. [Google Scholar] [CrossRef]
- Paul, A.A.; Southgate, D.A.; Buss, D.H. McCance and Widdowson’s ‘The Composition of Foods’: Supplementary Information and Review of New Compositional Data. Hum. Nutr. Appl. Nutr. 1986, 40, 287–299. [Google Scholar]
- Galchenko, A.V. Selenium Status among Vegetarians and Vegans. In Proceedings of the Russian Scientific-Practical Conference with International Participation “Fundamentals of Technological Development of Agriculture”, Orenburg, Russia, 24–25 October 2019; pp. 212–214. (In Russian). [Google Scholar] [CrossRef]
- Golubkina, N.A.; Papazyan, T.T. Selenium in Nutrition. In Plants, Animals, Man; White City Publishing: Moscow, Russia, 2006; ISBN 5-98467-002-X. (In Russian) [Google Scholar]
- Golubkina, N.A.; Skalny, A.V.; Sokolov, Y.A.; Shchelkunov, L.F. Selenium in Medicine and Ecology; KMK Scientific Press: Moscow, Russia, 2002; ISBN 5-87317-122-X. (In Russian) [Google Scholar]
- Ermakov, V.V. Problems of extremal geochemical ecology and biogeochemical study of the biosphere. In Biogeochemistry and Geochemical Ecology; GUN NPC TMG MZ RF: Moscow, Russia, 2001; pp. 98–144. (In Russian) [Google Scholar]
- Guo, Q.; Ye, J.; Zeng, J.; Chen, L.; Korpelainen, H.; Li, C. Selenium Species Transforming along Soil–Plant Continuum and Their Beneficial Roles for Horticultural Crops. Hortic. Res. 2023, 10, uhac270. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Wang, M.; Tran, T.A.T.; Zhou, F.; Wang, D.; Zhai, H.; Peng, Q.; Xue, M.; Du, Z.; Bañuelos, G.S.; et al. Bioavailability of Selenium in Soil-Plant System and a Regulatory Approach. Crit. Rev. Environ. Sci. Technol. 2019, 49, 443–517. [Google Scholar] [CrossRef]
- Chuyan, O.G. A Database for Regulating the Physico-Chemical Properties of Acidic Soils in Adaptive Landscape Farming (for the Central Chernozem Region); All-Russian Research Institute of Farming and Soil Erosion Protection: Kursk, Russia, 2012. [Google Scholar]
- World Health Organization; Food and Agricultural Organization of the United Nations. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization and Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2004. [Google Scholar]
- Klein, L.; Dawczynski, C.; Schwarz, M.; Maares, M.; Kipp, K.; Haase, H.; Kipp, A.P. Selenium, Zinc, and Copper Status of Vegetarians and Vegans in Comparison to Omnivores in the Nutritional Evaluation (NuEva) Study. Nutrients 2023, 15, 3538. [Google Scholar] [CrossRef]
- Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Jacob, R.A.; Swendseid, M.E. Niacin. In Present Knowledge in Nutrition; ILSI Press: Washingtom, DC, USA, 1996. [Google Scholar]
- Oghbaei, M.; Prakash, J. Effect of Primary Processing of Cereals and Legumes on Its Nutritional Quality: A Comprehensive Review. Cogent Food Agric. 2016, 2, 1136015. [Google Scholar] [CrossRef]
- Lapik, I.A.; Ranjit, R.; Galchenko, A.V. Impact of KCNJ11 Rs5219, UCP2 Rs659366, and MTHFR Rs1801133 Polymorphisms on Type 2 Diabetes: A Cross-Sectional Study. Rev. Diabet. Stud. 2021, 17, 21–29. [Google Scholar] [CrossRef]
- Kong, S.; Zhang, G.; Yang, Z.; Kong, Z.; Ye, F. Effects of Folic Acid Supplementation on Chronic Atrophic Gastritis Based on MTHFR C677T Polymorphism. Medicine 2023, 102, e33980. [Google Scholar] [CrossRef]
- Huo, Y.; Li, J.; Qin, X.; Huang, Y.; Wang, X.; Gottesman, R.F.; Tang, G.; Wang, B.; Chen, D.; He, M.; et al. Efficacy of Folic Acid Therapy in Primary Prevention of Stroke Among Adults With Hypertension in China: The CSPPT Randomized Clinical Trial. JAMA 2015, 313, 1325. [Google Scholar] [CrossRef] [PubMed]
- Botto, L.D.; Yang, Q. 5, 10-Methylenetetrahydrofolate Reductase Gene Variants and Congenital Anomalies: A HuGE Review. Am. J. Epidemiol. 2000, 151, 862–877. [Google Scholar] [CrossRef] [PubMed]
- Galchenko, A.; Ranjit, R. Vitamin A and Its Status in Vegetarians and Vegans. Probl. Biol. Med. Pharm. Chem. 2021, 24, 40–48. [Google Scholar] [CrossRef]
- Holick, M.F. The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Vilms, E.A.; Dobrovolskaya, E.V.; Turchaninov, D.V.; Bykova, E.A.; Sokhoshko, I.A. Provision of vitamin D in the adult population of Western Siberia: A population-based study. Vopr. Pitan. 2019, 88, 75–82. (In Russian) [Google Scholar] [CrossRef]
- Russian Endocrinology Association. Clinical Recommendations: Vitamin D Deficiency. 2021. Available online: https://Rae-Org.Ru/System/Files/Documents/Pdf/D_2021.Pdf (accessed on 5 March 2025). (In Russian).
