Sustainable Valorization of Coffee Silverskin Waste: Pressurized Liquid Extraction of Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Beans
2.2. Chemical and Reagents
2.3. Pressurized Extraction Process (PLE)
2.4. Experimental Section
2.4.1. Two-Level Factorial Design
2.4.2. Central Composite Design (CCD)
2.5. Obtaining and Characterizing the Extract
2.5.1. Extraction Yield
2.5.2. Total Phenolic Content (TPC)
2.5.3. Trolox Equivalent Antioxidant Capacity (TEAC)
2.5.4. Liquid Chromatography Analysis
3. Results and Discussion
3.1. Two Factorial Design Results
ANOVA Analysis of Two-Level Factorial Design Results
3.2. CCD Results
Statistical Models, Prediction, and Interpretation of Results
3.3. Optimal Extraction Conditions and Model Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Coffee Organization. Coffee Market Report—February 2021; International Coffee Organization: London, UK, 2021. [Google Scholar]
- Gottstein, V.; Bernhardt, M.; Dilger, E.; Keller, J.; Breitling-Utzmann, C.M.; Schwarz, S.; Kuballa, T.; Lachenmeier, D.W.; Bunzel, M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021, 10, 1705. [Google Scholar] [CrossRef] [PubMed]
- Iriondo-Dehond, A.; Rios, M.B.; Herrera, T.; Rodriguez-Bertos, A.; Nuñez, F.; Andres, M.I.S.; Sanchez-Fortun, S.; Del Castillo, M.D. Coffee Silverskin Extract: Nutritional Value, Safety and Effect on Key Biological Functions. Nutrients 2019, 11, 2693. [Google Scholar] [CrossRef]
- Cañas, S.; Rebollo-Hernanz, M.; Martín-Trueba, M.; Braojos, C.; Gil-Ramírez, A.; Benítez, V.; Martín-Cabrejas, M.A.; Aguilera, Y. Exploring the Potential of Phenolic Compounds from the Coffee Pulp in Preventing Cellular Oxidative Stress after in Vitro Digestion. Food Res. Int. 2023, 172, 113116. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, M.B.P.P. Coffee Silverskin: A Review on Potential Cosmetic Applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef]
- Alnsour, L.; Issa, R.; Awwad, S.; Albals, D.; Al-Momani, I. Quantification of Total Phenols and Antioxidants in Coffee Samples of Different Origins and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules 2022, 27, 1591. [Google Scholar] [CrossRef]
- Perez-Vazquez, A.; Carpena, M.; Barciela, P.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants 2023, 12, 612. [Google Scholar] [CrossRef]
- Chemat, A.; Touraud, D.; Müller, R.; Kunz, W.; Fabiano-Tixier, A.S. Valorization of Coffee Silverskin Using Extraction Cycles and Water as a Solvent: Design of Process. Molecules 2024, 29, 1318. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; García-Barreda, S.; Sánchez, S.; Morte, A.; Siles-Sánchez, M.d.l.N.; Soler-Rivas, C.; Santoyo, S.; Marco, P. Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber Aestivum and Terfezia Claveryi. Foods 2022, 11, 298. [Google Scholar] [CrossRef]
- Wianowska, D.; Typek, R.; Dawidowicz, A.L. Chlorogenic Acid Stability in Pressurized Liquid Extraction Conditions. J. AOAC Int. 2015, 98, 415–421. [Google Scholar] [CrossRef]
