Analysis of Volatile and Non-Volatile Components of Dried Chili Pepper (Capsicum annuum L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Chili Pepper
2.3. Sensory Evaluation
2.4. Edible Rate Measurement
2.5. Fruit Shape Index Determination
- W—Fruit length, cm;
- H—Fruit width, cm.
2.6. Ash Determination
- m1—Mass of crucible and ash, g;
- m2—Mass of crucible, g;
- m3—Mass of crucible and sample, g;
- W—Sample dry matter content (mass fraction), %.
2.7. Protein Determination
2.8. Reduced Vitamin C Determination
- c—Content of reduced vitamin C in the tested sample solution, mg;
- v1—Total volume of liquid, mL;
- v2—Liquid volume used for determination, mL;
- w—Sample weight, g.
2.9. Determination of Soluble Sugars
- v0—Titration volume of 0.005 mol/L sodium thiosulfate solution used for the blank solution, mL;
- v1—Total volume of the dried chili pepper filtrate, mL;
- v2—Volume of the dry chili pepper filtrate, mL;
- v3—Individual volume of the dry chili pepper filtrate, mL;
- v4—Titration volume of 0.005 mol/L sodium thiosulfate solution used for the dried chili pepper filtrate, mL;
- v5—Volume of dried chili pepper filtrate used for determination, mL;
- m—Mass of dried chili pepper, g;
- W—Soluble sugar content in the dried chili pepper powder (%).
2.10. Determination of Fat Content
- X—Fat content in the dried chili pepper powder, mg/g;
- m1—Total weight of the receiving bottle and sample, g;
- m0—Mass of the receiving bottle, g;
- m2—Weight of the dried chili pepper, g.
2.11. HS-GC-TOF MS Analysis
2.12. Data Analysis
3. Results
3.1. Sensory Evaluation
3.2. Evaluation of Fruit Shape Index and Nutritional Index
3.3. HS-GC-TOF MS Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vázquez-Espinosa, M.; Olguín-Rojas, J.A.; Fayos, O.; González-de-Peredo, A.V.; Espada-Bellido, E.; Ferreiro-González, M.; Barroso, C.G.; Barbero, G.F.; Garcés-Claver, A.; Palma, M. Influence of Fruit Ripening on the Total and Individual Capsaicinoids and Capsiate Content in Naga Jolokia Peppers (Capsicum chinense Jacq.). Agronomy 2020, 10, 252. [Google Scholar] [CrossRef]
- Perla, V.; Nimmakayala, P.; Nadimi, M.; Alaparthi, S.; Hankins, G.R.; Ebert, A.W.; Reddy, U.K. Vitamin C and reducing sugars in the world collection of Capsicum baccatum L. genotypes. Food Chem. 2016, 202, 189–198. [Google Scholar] [CrossRef] [PubMed]
- da Silveira Agostini-Costa, T.; da Silva Gomes, I.; de Melo, L.A.M.P.; Reifschneider, F.J.B.; da Costa Ribeiro, C.S. Carotenoid and total vitamin C content of peppers from selected Brazilian cultivars. J. Food Compos. Anal. 2017, 57, 73–79. [Google Scholar] [CrossRef]