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Karonova, T.L.; Grinyova, E.N.; NikitiM, I.L.; Tsvetkova, E.V.; Todieva, A.M.; Belyaeva, O.D.; Mikheeva, E.P.; Globa, P.Y.; Andreeva, A.T.; Beletskaya, I.S.; et al. The prevalence of vitamin D deficiency in the Northwestern region of the Russian Federation among the residents of St. Petersburg and Petrozavodsk. Osteoporos. Bone Dis. 2013, 16, 3–7. (In Russian) [Google Scholar] [CrossRef]
- Galchenko, A.V. Self-administration of vitamin D by vegans to prevent its deficiency and decrease in bone mineral density: Does it bring any benefits. Vopr. Dietol. (Nutr.) 2022, 12, 12–17. (In Russian) [Google Scholar] [CrossRef]
- Mithal, A.; Wahl, D.A.; Bonjour, J.-P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj Fuleihan, G.; Josse, R.G.; Lips, P.; Morales-Torres, J.; et al. Global Vitamin D Status and Determinants of Hypovitaminosis D. Osteoporos. Int. 2009, 20, 1807–1820. [Google Scholar] [CrossRef]
- Galchenko, A.V. Influence of Lifestyle Factors on bone metabolism and the risk of osteoporosis. Profil. Meditsina 2022, 25, 96–107. (In Russian) [Google Scholar] [CrossRef]
- Rostand, S.G.; McClure, L.A.; Kent, S.T.; Judd, S.E.; Gutiérrez, O.M. Associations of Blood Pressure, Sunlight, and Vitamin D in Community-Dwelling Adults. J. Hypertens. 2016, 34, 1704–1710. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Environmental Factors That Influence the Cutaneous Production of Vitamin D. Am. J. Clin. Nutr. 1995, 61, 638S–645S. [Google Scholar] [CrossRef] [PubMed]
- Ranjit, R.; Galchenko, A.V. Environmental Impacts of Humanity’s Carelessness Part I: Extinction, Climate Change and Pollution. Trace Elem. Medicine. 2022, 23, 24–34. [Google Scholar] [CrossRef]
- Ranjit, R.; Galchenko, A.V. Environmental Impacts of Humanity’s Carelessness. Part II: Industrial Wastes and Aquatic Hazards. Trace Elem. Medicine. 2022, 23, 16–23. [Google Scholar] [CrossRef]
- Ranjit, R.; Galchenko, A.V. Environmental Impacts of Humanity’s Carelessness Part III: Landfill Wastes and Pesticides. Trace Elem. Medicine. 2024, 23, 3–10. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Ranjit, R. Vitamin D and Its Status in Vegetarians and Vegans. Probl. Biol. Med. Pharm. Chem. 2021, 24, 20–27. [Google Scholar] [CrossRef]
- Galchenko, A.V.; Ranjit, R. Vitamin E and Its Status in Vegetarians and Vegans. Probl. Biol. Med. Pharm. Chem. 2022, 25, 13–21. [Google Scholar] [CrossRef]
- Schaefer, E.J.; Augustin, J.L.; Schaefer, M.M.; Rasmussen, H.; Ordovas, J.M.; Dallal, G.E.; Dwyer, J.T. Lack of Efficacy of a Food-Frequency Questionnaire in Assessing Dietary Macronutrient Intakes in Subjects Consuming Diets of Known Composition. Am. J. Clin. Nutr. 2000, 71, 746–751. [Google Scholar] [CrossRef]
- Newby, P.K.; Tucker, K.L.; Wolk, A. Risk of Overweight and Obesity among Semivegetarian, Lactovegetarian, and Vegan Women. Am. J. Clin. Nutr. 2005, 81, 1267–1274. [Google Scholar] [CrossRef]