- Costa, A.J.N.; Stevanato, N.; Raspe, D.T.; Cardozo-Filho, L.; da Silva, C. Valorization of Coffee Bean Husk via Pressurized Liquid Extraction for Production of Physicochemical Extract. J. Chem. Technol. Biotechnol. 2024, 99, 788–796. [Google Scholar] [CrossRef]
- de Souza, A.R.C.; Stefanov, S.; Bombardelli, M.C.M.; Corazza, M.L.; Stateva, R.P. Assessment of Composition and Biological Activity of Arctium Lappa Leaves Extracts Obtained with Pressurized Liquid and Supercritical CO2 Extraction. J. Supercrit. Fluids 2019, 152, 104573. [Google Scholar] [CrossRef]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A Review of Modern and Conventional Extraction Techniques and Their Applications for Extracting Phytochemicals from Plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Volpe, F.; Moler, J.A.; Esparza, I.; Ancín-Azpilicueta, C. Impact of Extraction Conditions on the Phenolic Composition and Antioxidant Capacity of Grape Stem Extracts. Antioxidants 2019, 8, 597. [Google Scholar] [CrossRef]
- Melo, T.; Figueiredo, A.R.P.; da Costa, E.; Couto, D.; Silva, J.; Domingues, M.R.; Domingues, P. Ethanol Extraction of Polar Lipids from Nannochloropsis Oceanica for Food, Feed, and Biotechnology Applications Evaluated Using Lipidomic Approaches. Mar Drugs 2021, 19, 593. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee Silverskin Extracts: Quantification of 30 Bioactive Compounds by a New HPLC-MS/MS Method and Evaluation of Their Antioxidant and Antibacterial Activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef]
- Coelho, J.P.; Robalo, M.P.; Boyadzhieva, S.; Stateva, R.P. Microwave-Assisted Extraction of Phenolic Compounds from Spent Coffee Grounds. Process Optimization Applying Design of Experiments. Molecules 2021, 26, 7320. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of Antioxidants Extraction from Coffee Silverskin, a Roasting by-Product, Having in View a Sustainable Process. Ind. Crops Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food Bioproc. Tech. 2014, 7, 1322–1332. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, Z.; Rai, D.; Sun, D.W.; Tiwari, B.K. Ultrasound-Assisted Extraction (UAE) of Bioactive Compounds from Coffee Silverskin: Impact on Phenolic Content, Antioxidant Activity, and Morphological Characteristics. J. Food Process Eng. 2019, 42, e13191. [Google Scholar] [CrossRef]
- Guglielmetti, A.; D’ignoti, V.; Ghirardello, D.; Belviso, S.; Zeppa, G. Optimisation of ultrasound and microwave-assisted extraction of caffeoylquinic acids and caffeine from coffee silverskin using response surface methodology. Ital. J. Food Sci. 2017, 29. [Google Scholar] [CrossRef]