- Azlan, A.; Sultana, S.; Huei, C.S.; Razman, M.R. Antioxidant, Anti-Obesity, Nutritional and Other Beneficial Effects of Different Chili Pepper: A Review. Molecules 2022, 27, 898. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhong, Y.; Liu, J.; Ma, R.; Miao, Y.; Chen, W.; Zheng, J.; Pang, X.; Wan, H. Pigment Biosynthesis and Molecular Genetics of Fruit Color in Pepper. Plants 2023, 12, 2156. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J. Multisensory processes in flavour perception and their influence on food choice. Curr. Opin. Food Sci. 2015, 3, 47–52. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Chen, Y.; Yuan, B. Effects of different paprikas on the quality characteristics and volatile flavor components of spiced beef. J. Food Process. Preserv. 2021, 45, 47–52. [Google Scholar] [CrossRef]
- Murakami, Y.; Iwabuchi, H.; Ohba, Y.; Fukami, H. Analysis of Volatile Compounds from Chili Peppers and Characterization of Habanero (Capsicum chinense) Volatiles. J. Oleo Sci. 2019, 68, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Prado, R.; Hartung, A.C.M.; Gastl, M.; Becker, T. Identification of potential odorant markers to monitor the aroma formation in kilned specialty malts. Food Chem. 2022, 392, 133251. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Brandão, T.; Almeida, A.; Rocha, S.M. Unveiling the lager beer volatile terpenic compounds. Food Res. Int. 2018, 114, 199–207. [Google Scholar] [CrossRef]
- Yamasaki, K.; Fukutome, N.; Hayakawa, F.; Ibaragi, N.; Nagano, Y. Classification of Japanese Pepper (Zanthoxylum piperitum DC.) from Different Growing Regions Based on Analysis of Volatile Compounds and Sensory Evaluation. Molecules 2022, 27, 4946. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, Y.P.; Deng, S.; Li, C.; Xu, X.; Zhou, G.; Liu, Y. Application of sensory evaluation, GC-ToF-MS, and E-nose to discriminate the flavor differences among five distinct parts of the Chinese blanched chicken. Food Res. Int. 2020, 137, 109669. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hu, L.; Deng, N.; Cai, Y.; Li, H.; Zhang, B.; Wang, J. Effects of different hot-air drying methods on the dynamic changes in color, nutrient and aroma quality of three chili pepper (Capsicum annuum L.) varieties. Food Chem. X 2024, 22, 101262. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Liu, C.; Yao, Z.; Wan, H.; Ruan, M.; Wang, R.; Ye, Q.; Li, Z.; Zhou, G.; Cheng, Y. Detection and Analysis of VOCs in Cherry Tomato Based on GC-MS and GC×GC-TOF MS Techniques. Foods 2024, 13, 1279. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Huang, S.; Chen, M.; Ni, Y.; Hu, X.; Sun, N. Identification and quantitative determination of 2-acetyl-1-pyrroline using GC-TOF MS combined with HS and HS-SPME pretreatment. J. Cereal Sci. 2020, 93, 102975. [Google Scholar] [CrossRef]
- ISO 8586:2012; General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Li, C.; Al-Dalali, S.; Wang, Z.; Xu, B.; Zhou, H. Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC–MS–O, GC–IMS, and E-nose. Food Chem. 2022, 386, 132728. [Google Scholar] [CrossRef]