- Dyett, P.; Rajaram, S.; Haddad, E.H.; Sabate, J. Evaluation of a Validated Food Frequency Questionnaire for Self-Defined Vegans in the United States. Nutrients 2014, 6, 2523–2539. [Google Scholar] [CrossRef]
- Murdoch, B.K. Dietary Intakes and Food Sources of Dietary Fat among Vegetarian and Non-Vegetarian Female Adolescents in New Zealand. Master’s Thesis, University of Otago, Dunedin, New Zealand, 2020. [Google Scholar]
- Michels, K.B.; Bingham, S.A.; Luben, R.; Welch, A.A.; Day, N.E. The Effect of Correlated Measurement Error in Multivariate Models of Diet. Am. J. Epidemiol. 2004, 160, 59–67. [Google Scholar] [CrossRef]
- Kipnis, V.; Midthune, D.; Freedman, L.S.; Bingham, S.; Schatzkin, A.; Subar, A.; Carroll, R.J. Empirical Evidence of Correlated Biases in Dietary Assessment Instruments and Its Implications. Am. J. Epidemiol. 2001, 153, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Nutrition Assessment: Nutrition-Focused History and Physical Examination. Physician Assist. Clin. 2022, 7, 579–587. [CrossRef]
- Brown, D. Do Food Frequency Questionnaires Have Too Many Limitations? J. Am. Diet. Assoc. 2006, 106, 1541–1542. [Google Scholar] [CrossRef] [PubMed]
- Alewaeters, K.; Clarys, P.; Hebbelinck, M.; Deriemaeker, P.; Clarys, J.P. Cross-Sectional Analysis of BMI and Some Lifestyle Variables in Flemish Vegetarians Compared with Non-Vegetarians. Ergonomics 2005, 48, 1433–1444. [Google Scholar] [CrossRef]
- Heiss, S.; Coffino, J.A.; Hormes, J.M. Eating and Health Behaviors in Vegans Compared to Omnivores: Dispelling Common Myths. Appetite 2017, 118, 129–135. [Google Scholar] [CrossRef]
- Wu, Y.-Z.; Chan, Y.-T.; Hsieh, J.-G.; Chen, J.-C. Profiles of Physical Activity and Physical Performance in Matched Religious Vegetarian and Nonvegetarian Women: A Preliminary Observational Study in Taiwan. Nutrients 2022, 14, 2170. [Google Scholar] [CrossRef]
Intake/Day Significance | VN | LOV | FS | OMN | Reference Values/Units |
---|---|---|---|---|---|
Energy value cdF | 2190 (1729; 2676) | 1826 (1441; 2618) * | 2462 (1911; 3290) * | 1774 (1537; 1946) | kcal |
Protein bcde | 58 (46; 69) | 56 (43; 72) * | 76 (51; 93) | 70 (59; 74) | g |
Fat c | 64 (46; 96) | 82 (57; 103) * | 67 (54; 99) | 82 (67; 92) | g |
SFA ABCeF | 9.0 (6.3; 14.4) | 24.3 (15.7; 27.2) * | 17.1 (9.8; 27.3) | 29.1 (23.6; 32.0) | g |
MUFA ac | 17.2 (11.5; 23.2) | 12.9 (7.7; 20.0) | 12.2 (6.4; 23.8) | 12.5 (11.5; 15.2) | g |
PUFA ce | 19.7 (11.3; 33.9) | 27.3 (13.1; 31.7) * | 19.8 (11.0; 30.4) | 16.5 (12.6; 25.1) | g |
n-3 BCDE | 0.6 (0.4; 0.9) | 0.6 (0.5; 0.8) | 1.3 (0.9; 2.2) | 1.1 (0.9; 1.5) | 1–3 g [67] |
n-6 Cf | 10.4 (6.2; 17.6) | 8.9 (4.8; 13.7) | 8.9 (4.8; 16.6) | 6.5 (5.7; 7.7) | 10 g [67] |
n-6/n-3 ratio BCDE | 18.0 (10.0; 27.2) | 12.8 (7.8; 17.3) | 6.4 (4.2; 9.6) | 6.0 (4.8; 7.4) | 5–10 [66] |
Cholesterol ABCdEF | 4 (2; 8) | 188 (60; 258) | 70 (23; 132) | 404 (363; 505) | <300 mg [66] |
Carbohydrate ACDEF | 341 (272; 501) | 245 (183; 348) | 406 (314; 518) * | 183 (114; 234) | g |
