Effect of Temperature and Water Addition Ratio on the Aroma Release of Yeast Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Chemicals
2.3. Sensory Evaluation Analysis
2.4. Electronic Nose Analysis
2.5. Aroma Extraction via HS-SPME
2.6. GC–MS
2.7. Qualitative and Quantitative Methods
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation
3.2. Sensor Array Response to YP Samples
3.3. Changes in Volatile Compounds of YPs at Different Temperatures
3.4. Effects of the Water Addition Ratio on Volatile Compound Level of YPs at the Same Temperature
3.5. Changes in Volatile Compounds of Aqueous YPs at Different Temperatures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forti, L.; Di Mauro, S.; Cramarossa, M.R.; Filippucci, S.; Turchetti, B.; Buzzini, P. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of aromas and Fragrances. Molecules 2015, 20, 10377–10398. [Google Scholar] [CrossRef] [PubMed]
- Saison, D.; De Schutter, D.P.; Delvaux, F.; Delvaux, F.R. Improved aroma Stability by Aging Beer in the Presence of Yeast. J. Am. Soc. Brew. Chem. 2011, 69, 50–56. [Google Scholar] [CrossRef]
- Zeng, Z.J.; Deng, J.; Ren, Z.Q.; Zhang, L.L.; Che, L.P.; Wei, C.H.; Li, Z.B. Effect of different yeast fermentations on ginger pear wine quality. Food Ferment. Ind. 2020, 46, 229–236. [Google Scholar] [CrossRef]
- Li, K.; Zhou, X.W.; Wu, H.M.; Qiao, K.N.; Zhang, Y.Y. Nutritional Composition and Structural Analysis of Yeast Proteins Obtained by Fermentation with Different Strains. Food Sci. Technol. 2024, 49, 26–34. [Google Scholar] [CrossRef]
- Sun, H.L.; Sun, Y.F.; Tang, X.; Cui, Y.M.; Meng, D.M.; Zhang, Y.Y.; Li, K.; Guo, H.; Chen, H.; Yang, R. The interaction mechanism and the functionality of yeast protein with hydrophilic and hydrophobic bioactive molecules. Food Biosci. 2023, 52, 102448. [Google Scholar] [CrossRef]
- Wang, K.; Arntfield, S.D. Binding of selected volatile flavour mixture to salt-extracted canola and pea proteins and effect of heat treatment on flavour binding. Food Hydrocoll. 2015, 43, 410–417. [Google Scholar] [CrossRef]
- Demirgul, F.; Simsek, O.; Bozkurt, F.; Dertli, E.; Sagdic, O. Production and characterization of yeast extracts produced by Saccharomyces cerevisiae, Saccharomyces boulardii and Kluyveromyces marxianus. Prep. Biochem. Biotechnol. 2022, 52, 657–667. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, Q.; Zhuang, J.; Feng, T.; Ho, C.T.; Song, S. Characterization of aroma-active compounds in four yeast extracts using instrumental and sensory techniques. J. Agric. Food Chem. 2019, 68, 267–278. [Google Scholar] [CrossRef]
- Chen, J.; Pu, D.; Shi, Y.; Sun, B.; Guo, H.; Li, K.; Zhang, Y. Characterization of the Key Aroma Compounds in Different Yeast Proteins by GC-MS/O, Sensory Evaluation, and E-Nose. Foods 2023, 12, 3136. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Y.; Ye, X.; Fang, Z.; Chen, J.; Wu, D.; Liu, D.; Hu, Y. Effect of cooking temperatures on protein hydrolysates and sensory quality in crucian carp (Carassius auratus) soup. J. Food Sci. Technol. 2013, 50, 542–548. [Google Scholar] [CrossRef]
- Qiu, D.; Duan, R.; Wang, Y.; He, Y.; Li, C.; Shen, X.; Li, Y. Effects of different drying temperatures on the profile and sources of aroma in semi-dried golden pompano (Trachinotus ovatus). Food Chem. 2023, 401, 134112. [Google Scholar] [CrossRef]
- He, Y.; Zhou, C.; Li, C.; Zhou, G. Effect of incubation temperature on the binding capacity of aroma compounds to myosin. Food Chem. 2021, 346, 128976. [Google Scholar] [CrossRef]
- Siefarth, C.; Tyapkova, O.; Beauchamp, J.; Schweiggert, U.; Buettner, A.; Bader, S. Influence of polyols and bulking agents on flavour release from low-viscosity solutions. Food Chem. 2011, 129, 1462–1468. [Google Scholar] [CrossRef]
- Pu, D.; Shan, Y.; Zhang, L.; Sun, B.; Zhang, Y. Identification and Inhibition of the Key Off-Odorants in Duck Broth by Means of the Sensomics Approach and Binary Odor Mixture. J. Agric. Food Chem. 2022, 70, 13367–13378. [Google Scholar] [CrossRef] [PubMed]
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2023.
- Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef]
- Yang, C.J.; Ding, W.; Ma, L.J.; Jia, R. Discrimination and characterization of different intensities of goaty aroma in goat milk by means of an electronic nose. J. Dairy Sci. 2015, 98, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Huang, X.; Wang, L.; Chang, X.; Ren, Y.; Zhang, X.; Wang, Y. Qualitative and quantitative assessment of aroma quality of Chinese soybean paste using multiple sensor technologies combined with chemometrics and a data fusion strategy. Food Chem. 2023, 405, 134859. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Teng, C.; Xu, D.; Fu, Z.; Minhazul, K.A.H.M.; Wu, Q.; Liu, P.; Yang, R.; Li, X. Enhanced production of ethyl acetate using co-culture of Wickerhamomyces anomalus and Saccharomyces cerevisiae. J. Biosci. Bioeng. 2019, 128, 564–570. [Google Scholar] [CrossRef]
- Jensen, S.; Jansson, T.; Eggers, N.; Clausen, M.R.; Larsen, L.B.; Jensen, H.B.; Ray, C.; Sundgren, A.; Andersen, H.J.; Bertram, H.C. Storage-induced changes in the sensory characteristics and volatiles of conventional and lactose-hydrolyzed UHT processed milk. Eur. Food Res. Technol. 2015, 240, 1247–1257. [Google Scholar] [CrossRef]
- Liu, R.; Chen, H.; Wang, S.; Wei, L.; Yu, Y.; Lan, W.; Yang, J.; Guo, L.; Fu, H. Maillard reaction products and guaiacol as production process and raw material markers for the authentication of sesame oil. J. Sci. Food Agric. 2022, 102, 250–258. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Wang, Y.; Wei, H.; Li, L.; Ni, H. Effects of heat treatment and endogenous enzymes on aroma formation during the processing of dried sea bass. Food Sci. China 2022, 43, 220–226. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, R.; Zhao, H.; Yin, Y.; Li, X.; Yi, S.; Li, J. Effect of heat treatment duration on the interaction between fish myosin and selected aroma compounds. J. Sci. Food Agric. 2020, 100, 4457–4463. [Google Scholar] [CrossRef]
- Estelle, F.; Philippe, C.; Remy, C.; Nathalie, C. Effects of ionizing radiation on organic volatile compounds from PEA protein isolate. Heliyon 2023, 9, 22658. [Google Scholar] [CrossRef]
- Smit, B.A.; Engels, W.J.M.; Smit, G. Branched chain aldehydes: Production and breakdown pathways and relevance for flavour in foods. Appl. Microbiol. Biotechnol. 2009, 81, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Arntfield, S.D. Probing the molecular forces involved in binding of selected volatile flavour compounds to salt-extracted pea proteins. Food Chem. 2006, 211, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yu, Q.; Han, G.; Zhang, X.; Shi, H.; Cao, H. Identification of off-aroma compounds and deodorizing of cattle by-products. J. Food Biochem. 2022, 46, 14443. [Google Scholar] [CrossRef]