- Muto, A.; Müller, C.T.; Bruno, L.; McGregor, L.; Ferrante, A.; Chiappetta, A.A.C.; Bitonti, M.B.; Rogers, H.J.; Spadafora, N.D. Fruit volatilome profiling through GC × GC-ToF-MS and gene expression analyses reveal differences amongst peach cultivars in their response to cold storage. Sci. Rep. 2020, 10, 18333. [Google Scholar] [CrossRef]
- Patel, A.L.; Kathiria, K.B. Graphical analysis for fruit yield and its component traits in chilli (Capsicum annuum L.). Electron. J. Plant Breed. 2018, 9, 926. [Google Scholar] [CrossRef]
- Nagy, Z.; Daood, H.; Ambrózy, Z.; Helyes, L. Determination of Polyphenols, Capsaicinoids, and Vitamin C in New Hybrids of Chili Peppers. J. Anal. Methods Chem. 2015, 2015, 102125. [Google Scholar] [CrossRef] [PubMed]
- Taiti, C.; Comparini, D.; Moscovini, L.; Violino, S.; Costa, C.; Mancuso, S. Influence of the Drying Process on the Volatile Profile of Different Capsicum Species. Plants 2024, 13, 1131. [Google Scholar] [CrossRef]
- Zhu, W.; Luan, H.; Bu, Y.; Li, X.; Li, J.; Ji, G. Flavor characteristics of shrimp sauces with different fermentation and storage time. Lwt 2019, 110, 142–151. [Google Scholar] [CrossRef]
- Zhou, C.; Fan, J.; Tan, R.; Peng, Q.; Cai, J.; Zhang, W.; Rodriguez-Mendez, M.L. Prediction of Linalool Content in Osmanthus fragrans Using E-Nose Technology. J. Sens. 2022, 2022, 7349030. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, Z.; Deng, L.; Li, W.; Yuan, Y.; Zhang, M.; Sun, G.; He, S.; Wang, J.; Wang, Z.; et al. Effect of Natural Variation and Rootstock on Fruit Quality and Volatile Organic Compounds of ‘Kiyomi tangor’ (Citrus reticulata Blanco) Citrus. Int. J. Mol. Sci. 2023, 24, 16810. [Google Scholar] [CrossRef] [PubMed]
- Pacharra, M.; Kleinbeck, S.; Schäper, M.; Hucke, C.I.; van Thriel, C. Sniffin’ Sticks and Olfactometer-Based Odor Thresholds for n-Butanol: Correspondence and Validity for Indoor Air Scenarios. Atmosphere 2020, 11, 472. [Google Scholar] [CrossRef]
- Gu, Z.; Jin, Z.; Schwarz, P.; Rao, J.; Chen, B. Uncovering aroma boundary compositions of barley malts by untargeted and targeted flavoromics with HS-SPME-GC-MS/olfactometry. Food Chem. 2022, 394, 133541. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chu, B.; Li, B.; Wang, X.; Chen, X.; Gu, Q. The difference analysis of physicochemical indexes and volatile flavor compounds of chili oil prepared from different varieties of chili pepper. Food Res. Int. 2024, 190, 114657. [Google Scholar] [CrossRef]
- Liu, X.; Meng, W.; Cheng, S.; Xing, B.; Zheng, Y.; Ren, X.; Xue, M.; Zhang, C.; Xia, H. Utilization of camellia oleifera shell for production of valuable products by pyrolysis. Arab. J. Chem. 2022, 15, 104348. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Xiao, Q.; Liu, C.; Deng, F.; Zhou, H. SPME/GC-MS characterization of volatile compounds of Chinese traditional-chopped pepper during fermentation. Int. J. Food Prop. 2019, 22, 1863–1872. [Google Scholar] [CrossRef]