MDS ACdEF | 156 (126; 249) | 125 (89; 145) | 157 (105; 208) | 65 (51; 97) | <75 g [67] |
Fibre ABCdEF | 60 (42; 74) | 31 (25; 43) | 41 (33; 54) | 17 (15; 20) | RF—20 g [66] USA—25 g (f)/38 g [68] |
K ABCEF | 7069 (5384; 8640) | 3732 (3164; 4755) | 3861 (3169; 5253) | 2635 (2310; 3243) | 3500 mg [66] |
Ca de | 776 (587; 1053) | 863 (694; 1133) | 621 (509; 867) | 736 (639; 842) | 1000 (1200 –older 60) mg [66] |
Mg AbCdEF | 673 (467; 927) | 401 (302; 557) | 477 (378; 603) | 288 (263; 328) | 420 mg [66] |
P f | 1125 (851; 1444) | 1086 (908; 1436) * | 1234 (987; 1585) | 1097 (960; 1234) | 700 mg [66] |
Fe ABCdEF | 33 (24; 44) | 20 (17; 27) | 24 (18; 31) | 16 (13; 17) | 18 mg (f) 10 mg (m) [66] |
I adE | 71 (41; 102) | 53 (34; 63) * | 82 (36; 169) | 72 (65; 87) | 150 µg [66] |
Co ABCef | 30.1 (23.4; 41.6) | 18.4 (11.5; 25.3) | 18.7 (9.3; 26.4) | 12.3 (10.8; 16.9) | 10 µg [66] |
Mn c | 6.4 (4.5; 8.7) | 5.4 (3.3; 8.5) | 5.0 (3.9; 7.3) | 4.5 (3.6; 6.8) | 2 mg [66] |
Cu ACdEF | 2.4 (1.9; 3.0) | 1.6 (1.2; 2.4) | 2.0 (1.5; 2.8) | 1.1 (0.9; 1.3) | 1 mg [66] |
Mo ABCDE | 39 (28; 63) | 26 (18; 38) | 14 (7; 25) | 18 (13; 22) | 70 µg [66] |
Se ABCDE | 25 (12; 38) | 44 (28; 62) | 64 (53; 109) | 78 (65; 90) | 55 (f)/70 (m) µg [66] |
Cr ABCDE | 31.7 (21.3; 45.1) | 20.6 (14.6; 27.4) | 10.8 (5.8; 17.7) | 13.6 (10.3; 15.7) * | 40 µg [66] |
Zn aDE | 7.5 (5.5; 9.0) | 5.8 (4.2; 8.0) | 8.3 (5.8; 11.9) | 7.6 (6.7; 8.4) | 12 mg [66] |
B1 ACDEF | 2.2 (1.8; 2.7) | 1.4 (1.1; 2.0) | 2.2 (1.7; 2.8) | 1.1 (0.9; 1.2) | 1.5 mg [66] |
B2 c | 1.7 (1.2; 2.3) | 1.6 (1.1; 1.9) * | 1.6 (1.3; 2) | 1.4 (1.2; 1.6) | 1.8 mg [66] |
PP (B3, niacin) ACDeF | 17.9 (14.8; 24.5) | 12.4 (10.0; 17.9) | 19.9 (16.5; 25) | 14.5 (13.0; 16.8) | 20 mg [66] |
B5 AbCdF | 7.6 (5.2; 8.9) | 3.8 (3.4; 5.3) | 4.7 (3.7; 7.2) | 3.8 (3.1; 4.3) | 5 mg [66] |
B6 ABCeF | 3.4 (2.2; 4.3) | 1.7 (1.2; 2.2) | 1.8 (1.4; 2.3) | 1.4 (1.2; 1.6) | 2 mg [66] |
H (B7, biotin) AbCEF | 15.7 (10.2; 25.3) | 6.9 (5.1; 11.3) | 9.9 (5.4; 18.2) | 3.5 (2.9; 4.2) | 50 µg [66] |
B9 (folate) ACdEF | 509 (363; 596) | 332 (256; 499) | 418 (316; 557) | 252 (196; 285) | 400 µg [66] |
B12 ABCEF | 0.0 (0.0; 0.01) | 0.3 (0.1; 0.6) | 0.3 (0.0; 1.3) | 2.3 (1.9; 3.4) | 3 µg [66] |
C ABCEf | 430 (326; 572) | 205 (142; 279) | 157 (109; 249) | 127 (82; 153) | 100 mg [66] |
A (RE) aBCdf | 1141 (766; 1571) | 767 (587; 917) | 479 (307; 833) | 722 (558; 871) | 800 (f)/900 (m) µg RE [66] |
D ABCDEF | 0.0 (0.0; 0.0) | 0.3 (0.1; 0.7) | 0.0 (0.0; 0.2) | 0.9 (0.5; 1.1) | 15 (20—older 65) µg [66] |
E (TE) bCEF | 28 (19; 36) | 23 (14; 34) * | 22 (14; 30) | 12 (9; 17) | 15 mg [66] |
Intake/day Significance | VN | LOV | FS | OMN | Reference Values/Units |
---|---|---|---|---|---|
MDS (excess) CEF | 97 (44) | 84 (41) | 88 (37) | 16 (33) | <75 g [67] |
Cholesterol (excess) aCEF | 0 (0) | 16 (8) | 12 (5) | 81 (39) | <300 mg [66] |
n-3 BCDE | 85 (39) | 86 (42) | 42 (18) | 40 (19) | 1–3 g [67] |
n-6 Cef | 46 (21) | 65 (32) | 58 (24) | 88 (42) | 10 g [67] |
n-6:n-3 ratio (<5) bDe | 11 (5) | 4 (2) | 33 (14) | 25 (12) | 5–10 [66] |