- Ginting, A.R.; Kit, T.; Mingvanish, W.; Thanasupsin, S.P. Valorization of Coffee Silverskin through Subcritical Water Extraction: An Optimization Based on T-CQA Using Response Surface Methodology. Sustainability 2022, 14, 8435. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzym. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Psarrou, I.; Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction Kinetics of Phenolic Antioxidants from the Hydro Distillation Residues of Rosemary and Effect of Pretreatment and Extraction Parameters. Molecules 2020, 25, 4520. [Google Scholar] [CrossRef] [PubMed]
- Mizzi, L.; Chatzitzika, C.; Gatt, R.; Valdramidis, V. HPLC Analysis of Phenolic Compounds and Flavonoids with Overlapping Peaks. Food Technol Biotechnol 2020, 58, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Kyoung Chun, O.; Kim, D.O. Consideration on Equivalent Chemicals in Total Phenolic Assay of Chlorogenic Acid-Rich Plums. Food Research International 2004, 37, 337–342. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Casagrande, M.; Zanela, J.; Wagner, A.; Busso, C.; Wouk, J.; Iurckevicz, G.; Montanher, P.F.; Yamashita, F.; Malfatti, C.R.M. Influence of Time, Temperature and Solvent on the Extraction of Bioactive Compounds of Baccharis Dracunculifolia: In Vitro Antioxidant Activity, Antimicrobial Potential, and Phenolic Compound Quantification. Ind. Crops Prod. 2018, 125, 207–219. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Martí-Quijal, F.J.; Cilla, A.; Munekata, P.E.S.; Lorenzo, J.M.; Remize, F.; Barba, F.J. Influence of Temperature, Solvent and PH on the Selective Extraction of Phenolic Compounds from Tiger Nuts by-Products: Triple-TOF-LC-MS-MS Characterization. Molecules 2019, 24, 797. [Google Scholar] [CrossRef]
- Nonappa; Kolehmainen, E. Caffeine as a Gelator. Gels 2016, 2, 9. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Q.; Liu, J.; Zhao, C.; Xue, F.; Zhao, Y. Decomposition of Five Phenolic Compounds in High Temperature Water. J. Braz. Chem. Soc. 2014, 25, 2102–2107. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J.A.; Ibañez, E. Pressurized Liquid Extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2019; pp. 375–398. ISBN 9780128169117. [Google Scholar]
- Huamán-Castilla, N.L.; Allcca-Alca, E.E.; Hervas Nina, F.; León-Calvo, N.C.; Zirena Vilca, F.; Vilcanqui Chura, Y.L. Pressurized Liquid Extraction of Antioxidant and α-Amylase-Inhibitory Compounds from Red Seaweed Using Water–Ethanol Mixtures. Molecules 2024, 29, 5018. [Google Scholar] [CrossRef] [PubMed]
- Kodchakorn, K.; Kongtawelert, P. Green-Chemistry of by-Products from Sai-Nam-Phueng Orange in Thailand (1): Recovering a Valuable Source of Bioactive Compounds Using Response Surface Methodology, Antioxidant, and Cytotoxicity. Waste Manag. Bull. 2024, 2, 108–122. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Response Surface Optimization for Recovery of Polyphenols and Carotenoids from Leaves of Centella Asiatica Using an Ethanol-Based Solvent System. Food Sci. Nutr. 2019, 7, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Jun, X. Caffeine Extraction from Green Tea Leaves Assisted by High Pressure Processing. J. Food Eng. 2009, 94, 105–109. [Google Scholar] [CrossRef]