- Martín, A.; Hernández, A.; Aranda, E.; Casquete, R.; Velázquez, R.; Bartolomé, T.; Córdoba, M.G. Impact of volatile composition on the sensorial attributes of dried paprikas. Food Res. Int. 2017, 100, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Tian, H.; Zhan, P. The Effects of Pepper (Zanthoxylum bungeanum) from Different Production Areas on the Volatile Flavor Compounds of Fried Pepper Oils Based on HS-SPME–GC–MS and Multivariate Statistical Method. Molecules 2022, 27, 7760. [Google Scholar] [CrossRef] [PubMed]
- Fayos, O.; Savirón, M.; Orduna, J.; Barbero, G.F.; Mallor, C.; Garcés-Claver, A. Quantitation of capsiate and dihydrocapsiate and tentative identification of minor capsinoids in pepper fruits (Capsicum spp.) by HPLC-ESI-MS/MS(QTOF). Food Chem. 2019, 270, 264–272. [Google Scholar] [CrossRef]
- Ge, S.; Chen, Y.; Ding, S.; Zhou, H.; Jiang, L.; Yi, Y.; Deng, F.; Wang, R. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). J. Sci. Food Agric. 2020, 100, 3087–3098. [Google Scholar] [CrossRef] [PubMed]
- Orobiyi, A.; Loko, L.Y.; Sanoussi, F.; Agré, A.P.; Korie, N.; Gbaguidi, A.; Adjatin, A.; Agbangla, C.; Dansi, A. Agro-morphological characterization of chili pepper landraces (Capsicum annuum L.) cultivated in Northern Benin. Genet. Resour. Crop Evol. 2017, 65, 555–569. [Google Scholar] [CrossRef]
- Rödiger, A.; Agne, B.; Dobritzsch, D.; Helm, S.; Müller, F.; Pötzsch, N.; Baginsky, S. Chromoplast differentiation in bell pepper (Capsicum annuum) fruits. Plant J. 2021, 105, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Kaul, S.; Chib, S.; Bhat, A.; Mishra, S.; Dhar, M.K. Plant carotenoid cleavage oxygenases: Structure–function relationships and role in development and metabolism. Brief. Funct. Genom. 2020, 19, 1–9. [Google Scholar]
- Guo, Z.; Teng, F.; Huang, Z.; Lv, B.; Lv, X.; Babich, O.; Yu, W.; Li, Y.; Wang, Z.; Jiang, L. Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocoll. 2020, 105, 105752. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Q.; Liu, W.; Xiao, H.; Hu, J.; Duan, X.; Sun, X.; Liu, C.; Wang, H. Changes and correlation analysis of volatile flavor compounds, amino acids, and soluble sugars in durian during different drying processes. Food Chem. X 2024, 21, 101238. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, Y.; Wu, L.; Wei, H.; Fu, J.; Chen, W.; Lin, S.; Yang, S.; Zhang, R.; Shang, W.; et al. Analysis of Important Volatile Organic Compounds and Genes Produced by Aroma of Pepper Fruit by HS-SPME-GC/MS and RNA Sequencing. Plants 2023, 12, 2246. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhao, R.; Liu, C.; Wu, Y.; Duan, X.; Hu, J.; Yang, F.; Wang, H. Dynamic Changes in Volatile Flavor Compounds, Amino Acids, Organic Acids, and Soluble Sugars in Lemon Juice Vesicles during Freeze-Drying and Hot-Air Drying. Foods 2022, 11, 2862. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Sun, S.; Zhang, L.; Xiang, W.; Chen, M.; Zeng, J.; Xie, H. Changes in the Volatile Flavor Substances, the Non-Volatile Components, and the Antioxidant Activity of Poria cocos during Different Drying Processes. Molecules 2024, 29, 4777. [Google Scholar] [CrossRef]