n-6:n-3 ratio (>10) BCDE | 76 (35) | 67 (33) | 21 (9) | 6 (3) | |
Fibre aCEF | 2 (1) | 16 (8) | 5 (2) | 69 (33) | 20 g [66] |
Fibre(USA) ACEF | 9 (4) | 39 (19) | 23 (10) | 94 (45) | 25 g (f)/38 g (m) [68] |
K ABCEF | 9 (4) | 37 (18) | 40 (17) | 81 (39) | 3500 mg [66] |
Ca e | 72 (33) | 69 (34) | 77 (32) | 90 (43) | 1000 (1200—older 60) mg [66] |
Mg ACdEF | 13 (6) | 63 (31) | 33 (14) | 92 (44) | 420 mg [66] |
P | 11 (5) | 16 (8) | 7 (3) | 8 (4) | 700 mg [66] |
Fe aCEF | 7 (3) | 27 (13) | 14 (6) | 56 (27) | 18 mg (f) 10 mg (m) [66] |
I bDf | 94 (43) | 100 (49) | 72 (30) | 92 (44) | 150 µg [66] |
Co bc | 4 (2) | 16 (8) | 26 (11) | 23 (11) | 10 µg [66] |
Mn | 0 (0) | 6 (3) | 0 (0) | 6 (3) | 2 mg [66] |
Cu CF | 4 (2) | 16 (8) | 5 (2) | 33 (16) | 1 mg [66] |
Mo abC | 78 (36) | 96 (47) | 98 (41) | 100 (48) | 70 µg [66] |
Se aBCDe | 94 (43) | 74 (36) | 30 (13) | 15 (7) | 55 (f)/70 (m) µg [66] |
Cr bCE | 72 (33) | 84 (41) | 95 (40) | 100 (48) | 40 µg [66] |
Zn | 89 (41) | 94 (46) | 74 (31) | 85 (41) | 12 mg [66] |
B1 ACDEF | 13 (6) | 59 (29) | 12 (5) | 88 (42) | 1.5 mg [66] |
B2 cf | 57 (26) | 69 (34) | 58 (24) | 79 (38) | 1.8 mg [66] |
PP (B3, niacin) acDF | 61 (28) | 82 (40) | 49 (21) | 85 (41) | 20 mg [66] |
B5 ABCdF | 15 (7) | 74 (36) | 54 (23) | 90 (43) | 5 mg [66] |
B6 ABCeF | 17 (8) | 67 (33) | 54 (23) | 88 (42) | 2 mg [66] |
H (B7, folate) | 91 (42) | 100 (49) | 95 (40) | 100 (48) | 50 µg [66] |
B9 (folate) ACdEF | 28 (13) | 63 (31) | 42 (18) | 92 (44) | 400 µg [66] |
B12 bCdE | 100 (46) | 100 (49) | 84 (35) | 69 (33) | 3 µg [66] |
C abC | 0 (0) | 14 (7) | 19 (8) | 27 (13) | 100 mg [66] |
A (RE) ABC | 26 (12) | 65 (32) | 72 (30) | 65 (31) | 800 (f)/900 (m) µg RE [66] |
D | 100 (46) | 100 (49) | 100 (42) | 100 (48) | 15 (20—older 65) µg [66] |
TE abCEF | 13 (6) | 31 (15) | 30 (13) | 69 (33) | 15 mg [66] |
TOTAL | MALE | FEMALE | Reference Values/Units | ||||
---|---|---|---|---|---|---|---|
Intake/Day | Plant-Based Diets | Omnivorous Diet | Plant-Based Diets | Omnivorous Diet | Plant-Based Diets | Omnivorous Diet | |
n | 137 | 48 | 43 | 16 | 94 | 32 | |
Age | 34 (30; 37) | 34 (29; 41) | 33 (31; 39) | 33 (29; 37) | 35 (29; 49) | 35.0 (30.0; 43) | Years |
BMI | 21.3 (20.1; 23.4) | 23.7 (22.1; 25.2) ** | 22.6 (21.0; 24.5) | 23.3 (23.0; 24.7) | 21.1 (19.6; 23.2) | 23.4 (21.2; 25.5) * | kg/m2 |
Energy value | 2152 (1719; 2849) | 1773 (1537; 1946) * | 2120 (1716; 2822) | 1828 (1768; 2275) | 2182 (1720; 2871) | 1742 (1370; 1888) * | kcal |
Protein | 57 (48; 79) | 69 (59; 74) * | 56 (47; 76) | 69 (66; 82) * | 59 (49; 81) | 68 (54; 74) | g |
Fat | 71 (52; 97) | 81 (66; 92) | 68 (49; 99) | 82 (79; 101) | 74 (53; 97) | 81 (62; 91) | g |
SFA | 15.4 (8.9; 26.1) | 29.2 (23.4; 32.6) ** | 12.8 (8.2; 26.3) | 29.2 (25.8; 33.4) ** | 17.4 (9.0; 26.7) | 29.1 (22.9; 32.4) ** | g |
MUFA | 13.5 (8.2; 22.6) | 12.5 (11.5; 15.1) | 14.3 (9.4; 20.4) | 13.2 (11.9; 18.4) | 13.1 (8.0; 23.2) | 12.1 (10.8; 13.2) | g |