- Cheaib, D.; El Darra, N.; Rajha, H.N.; Maroun, R.G.; Louka, N. Systematic and Empirical Study of the Dependence of Polyphenol Recovery from Apricot Pomace on Temperature and Solvent Concentration Levels. Sci. World J. 2018, 2018, 8249184. [Google Scholar] [CrossRef]
- Wang, X.; Gong, X.; Lin, B. Optimization of Ultrasonic Pretreatment and Analysis of Chlorogenic Acid in Potato Leaves. Sci. Rep. 2024, 14, 10613. [Google Scholar] [CrossRef]
- Navarra, G.; Moschetti, M.; Guarrasi, V.; Mangione, M.R.; Militello, V.; Leone, M. Simultaneous Determination of Caffeine and Chlorogenic Acids in Green Coffee by UV/Vis Spectroscopy. J. Chem. 2017, 2017, 6435086. [Google Scholar] [CrossRef]
- Holser, R.A. Principal Component Analysis of Phenolic Acid Spectra. ISRN Spectrosc. 2012, 2012, 493203. [Google Scholar] [CrossRef]
- Pearson, J.L.; Lee, S.; Suresh, H.; Low, M.; Nang, M.; Singh, S.; Lamin, F.; Kazzem, M.; Sullivan, S.; Khoo, C.S. The Liquid Chromatographic Determination of Chlorogenic and Caffeic Acids in Xu Duan (Dipsacus Asperoides) Raw Herb. ISRN Anal. Chem. 2014, 2014, 968314. [Google Scholar] [CrossRef]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Ritieni, A. In Vitro Bioaccessibility and Antioxidant Activity of Coffee Silverskin Polyphenolic Extract and Characterization of Bioactive Compounds Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 2132. [Google Scholar] [CrossRef]
- Brzezińska, R.; Wirkowska-Wojdyła, M.; Piasecka, I.; Górska, A. Application of Response Surface Methodology to Optimize the Extraction Process of Bioactive Compounds Obtained from Coffee Silverskin. Appl. Sci. 2023, 13, 5388. [Google Scholar] [CrossRef]
- Panusa, A.; Petrucci, R.; Lavecchia, R.; Zuorro, A. UHPLC-PDA-ESI-TOF/MS Metabolic Profiling and Antioxidant Capacity of Arabica and Robusta Coffee Silverskin: Antioxidants vs Phytotoxins. Food Res. Int. 2017, 99, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Kusumocahyo, S.P.; Widiputri, D.I. Pulverization of Coffee Silverskin Extract as a Source of Antioxidant. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 12 December 2016; Volume 162. [Google Scholar]
- Giordano, M.; Bertolino, M.; Belviso, S.; Ghirardello, D.; Zeppa, G. Effects of Species, Post-Harvest Treatment, and Roasting on Fibre, Volatile Compounds, and Polyphenol Contents in Coffee Silverskin. Foods 2022, 11, 3132. [Google Scholar] [CrossRef]
- Ramos, P.R.; Rodrigues, L.d.C.; Zabot, G.L.; Oliveira, A.L.d. Extraction of Soybean Oil with Pressurized Ethanol: Prospects for a New Processing Approach with an Analysis of the Physical Properties of Crude Oil and Implementation Costs through Scale-Up in an Intermittent Process. Processes 2024, 12, 2224. [Google Scholar] [CrossRef]
- Ferro, D.M.; Mayer, D.A.; Oliveira Müller, C.M.; Ferreira, S.R.S. Scale-up Simulation of PLE Process Applied to Recover Bio-Based Materials from Sida Rhombifolia Leaves. J. Supercrit. Fluids 2020, 166, 105033. [Google Scholar] [CrossRef]