Sample | Weight of Single Fruit (g) | Remove Stalk and Seed Weight (g) | Fruit Length (cm) | Fruit Width (cm) | Fruit Type Index | Edible Rate (%) |
---|---|---|---|---|---|---|
CHX | 1.07 ± 0.22 efg | 0.73 ± 0.16 de | 5.63 ± 0.68 gh | 1.62 ± 0.19 ef | 3.49 ± 0.36 e | 69.26 ± 10.25 ab |
CM | 0.44 ± 0.11 i | 0.20 ± 0.06 h | 4.69 ± 0.68 hij | 1.16 ± 0.13 ij | 4.06 ± 0.50 de | 43.94 ± 4.35 hi |
CHN | 0.46 ± 0.10 i | 0.26 ± 0.04 gh | 4.09 ± 0.64 j | 1.17 ± 0.12 hij | 3.48 ± 0.33 e | 58.32 ± 7.72 de |
CSS | 0.98 ± 0.17 efgh | 0.45 ± 0.06 fgh | 5.56 ± 0.52 gh | 1.56 ± 0.24 efg | 3.59 ± 0.36 e | 46.52 ± 5.02 ghi |
CGM | 0.74 ± 0.09 hi | 0.42 ± 0.07 fgh | 5.99 ± 0.35 fg | 1.35 ± 0.08 ghi | 4.45 ± 0.44 cd | 57.44 ± 7.50 de |
CGR | 1.97 ± 0.27 d | 1.40 ± 0.20 c | 14.57 ± 1.79 b | 1.68 ± 0.12 de | 8.69 ± 1.06 a | 71.38 ± 6.10 ab |
CXZ | 1.31 ± 0.22 e | 0.85 ± 0.14 d | 10.73 ± 2.08 c | 1.41 ± 0.18 fgh | 8.21 ± 1.05 a | 65.79 ± 8.62 bc |
CG | 1.28 ± 0.33 ef | 0.53 ± 0.13 ef | 3.93 ± 0.31 j | 1.75 ± 0.17 de | 2.25 ± 0.18 f | 41.88 ± 4.99 i |
CN | 0.64 ± 0.20 hi | 0.33 ± 0.09 fgh | 4.98 ± 0.73 ghij | 1.24 ± 0.10 hi | 4.04 ± 0.59 de | 51.68 ± 6.47 efg |
CSW | 0.88 ± 0.26 fgh | 0.49 ± 0.13 eg | 6.72 ± 0.98 f | 1.35 ± 0.14 ghi | 4.98 ± 0.65 c | 56.52 ± 7.80 def |
CD | 3.21 ± 0.48 b | 1.58 ± 0.21 c | 4.17 ± 0.61 ij | 3.14 ± 0.37 a | 1.35 ± 0.28 g | 49.83 ± 6.74 fgh |
CX | 0.90 ± 0.17 fgh | 0.54 ± 0.10 ef | 5.18 ± 0.95 ghi | 1.34 ± 0.18 ghi | 3.91 ± 0.70 de | 60.41 ± 8.51 cd |
CBR | 2.95 ± 0.41 bc | 2.02 ± 0.35 b | 15.78 ± 1.54 a | 1.87 ± 0.37 d | 8.68 ± 1.60 a | 68.15 ± 3.23 ab |
CYS | 0.65 ± 0.15 hi | 0.33 ± 0.10 fgh | 7.86 ± 1.02 e | 1.11 ± 0.08 ij | 7.07 ± 0.81 b | 50.63 ± 7.38 fg |
XHR | 2.86 ± 0.70 bc | 1.55 ± 0.34 c | 5.78 ± 0.76 fg | 3.12 ± 0.44 ab | 1.88 ± 0.32 fg | 54.79 ± 7.46 def |
XHS | 3.76 ± 0.94 a | 2.69 ± 0.66 a | 12.28 ± 1.92 c | 2.91 ± 0.39 bc | 4.24 ± 0.55 de | 71.85 ± 5.10 ab |
XG | 2.84 ± 0.78 bc | 1.64 ± 0.42 c | 9.58 ± 0.86 d | 2.78 ± 0.32 c | 3.48 ± 0.42 e | 58.60 ± 5.39 d |
XM | 2.63 ± 0.51 c | 1.91 ± 0.38 b | 5.95 ± 0.58 fg | 0.98 ± 0.25 j | 6.43 ± 1.61 b | 72.94 ± 6.57 a |
Max | 3.76 | 2.69 | 15.78 | 3.14 | 8.69 | 72.94 |
Min | 0.44 | 0.20 | 3.93 | 0.98 | 1.35 | 41.88 |
range | 3.32 | 2.49 | 11.85 | 2.16 | 7.34 | 31.06 |
Standard deviation | 1.10 | 0.75 | 3.65 | 0.72 | 2.24 | 9.86 |
Mean value | 1.64 | 1.00 | 7.42 | 1.75 | 4.68 | 58.33 |
Coefficient of variation (%) | 66.75 | 74.87 | 49.25 | 41.15 | 47.86 | 16.90 |
Sample | Ash Content (g/100 g) | Protein (mg/g) | Vc (mg/g) | Soluble Sugar (%) | Fat Content (g/100 g) |