PUFA | 21.3 (12.8; 30.7) | 16.5 (12.3; 25.1) * | 19.3 (11.4; 30.8) | 16.8 (15.8; 25.2) | 23.5 (13.1; 30.3) | 16.4 (10.6; 23.8) * | g |
n-3 | 0.7 (0.5; 1.2) | 1.1 (0.9; 1.5) ** | 0.6 (0.4; 1.5) | 1.1 (1.0; 2.1) * | 0.7 (0.5; 1.2) | 1.1 (0.8; 1.3) * | 1–3 g [67] |
n-6 | 9.0 (5.4; 16.1) | 6.5 (5.8; 7.7) * | 10.4 (6.1; 14.9) | 6.7 (6.3; 9.5) | 8.9 (5.1; 16.3) | 6.4 (5.5; 7.1) * | 10 g [67] |
n-6:n-3 ratio | 11.9 (6.6; 18.9) | 6.0 (4.8; 7.4) ** | 14.1 (6.5; 21.7) | 6.2 (4.5; 7.8) ** | 10.9 (6.7; 17.2) | 6.0 (4.8; 7.3) ** | 5–10 [66] |
Cholesterol | 46 (5; 178) | 403 (363; 504) ** | 23 (3; 125) | 408 (322; 565) ** | 60 (8; 187) | 401 (363; 495) ** | <300 mg [66] |
Carbohydrate | 328 (241; 450) | 182 (114; 233) ** | 328 (244; 501) | 191 (181; 246) * | 329 (243; 442) | 174 (106; 204) ** | g |
MDS | 145 (103; 192) | 65 (50; 97) ** | 150 (84; 236) | 66 (62; 109) * | 139 (105; 184) | 63 (41; 95) ** | <75 g [67] |
Fibre | 41 (30; 61) | 18 (15; 20) ** | 43 (30; 63) 1 | 18 (16; 21) ** 2 | 41 (30; 60) | 17 (13; 19) ** | RF—20 g [66] USA—25 g (f)/38 g (m) [68] |
K | 4774 (3371; 6991) | 2634 (2310; 3243) ** | 4992 (3324; 7297) | 2691 (2424; 3429) ** | 4669 (3467; 6372) | 2622 (2270; 3215) ** | 3500 mg [66] |
Ca | 773 (574; 1058) | 736 (638; 842) | 723 (556; 969) | 740 (701; 859) | 789 (581; 1086) | 736 (559; 816) | 1000 (1200 –older 60) mg [66] |
Mg | 479 (390; 683) | 287 (263; 327) ** | 515 (385; 752) | 289 (271; 348) ** | 477 (393; 668) | 287 (230; 304) ** | 420 mg [66] |
P | 1128 (915; 1504) | 1097 (959; 1234) | 1086 (877; 1344) | 1151 (1026; 1282) | 1156 (950; 1544) | 1035 (935; 1220) | 700 mg [66] |
Fe | 24.5 (18.3; 32.1) | 14.6 (13.9; 16.6) ** | 25.9 (18.4; 39.0) | 14.8 (14.3; 18.8) ** | 23.1 (19.5; 32.3) | 14.5 (12.1; 15.3) ** | 18 mg (f) 10 mg (m) [66] |
I | 61 (39; 93) | 72 (65; 87) * | 50 (27; 83) | 72 (66; 103) * | 66 (44; 99) | 72 (62; 87) | 150 µg [66] |
Co | 23.4 (14.7; 33.1) | 12.7 (10.8; 16.9) ** | 21.2 (12.5; 31.7) | 12.1 (11.0; 16.1) * | 23.2 (14.6; 36.1) | 12.5 (9.9; 17.6) ** | 10 µg [66] |
Mn | 5.6 (3.9; 7.9) | 4.5 (3.6; 6.1) * | 5.4 (3.7; 7.1) 3 | 4.9 (4.5; 7.1) 4 | 5.7 (4.0; 8.1) | 4.1 (3.3; 5.1) * | 2 mg [66] |
Cu | 2.0 (1.4; 2.5) | 1.1 (0.9; 1.3) ** | 1.9 (1.4; 2.4) 5 | 1.1 (1.0; 1.3) ** 6 | 2.0 (1.4; 2.6) | 1.0 (0.9; 1.3) ** | 1 mg [66] |
Mo | 26 (15; 41) | 19 (13; 21) ** | 26 (15; 38) | 20 (17; 21) * | 26 (15; 42) | 19 (12; 22) * | 70 µg [66] |
Se | 44 (25; 64) | 78 (65; 90) ** | 37 (23; 63) | 82 (78; 111) ** | 48 (25; 67) | 76 (60; 88) ** | 55 (f)/70 (m) µg [66] |
Cr | 20.6 (2.1; 31.1) | 13.6 (10.4; 15.7) ** | 20.6 (14.1; 31.8) | 13.7 (12.7; 15.9) * | 20.7 (11.4; 32.0) | 13.5 (9.0; 15.2) * | 40 µg [66] |
Zn | 6.9 (5.3; 9.4) | 7.6 (6.7; 8.4) | 6.7 (5.0; 8.3) | 7.6 (7.1; 9.4) | 7.4 (5.4; 9.5) | 7.6 (6.4; 8.4) | 12 mg [66] |
B1 | 1.9 (1.4; 2.5) | 1.0 (0.9; 1.2) ** | 2.0 (1.5; 2.5) | 1.1 (1.0; 1.4) ** | 1.9 (1.4; 2.5) | 0.9 (0.9; 1.1) ** | 1.5 mg [66] |
B2 | 1.6 (1.2; 2.1) | 1.4 (1.3; 1.6) * | 1.6 (1.2; 2.2) | 1.5 (1.4; 1.8) | 1.7 (1.3; 2.0) | 1.4 (1.2; 1.6) * | 1.8 mg [66] |