- Shi, X.; Hao, Z.; Wang, R.; Chen, Z.; Zuo, F.; Wan, Y.; Guo, S. Changes of hexanal content in fermented soymilk: Induced by lactic acid bacterial fermentation and thermal treatment. J. Food Process. Preserv. 2022, 46, 16555. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Peng, H.; Chen, Q.; Jiao, X.; Jia, J.; Pan, Z.; Cheng, J.; Wang, L. Effects of Cooking Processes on Protein Nutritional Values and Volatile aroma Substances of Silver Carp (Hypophthalmichthys molitrix). Foods 2023, 12, 3169. [Google Scholar] [CrossRef]
- Andriot, I.; Harrison, M.; Fournier, N.; Guichard, E. Interactions between methyl ketones and β-lactoglobulin: Sensory analysis, headspace analysis, and mathematical modeling. J. Agric. Food Chem. 2000, 48, 4246–4251. [Google Scholar] [CrossRef]
- Kuehn, J.; Considine, T.; Singh, H. Binding of aroma Compounds and Whey Protein Isolate as Affected by Heat and High Pressure Treatments. J. Agric. Food Chem. 2008, 56, 10218–10224. [Google Scholar] [CrossRef]
- Han, D.; Deng, S.; Wang, H.; Huang, F.; Fauconnier, M.L.; Li, H.; Zheng, J.; Meng, L.; Zhang, C.; Li, X. Lipid oxidation and aroma changes in saturated and unsaturated fat fractions from chicken fat during a thermal process. Food Funct. 2023, 14, 6554–6569. [Google Scholar] [CrossRef] [PubMed]
- Nasiru, M.M.; Umair, M.; Boateng, E.F.; Alnadari, F.; Khan, K.-u.R.; Wang, Z.; Luo, J.; Yan, W.; Zhuang, H.; Majrashi, A.; et al. Characterisation of flavour attributes in egg white protein using HS-GC-IMS combined with e-nose and e-tongue: Effect of high-voltage cold plasma treatment time. Molecules 2022, 27, 601. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xia, X.; Yin, X.; Liu, H.; Chen, Q.; Kong, B. Investigation of molecular mechanisms of interaction between myofibrillar proteins and 1-heptanol by multiple spectroscopy and molecular docking methods. Int. J. Biol. Macromol. 2021, 193, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Chen, L.; Dong, S.; Wang, F.; Li, X.; Huang, Y.; Liu, Y.; Huang, Q.; Li, S.; Ye, L. Multiomics reveals the formation pathway of volatile compounds in preserved egg yolk (PEY) induced by NaCl: Based on the model of PEY and salted egg yolk (SEY) treated with/without NaCl. Food Chem. 2023, 429, 136823. [Google Scholar] [CrossRef]
- Liu, Y.; Cadwallader, D.C.; Drake, M. Identification of predominant aroma components of dried pea protein concentrates and isolates. Food Chem. 2023, 406, 134998. [Google Scholar] [CrossRef]
- Du, W.; Wang, Y.; Yan, Q.; Bai, S.; Huang, Y.; Li, L.; Mu, Y.; Shakoor, A.; Fan, B.; Wang, F. The number and position of unsaturated bonds in aliphatic aldehydes affect the cysteine-glucose Maillard reaction: Formation mechanism and comparison of volatile compounds. Food Res. Int. 2023, 173, 113337. [Google Scholar] [CrossRef]
No. | Compounds | CAS Number | RI # | Relative Content (mg/L) | |||||
---|---|---|---|---|---|---|---|---|---|
YPs | YPs: Water (1:1) | YPs: Water (1:2) | YPs: Water (1:3) | YPs: Water (1:4) | YPs: Water (1:5) | ||||
1 | Butanal | 123-72-8 | 866/876 | ND | ND | 4.57 ± 1.50 b | ND | ND | 18.11 ± 0.00 a |