---|---|---|---|---|---|
CHX | 9.03 ± 0.11 de | 13.99 ± 0.04 def | 3.06 ± 0.11 fgh | 16.08 ± 0.01 g | 9.80 ± 0.17 gh |
CM | 6.38 ± 0.03 i | 15.13 ± 0.09 b | 3.13 ± 0.01 defg | 12.84 ± 0.19 k | 14.40 ± 0.13 b |
CHN | 9.04 ± 0.01 de | 15.73 ± 0.17 a | 3.21 ± 0.08 cdefg | 9.27 ± 0.02 o | 10.70 ± 0.03 efg |
CSS | 8.00 ± 0.17 fg | 13.15 ± 0.03 gh | 2.97 ± 0.03 gh | 14.59 ± 0.08 j | 13.70 ± 0.02 bc |
CGM | 8.12 ± 0.19 efg | 14.40 ± 0.21 cd | 2.83 ± 0.02 hi | 17.97 ± 0.14 e | 12.30 ± 0.07 cde |
CGR | 6.82 ± 0.05 hi | 12.26 ± 0.07 ij | 3.41 ± 0.13 bc | 26.06 ± 0.05 a | 8.70 ± 0.07 hi |
CXZ | 10.80 ± 0.21 c | 13.38 ± 0.30 g | 3.76 ± 0.36 a | 17.50 ± 0.01 f | 8.70 ± 0.05 hi |
CG | 8.99 ± 0.13 de | 14.58 ± 0.14 bcd | 3.13 ± 0.05 defg | 12.60 ± 0.10 l | 12.90 ± 0.01 bcd |
CN | 10.80 ± 0.03 c | 13.48 ± 0.02 fg | 3.38 ± 0.20 bcd | 14.49 ± 0.18 j | 12.00 ± 0.12 def |
CSW | 7.73 ± 0.31 fgh | 13.61 ± 0.01 efg | 3.11 ± 0.01 efg | 16.05 ± 0.01 g | 11.20 ± 0.03 efg |
CD | 8.40 ± 0.02 ef | 12.05 ± 0.05 j | 3.52 ± 0.02 b | 22.63 ± 0.13 b | 11.80 ± 0.13 def |
CX | 9.63 ± 0.05 d | 15.70 ± 0.23 a | 2.45 ± 0.09 j | 18.53 ± 0.08 d | 7.85 ± 0.30 ij |
CBR | 11.40 ± 0.12 bc | 12.66 ± 0.09 hi | 3.88 ± 0.20 a | 12.42 ± 0.21 m | 8.90 ± 0.13 hi |
CYS | 7.6 ± 0.02 fgh | 14.65 ± 0.07 bc | 2.65 ± 0.12 ij | 6.62 ± 0.06 p | 16.90 ± 0.01 a |
XHR | 11.60 ± 0.03 bc | 14.20 ± 0.11 cde | 3.26 ± 0.05 cdef | 11.04 ± 0.05 n | 9.65 ± 0.17 gh |
XHS | 12.20 ± 0.05 b | 12.11 ± 0.02 ij | 2.67 ± 0.23 ij | 21.85 ± 0.25 c | 6.70 ± 0.03 j |
XG | 14.10 ± 0.03 a | 14.05 ± 0.01 cdef | 2.83 ± 0.06 hi | 14.82 ± 0.23 i | 10.60 ± 0.05 fg |
XM | 7.37 ± 0.01 gh | 13.04 ± 0.03 gh | 3.32 ± 0.02 bcde | 15.70 ± 0.02 h | 9.65 ± 0.14 gh |
Max | 14.10 | 15.73 | 3.88 | 26.06 | 16.90 |
Min | 6.38 | 12.05 | 2.45 | 6.62 | 6.70 |
range | 7.72 | 3.68 | 1.43 | 19.44 | 10.20 |
Standard deviation | 2.08 | 1.14 | 0.38 | 4.77 | 2.53 |
Mean value | 9.33 | 13.79 | 3.14 | 15.61 | 10.91 |
Coefficient of variation (%) | 22.30 | 8.24 | 12.02 | 30.57 | 23.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, Y.; Xing, L.; Song, W.; Lu, S. Analysis of Volatile and Non-Volatile Components of Dried Chili Pepper (Capsicum annuum L.). Foods 2025, 14, 712. https://doi.org/10.3390/foods14050712
Li W, Wang Y, Xing L, Song W, Lu S. Analysis of Volatile and Non-Volatile Components of Dried Chili Pepper (Capsicum annuum L.). Foods. 2025; 14(5):712. https://doi.org/10.3390/foods14050712
Chicago/Turabian StyleLi, Wenqi, Yuan Wang, Lijie Xing, Wensheng Song, and Shiling Lu. 2025. "Analysis of Volatile and Non-Volatile Components of Dried Chili Pepper (Capsicum annuum L.)" Foods 14, no. 5: 712. https://doi.org/10.3390/foods14050712
APA StyleLi, W., Wang, Y., Xing, L., Song, W., & Lu, S. (2025). Analysis of Volatile and Non-Volatile Components of Dried Chili Pepper (Capsicum annuum L.). Foods, 14(5), 712. https://doi.org/10.3390/foods14050712