PP (B3, niacin) | 17.1 (12.4; 22.7) | 14.5 (13.0; 16.8) * | 17.4 (12.5; 23.2) | 15.6 (14.2; 20.0) | 17.1 (12.4; 22.8) | 14.3 (11.3; 15.1) * | 20 mg [66] |
B5 | 5.1 (3.7; 7.2) | 3.8 (3.1; 4.3) ** | 5.1 (3.9; 7.1) | 4.0 (3.2; 4.7) * | 5.0 (3.6; 7.3) | 3.7 (3.0; 4.2) ** | 5 mg [66] |
B6 | 2.0 (1.5; 3.4) | 1.4 (1.2; 1.6) ** | 2.2 (1.5; 3.6) | 1.4 (1.3; 1.9) * | 2.0 (1.5; 2.8) | 1.4 (1.1; 1.6) ** | 2 mg [66] |
H (B7, biotin) | 10.2 (5.7; 18.5) | 3.5 (2.9; 4.2) ** | 10.2 (5.6; 16.0) | 3.2 (2.6; 4.4) ** | 10.3 (5.7; 19.6) | 3.5 (3.1; 4.2) ** | 50 µg [66] |
B9 (folate) | 422 (308; 539) | 252 (196; 285) ** | 435 (295; 573) | 260 (244; 349) * | 422 (313; 530) | 241 (169; 266) ** | 400 µg [66] |
B12 | 0.03 (0.0; 0.5) | 2.3 (1.9; 3.4) ** | 0.01(0.0; 0.2) | 2.3 (2.0; 3.4) ** | 0.1 (0.0; 0.6) | 2.5 (1.8; 3.5) ** | 3 µg [66] |
C | 223 (147; 423) | 127 (82; 153) ** | 270 (150; 453) | 126 (118; 148) ** | 212 (145; 418) | 128 (77; 161) ** | 100 mg [66] |
A (RE) | 770 (476; 1159) | 722 (558; 871) | 808 (467; 1200) | 725 (517; 921) | 767 (481; 1149) | 722 (581; 871) | 800 (f)/900 (m) µg RE [66] |
D | 0.0 (0.0; 0.3) | 0.9 (0.6; 1.1) ** | 0.0 (0.0; 0.2) | 0.9 (0.6; 1.4) ** | 0.03 (0.0; 0.3) | 0.9 (0.6; 1.1) ** | 15 (20—older 65) µg [66] |
TE | 24.4 (14.8; 32.4) | 12.1 (9.3; 17.3) ** | 27.3 (14.2; 34.9) 7 | 12.9 (10.2; 17.3) ** 8 | 23.1 (15.9; 32.4) | 11.8 (8.9; 17.4) ** | 15 mg TE [66] |
Intake/Day Significance | VN | LOV | FS | OMN | Reference Values/Units |
---|---|---|---|---|---|
Protein CEF | 51 (39; 60) | 55 (48; 60) | 53 (47; 62) | 76 (68; 81) | g |
Fat ACDeF | 57 (44; 70) | 86 (65; 90) | 55 (46; 66) | 89 (78; 95) | g |
SFA ABCDEF | 8.3 (6.7; 10.5) | 23.4 (16.2; 28.4) | 12.1 (9.77; 18.3) | 31.0 (28.5; 35.2) | g |
MUFA bf | 14.7 (10.2; 20.3) | 13.8 (9.1; 18.1) | 10.4 (6.7; 16.6) | 14.2 (12.6; 16.3) | g |
PUFA aDe | 17.6 (13.3; 25.4) | 25.5 (17.8; 29.1) | 14.7 (9.8; 21.1) | 18.0 (14.9; 21.8) | g |
n-3 BCDE | 0.5 (0.4; 0.9) | 0.7 (0.5; 0.9) | 1.1 (0.6; 1.8) | 1.2 (1.1; 1.5) | 1–3 g [67] |
n-6 ce | 9.1 (6.8; 12.5) | 9.4 (5.3; 12.0) | 7.4 (5.3; 12.7) | 7.1 (6.6; 7.9) | 10 g [67] |
Cholesterol ABCDEF | 3 (1; 8) | 189 (77; 270) | 50 (25; 88) | 448 (410; 538) | <300 mg [66] |
Carbohydrate ACDeF | 315 (295; 358) | 261 (241; 298) | 316 (301; 351) | 200 (175; 218) | g |
MDS ABCEF | 151 (129; 228) | 128 (97; 142) | 121 (90; 138) | 72 (64; 93) | <75 g [67] |
Fibre ABCEF | 53 (46; 62) | 32 (27; 39) | 32 (27; 37) | 19 (17; 21) | RF—20 g [66] USA—25 g (f)/38 g (m) [68] |
K ABCdE | 6149 (5364; 7416) | 3965 (3140; 4708) | 3060 (2507; 4214) | 2849 (2545; 3182) | 3500 mg [66] |
Ca aBDeF | 749 (615; 856) | 905 (742; 1006) | 548 (443; 615) | 783 (672; 863) | 1000 (1200 –older 60) mg [66] |
Mg ABCEF | 600 (540; 695) | 427 (367; 516) | 383 (331; 469) | 307 (283; 345) | 420 mg [66] |
P aCdF | 999 (866; 1194) | 1140 (974; 1214) | 992 (331; 469) | 1177 (1058; 1352) | 700 mg [66] |
Fe ABCEf | 28 (23; 33) | 21 (17; 24) | 18.4 (15.4; 22.6) | 16.1 (14.1; 18.3) | 18 mg (f) 10 mg (m) [66] |