2 | Ethyl Acetate | 141-78-6 | 921/886 | 527.54 ± 20.67 d | 1758.90 ± 200.00 bc | 394.87 ± 224.95 d | 2008.29 ± 12.55 b | 1585.16 ± 366.55 c | 2790.76 ± 105.13 a |
3 | 2-Butanone | 78-93-3 | 908/897 | ND | 915.51 ± 20.10 a | 238.51 ± 97.50 a | 1173.15 ± 37.39 a | 778.27 ± 200.63 a | 1167.30 ± 128.22 a |
4 | 3-Methyl-butanal | 590-86-3 | 905/903 | ND | 13.16 ± 0.00 b | 8.95 ± 0.00 c | ND | 4.39 ± 2.20 d | 15.51 ± 2.14 a |
5 | 3-Methyl-2-butanone | 563-80-4 | 925/960 | ND | 9.80 ± 3.70 b | 55.30 ± 20.24 a | ND | ND | ND |
6 | 2-Pentanone | 107-87-9 | 990/965 | 19.80 ± 4.84 c | 134.81 ± 61.09 b | ND | 132.92 ± 60.64 b | 194.13 ± 47.68 b | 318.13 ± 20.39 a |
7 | Pentanal | 110-62-3 | 982/987 | ND | ND | 0.68 ± 0.37 | ND | ND | ND |
8 | Toluene | 108-88-3 | 1042/1021 | ND | 84.36 ± 36.62 ab | 27.11 ± 14.41 c | 44.76 ± 18.91 bc | 68.57 ± 6.55 b | 117.15 ± 29.84 a |
9 | 3-Hexanone | 589-38-8 | 1058/1037 | ND | 7.02 ± 0.36 | ND | ND | ND | ND |
10 | Dimethyl disulfide | 624-92-0 | 1071/1058 | 16.54 ± 2.43 b | 53.95 ± 6.07 b | 30.85 ± 15.03 b | 56.49 ± 36.47 b | 91.42 ± 24.84 b | 233.00 ± 107.43 a |
11 | Hexanal | 66-25-1 | 1089/1069 | ND | 142.33 ± 14.32 b | 130.86 ± 102.00 b | 185.25 ± 101.92 b | 192.12 ± 20.24 b | 641.69 ± 103.71 a |
12 | p-Xylene | 106-42-3 | 1149/1129 | ND | 3.63 ± 0.88 b | 3.15 ± 1.80 b | 5.16 ± 0.42 b | 18.81 ± 5.73 a | 16.01 ± 4.69 a |
13 | 1-Butanol | 71-36-3 | 1136/1138 | ND | 2.84 ± 2.14 a | 1.01 ± 0.68 b | ND | ND | ND |
14 | 3-Heptanone | 106-35-4 | 1131/1144 | ND | 2.34 ± 0.00 b | 1.88 ± 0.50 b | 2.61 ± 0.00 b | 5.86 ± 3.55 a | ND |
15 | 2-Heptanone | 110-43-0 | 1191/1174 | ND | 46.33 ± 26.17 b | 15.93 ± 2.84 b | 26.94 ± 9.99 b | 56.47 ± 22.53 b | 174.16 ± 70.50 a |
16 | Heptanal | 111-71-7 | 1174/1178 | 1.64 ± 0.24 c | 117.41 ± 51.93 a | 33.85 ± 20.30 c | 60.10 ± 39.35 abc | 46.57 ± 13.90 bc | 105.34 ± 58.42 ab |
17 | Limonene | 138-86-3 | 1195/1190 | 4.50 ± 2.65 d | 38.42 ± 27.90 cd | 7.04 ± 5.24 d | 86.21 ± 32.39 bc | 108.51 ± 54.33 b | 181.50 ± 35.61 a |
18 | 1-Pentanol | 71-41-0 | 1249/1246 | ND | 10.16 ± 1.69 c | 2.10 ± 0.83 c | 7.23 ± 3.21 c | 17.85 ± 4.19 b | 31.14 ± 7.97 a |
19 | Styrene | 100-42-5 | 1260/1254 | ND | 2.65 ± 0.00 c | 1.92 ± 1.46 cd | 1.25 ± 0.00 d | 25.16 ± 0.00 a | 7.79 ± 1.37 b |
20 | 2-Methylpyrazine | 109-08-0 | 1265/1259 | ND | 4.58 ± 4.23 b | 0.80 ± 0.00 b | 1.17 ± 0.00 b | 2.87 ± 0.22 b | 8.73 ± 6.25 a |
21 | Acetoin | 513-86-0 | 1292/1275 | ND | ND | ND | 3.36 ± 0.00 | ND | ND |
22 | 2-Octanone | 111-13-7 | 1283/1278 | ND | 44.24 ± 23.39 b | 36.13 ± 15.81 b | 24.77 ± 6.14 b | 47.71 ± 1.83 ab | 67.29 ± 9.20 a |
23 | Octanal | 124-13-0 | 1270/1287 | ND | ND | 5.90 ± 3.63 c | ND | 39.52 ± 4.03 b | 46.78 ± 8.17 a |
24 | 6-Methyl-5-hepten-2-one | 110-93-0 | 1330/1329 | ND | 14.95 ± 8.50 b | 8.72 ± 6.18 b | 6.70 ± 1.85 b | 16.11 ± 0.00 b | 75.31 ± 17.23 a |
25 | 2,6-Dimethyl-pyrazine | 108-50-9 | 1315/1331 | ND | ND | ND | ND | 9.08 ± 0.00 | ND |