- Fomo, G.; Madzimbamuto, T.N.; Ojumu, T.V. Applications of Nonconventional Green Extraction Technologies in Process Industries: Challenges, Limitations and Perspectives. Sustainability 2020, 12, 5244. [Google Scholar] [CrossRef]
Factor Levels | Temperature (°C) | Ethanol Concertation (%) |
---|---|---|
+a | 190 | 100 |
+1 | 160 | 80 |
0 | 108 | 50 |
−1 | 56 | 20 |
−a | 25 | 0 |
Temperature (°C) | EtOH (%) | Static Time (min) | S/S (g/mL) | Cycles | EY (%) | TEAC (mg TE/g Dry Extract) | TPC (mg GAE/g Dry Extract) | Caffeine (mg CAF/g Dry Extract) | Phenolic Acids (mg CGA eq./g Dry Extract) |
---|---|---|---|---|---|---|---|---|---|
25 | 100 | 25 | 1:50 | 0 | 6.23 | 100.9 | 57.9 | 18.8 | 1.00 |
25 | 100 | 25 | 1:50 | 0 | 6.29 | 111.4 | 55.4 | 18.5 | 0.93 |
190 | 100 | 25 | 1:5 | 2 | 16.9 | 68.7 | 78.7 | 12.8 | 2.34 |
190 | 100 | 25 | 1:5 | 2 | 15.3 | 82.1 | 83.3 | 10.8 | 2.17 |
190 | 0 | 25 | 1:5 | 0 | 29.9 | 23.7 | 84.3 | 21.9 | 0.99 |
190 | 0 | 25 | 1:5 | 0 | 23.3 | 16.9 | 81.5 | 20.4 | 0.29 |
190 | 0 | 5 | 1:50 | 0 | 28.7 | 78.8 | 83.1 | 29.3 | 0.44 |
190 | 0 | 5 | 1:50 | 0 | 17.2 | 67.4 | 87.7 | 21.5 | 0.70 |
25 | 0 | 25 | 1:50 | 2 | 13.2 | 56.9 | 55.2 | 31.9 | 3.44 |
25 | 0 | 25 | 1:50 | 2 | 11.7 | 55.4 | 61.4 | 20.4 | 3.29 |
190 | 100 | 5 | 1:50 | 2 | 15.9 | 144.7 | 86.2 | 23.4 | 2.45 |
190 | 100 | 5 | 1:50 | 2 | 15.1 | 121.9 | 87.6 | 11.5 | 2.37 |
25 | 0 | 5 | 1:5 | 2 | 8.29 | 80.4 | 55.1 | 34.2 | 4.02 |
25 | 0 | 5 | 1:5 | 2 | 6.82 | 72.9 | 53.1 | 31.5 | 3.87 |
25 | 100 | 5 | 1:5 | 0 | 5.66 | 127.3 | 54.3 | 22.9 | 1.20 |
25 | 100 | 5 | 1:5 | 0 | 4.50 | 138.2 | 57.3 | 21.2 | 1.08 |
Response | Source | Sum of Squares | df | Mean Square | F | p-Value Prob > F |
---|---|---|---|---|---|---|
EY (%) | A-Temperature | 638.1 | 1 | 638.1 | 55.6 | <0.0001 |
B-EtOH | 186.1 | 1 | 186.1 | 16.2 | 0.0014 | |
Error | 92.3 | 8 | 11.5 | |||
TEAC (mg TE/g dry extract) | A-Temperature | 2148 | 1 | 2148 | 31.9 | 0.0001 |
B-EtOH | 14,921 | 1 | 14,921 | 221.9 | <0.0001 | |
C-Time | 4541.1 | 1 | 4541 | 67.5 | <0.0001 | |
D-S/S | 1872.3 | 1 | 1872 | 27.8 | 0.0003 | |
Error | 534.5 | 8 | 66.8 | |||
TPC (mg GAE/g dry extract) | A-Temperature | 31,012 | 1 | 3101 | 583.8 | <0.0001 |
D-S/S | 45.8 | 1 | 45.80 | 8.62 | 0.0116 | |
Error | 54.7 | 8 | 6.84 | |||
Caffeine (mg CAF/g dry extract) | A-Temperature | 143.4 | 1 | 143.4 | 9.44 | 0.0097 |
B-EtOH | 314.3 | 1 | 314.2 | 20.6 | 0.0007 | |
C-Time | 100.9 | 1 | 100.9 | 6.64 | 0.0242 | |
Error | 175.8 | 8 | 21.9 | |||
Phenolic Acids (mg CGA eq./g dry extract) | A-Temperature | 3.11 | 1 | 3.11 | 51.7 | <0.0001 |
B-EtOH | 0.77 | 1 | 0.77 | 12.7 | 0.0039 | |
E-Cycles | 18.7 | 1 | 18.7 | 311.9 | <0.0001 | |
Error | 0.32 | 8 | 0.040 |
Parameters | Responses | |||||
---|---|---|---|---|---|---|