I aCEf | 64 (48; 75) | 55 (39; 63) | 59 (33; 104) | 87 (74; 111) | 150 µg [66] |
Co aBCde | 26.7 (19.4; 34.1) | 19.4 (10.3; 26.7) | 11.4 (7.2; 21.7) | 13.0 (10.2; 15.9) | 10 µg [66] |
Mn BcDf | 5.7 (5.1; 7.0) | 5.4 (4.3; 6.2) | 4.1 (3.3; 5.6) | 5.0 (4.5; 5.3) | 2 mg [66] |
Cu ABCEf | 2.2 (1.9; 2.6) | 1.6 (1.2; 2.0) | 1.4 (1.1; 2.0) | 1.1 (1.0; 1.3) | 1 mg [66] |
Mo aBCDEf | 34.7 (25.2; 64.5) | 28.1 (18.7; 38.4) | 11.1 (5.7; 20.1) | 19.1 (13.3; 22.4) | 70 µg [66] |
Se ABCdEF | 23 (12; 34) | 43 (35; 51) | 63 (42; 77) | 87 (73; 96) | 55 (f)/70 (m) µg [66] |
Cr aBCDEf | 28.4 (19.2; 44.8) | 22.5 (15.1; 29.9) | 9.4 (4.4; 13.3) | 13.9 (10.0; 15.7) | 40 µg [66] |
Zn acEf 6 | 6.7 (5.9; 8.7) | 6.0 (5.1; 7.0) | 6.5 (4.7; 8.4) | 8.5 (7.4; 9.8) | 12 mg [66] |
B1 AbCdEF | 2.0 (1.7; 2.4) | 1.5 (1.2; 1.9) | 1.8 (1.4; 2.1) | 1.1 (1.0; 1.2) | 1.5 mg [66] |
B2 BDF | 1.5 (1.3; 1.8) | 1.6 (1.4; 1.8) | 1.3 (1.1; 1.5) | 1.5 (1.4; 1.6) | 1.8 mg [66] |
PP (B3, niacin) Ade | 16.3 (14.7; 19.7) | 14.3 (11.9; 16.3) | 16.1 (13.5; 18.8) | 16.0 (14.3; 17.7) | 20 mg [66] |
B5 ABC | 6.3 (5.2; 7.3) | 4.0 (3.6; 5.1) | 4.2 (3.1; 5.2) | 4.1 (3.4; 4.8) | 5 mg [66] |
B6 ABCd | 3.0 (2.3; 3.8) | 1.7 (1.2; 2.1) | 1.5 (1.1; 2.0) | 1.5 (1.2; 1.7) | 2 mg [66] |
H (B7, biotin) ABCEF | 14.1 (9.6; 21.3) | 7.5 (4.3; 14.6) | 7.5 (4.3; 12.6) | 3.7 (2.8; 5.1) | 50 µg [66] |
B9 (folate) abCEf | 444 (365; 548) | 356 (315; 434) | 361 (258; 445) | 274 (236; 301) | 400 µg [66] |
B12 ABCEF | 0.0 (0.0; 0.01) | 0.3 (0.1; 0.5) | 0.1 (0.0; 1.3) | 2.6 (2.1; 3.8) | 3 µg [66] |
C ABCdE | 377 (330; 476) | 219 (145; 285) | 123 (86; 182) | 136 (98; 155) | 100 mg [66] |
A (RE) BcDF | 975 (767; 1301) | 817 (545; 1167) | 367 (222; 654) | 816 (637; 1029) | 800 (f)/900 (m) µg RE [66] |
D ABCDEF | 0.0 (0.0; 0.0) | 0.3 (0.1; 0.7) | 0.0 (0.0; 0.2) | 1.0 (0.7; 1.3) | 15 (20—older 65) µg [66] |
TE * BCDEF | 24.6 (20.3; 29.8) | 24.1 (19.6; 27.8) | 15.4 (13.1; 22.4) | 13.4 (10.9; 16.6) | 15 mg TE [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galchenko, A.V.; Rizzo, G.; Baroni, L. Nutrient Intakes in Vegans, Lacto-Ovo-Vegetarians, Orthodox Fasters, and Omnivores in Russia: A Cross-Sectional Study. Foods 2025, 14, 1062. https://doi.org/10.3390/foods14061062
Galchenko AV, Rizzo G, Baroni L. Nutrient Intakes in Vegans, Lacto-Ovo-Vegetarians, Orthodox Fasters, and Omnivores in Russia: A Cross-Sectional Study. Foods. 2025; 14(6):1062. https://doi.org/10.3390/foods14061062
Chicago/Turabian StyleGalchenko, Alexey Vladimirovich, Gianluca Rizzo, and Luciana Baroni. 2025. "Nutrient Intakes in Vegans, Lacto-Ovo-Vegetarians, Orthodox Fasters, and Omnivores in Russia: A Cross-Sectional Study" Foods 14, no. 6: 1062. https://doi.org/10.3390/foods14061062
APA StyleGalchenko, A. V., Rizzo, G., & Baroni, L. (2025). Nutrient Intakes in Vegans, Lacto-Ovo-Vegetarians, Orthodox Fasters, and Omnivores in Russia: A Cross-Sectional Study. Foods, 14(6), 1062. https://doi.org/10.3390/foods14061062