26 | 1-Hexanol | 111-27-3 | 1349/1348 | ND | 15.47 ± 9.75 c | 6.89 ± 3.60 c | 14.91 ± 7.96 c | 37.36 ± 9.44 b | 58.82 ± 1.47 a |
27 | Dimethyl trisulfide | 3658-80-8 | 1378/1374 | ND | 12.93 ± 4.75 ab | 8.47 ± 3.30 ab | 5.25 ± 2.98 ab | 18.92 ± 5.11 a | 26.97 ± 2.71 a |
28 | 2-Nonanone | 821-55-6 | 1387/1383 | ND | ND | 10.67 ± 5.04 c | 13.97 ± 0.97 c | 32.18 ± 2.34 b | 39.07 ± 0.20 a |
29 | 1-Nonanal | 124-19-6 | 1388/1390 | ND | ND | 15.29 ± 4.94 b | 16.50 ± 0.00 b | 69.07 ± 13.09 a | 92.52 ± 19.43 a |
30 | Acetic acid | 64-19-7 | 1451/1416 | ND | 20.56 ± 12.84 c | 8.49 ± 1.17 c | 71.89 ± 5.13 b | 89.03 ± 16.17 b | 160.71 ± 16.14 a |
31 | Formyl acetate | 2258-42-6 | 1436/1449 | 12.70 ± 9.06 | ND | ND | ND | ND | ND |
32 | 1-Heptanol | 111-70-6 | 1455/1452 | ND | ND | ND | 102.30 ± 20.23 c | 136.42 ± 23.40 b | 160.71 ± 16.14 a |
33 | Methyl 3-hydroxybutyrate | 1487-49-6 | 1454/1474 | ND | ND | 4.91 ± 0.00 | ND | ND | ND |
34 | 2-Ethylhexanol | 104-76-7 | 1492/1486 | 21.69 ± 12.83 a | ND | 6.67 ± 0.00 b | ND | ND | ND |
35 | 2-Decanone | 693-54-9 | 1489/1487 | ND | ND | 9.13 ± 0.89 c | ND | 30.67 ± 4.94 b | 45.23 ± 4.75 a |
36 | Pyrrole | 109-97-7 | 1498/1505 | ND | 4.17 ± 1.82 b | 8.10 ± 6.09 b | 7.91 ± 3.51 b | 12.74 ± 1.83 b | 30.51 ± 14.22 a |
37 | Benzaldehyde | 100-52-7 | 1503/1511 | 17.62 ± 1.55 c | 874.39 ± 74.22 abc | 499.11 ± 238.56 bc | 1824.74 ± 221.36 ab | 2150.01 ± 328.14 ab | 3586.72 ± 185.60 a |
38 | 1-Octanol | 111-87-5 | 1564/1555 | ND | ND | 2.82 ± 1.36 c | 9.37 ± 6.58 b | ND | 33.46 ± 3.84 a |
39 | 2-Furanmethanol | 98-00-0 | 1640/1651 | ND | ND | 2.11 ± 0.00 c | ND | 11.78 ± 1.26 b | 23.12 ± 1.74 a |
40 | 1-Nonanol | 143-08-8 | 1661/1657 | ND | ND | 2.76 ± 1.27 c | 8.01 ± 9.69 c | 23.25 ± 4.56 b | 39.04 ± 3.35 a |
41 | Benzyl alcohol | 100-51-6 | 1879/1862 | ND | ND | ND | ND | 8.65 ± 2.11 b | 14.59 ± 2.21 a |
42 | Phenylethyl Alcohol | 60-12-8 | 1873/1896 | ND | ND | 1.23 ± 0.69 c | ND | 10.38 ± 4.01 b | 14.59 ± 2.21 a |
43 | o-Cresol | 95-48-7 | 1934/1897 | ND | 9.46 ± 3.68 c | 4.85 ± 1.11 c | 6.48 ± 4.53 c | 31.36 ± 6.38 a | 17.81 ± 0.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Pu, D.; Cao, B.; Sun, B.; Zhang, Y. Effect of Temperature and Water Addition Ratio on the Aroma Release of Yeast Proteins. Foods 2025, 14, 1037. https://doi.org/10.3390/foods14061037
Chen J, Pu D, Cao B, Sun B, Zhang Y. Effect of Temperature and Water Addition Ratio on the Aroma Release of Yeast Proteins. Foods. 2025; 14(6):1037. https://doi.org/10.3390/foods14061037
Chicago/Turabian StyleChen, Jiahui, Dandan Pu, Boya Cao, Baoguo Sun, and Yuyu Zhang. 2025. "Effect of Temperature and Water Addition Ratio on the Aroma Release of Yeast Proteins" Foods 14, no. 6: 1037. https://doi.org/10.3390/foods14061037
APA StyleChen, J., Pu, D., Cao, B., Sun, B., & Zhang, Y. (2025). Effect of Temperature and Water Addition Ratio on the Aroma Release of Yeast Proteins. Foods, 14(6), 1037. https://doi.org/10.3390/foods14061037