Temperature (°C) | EtOH (%) | EY (%) | Trolox (mg TE/g Dry Extract) | TPC (mg GAE/g Dry Extract) | Caffeine (mg CAF/g Dry Extract | Phenolic Acids (mg CGA eq./g Dry Extract |
108 | 100 | 7.4 | 73.5 | 30.2 | 42.6 | 2.2 |
56 | 20 | 11.5 | 63.6 | 57.2 | 30.4 | 7.3 |
25 | 50 | 18.7 | 38.8 | 57.5 | 35.1 | 6.7 |
160 | 20 | 19.5 | 13.6 | 27.3 | 20.8 | 3.0 |
190 | 50 | 26.3 | 27.7 | 58.1 | 36.3 | 8.3 |
160 | 20 | 18.9 | 13.3 | 24.8 | 24.1 | 2.8 |
108 | 50 | 6.8 | 74.9 | 126.0 | 59.4 | 12.2 |
190 | 50 | 29.8 | 35.0 | 63.7 | 30.1 | 6.0 |
160 | 80 | 20.9 | 84.1 | 50.1 | 33.3 | 6.0 |
56 | 80 | 9.4 | 31.7 | 38.8 | 34.8 | 6.8 |
56 | 80 | 10.4 | 29.3 | 62.2 | 40.5 | 5.7 |
56 | 20 | 10.2 | 42.2 | 40.1 | 26.4 | 4.3 |
108 | 0 | 12.1 | 34.8 | 33.4 | 33.7 | 3.7 |
108 | 50 | 7.1 | 77.5 | 103.6 | 68.1 | 13.4 |
108 | 50 | 6.6 | 66.1 | 101.0 | 57.5 | 13.0 |
108 | 100 | 11.4 | 74.7 | 41.2 | 44.4 | 2.5 |
108 | 0 | 9.9 | 29.4 | 25.8 | 25.1 | 2.8 |
160 | 80 | 21.3 | 73.3 | 59.1 | 33.9 | 5.0 |
108 | 50 | 6.6 | 75.3 | 120.0 | 65.5 | 12.9 |
25 | 50 | 15.9 | 45.0 | 79.2 | 42.3 | 9.0 |
Response | Source | Sum of Squares | df | Mean Square | F | p-Value Prob > F |
---|---|---|---|---|---|---|
EY (%) | Model 1 | 875.91 | 4 | 218.9 | 83.9 | <0.0001 |
Temperature | 370.1 | 1 | 370.1 | 141.9 | <0.0001 | |
Ethanol | 18.3 | 1 | 18.3 | 7.02 | 0.0182 | |
Temperature 2 | 537.0 | 1 | 537.0 | 205.9 | <0.0001 | |
Ethanol 2 | 18.0 | 1 | 18.0 | 6.94 | 0.0188 | |
Error | 22.1 | 11 | 2.02 | |||
TEAC (mg TE/g dry extract) | Model 2 | 97,212 | 5 | 1944 | 43.1 | <0.0001 |
Temperature | 754.2 | 1 | 754.2 | 16.7 | 0.0011 | |
Ethanol | 1.80 | 1 | 1.80 | 0.04 | 0.8444 | |
Temperature Ethanol | 3847 | 1 | 3847 | 85.4 | <0.0001 | |
Temperature 2 | 3187 | 1 | 3187 | 70.7 | <0.0001 | |
Ethanol 2 | 987.3 | 1 | 987.3 | 21.9 | 0.0004 | |
Error | 427.3 | 11 | 38.8 | |||
TPC (mg GAE/g dry extract) | Model 3 | 164,903 | 4 | 4122 | 33.9 | <0.0001 |
Temperature | 5112 | 1 | 5112 | 42.0 | <0.0001 | |
Ethanol | 15,488 | 1 | 15,488 | 127.3 | <0.0001 | |
Temperature 2 | 5759 | 1 | 5759 | 47.3 | <0.0001 | |
Ethanol2 | 15,282 | 1 | 15,282 | 125.7 | <0.0001 | |
Error | 1253 | 11 | 114.0 | |||
Caffeine (mg CAF/g dry extract) | Model 4 | 32,164 | 4 | 804.1 | 36.4 | <0.0001 |
Temperature | 1772 | 1 | 1772 | 80.4 | <0.0001 | |
Ethanol | 2249 | 1 | 2249 | 102.0 | <0.0001 | |
Temperature 2 | 2002 | 1 | 2002 | 90.9 | <0.0001 | |
Ethanol 2 | 1909 | 1 | 1909 | 86.6 | <0.0001 | |
Error | 188.5 | 11 | 17.1 | |||
Phenolic Acids (mg chlorogenic acid/g dry extract) | Model 5 | 242.15 | 4 | 60.5 | 42.8 | <0.0001 |
Temperature | 58.3 | 1 | 58.3 | 41.2 | <0.0001 | |
Ethanol | 224.1 | 1 | 224.1 | 158.4 | <0.0001 | |
Temperature 2 | 68.2 | 1 | 68.2 | 48.2 | <0.0001 | |
Ethanol 2 | 232.7 | 1 | 232.7 | 164.5 | <0.0001 | |
Error | 12.2 | 11 | 1.11 |
Results | EY (%) | Trolox (mg TE /g Dry Extract) | TPC (mg GAE/g Dry Extract) | Caffeine (mg CAF/g Dry Extract) | Phenolic Acids (mg CGA eq./g Dry Extract) |
---|---|---|---|---|---|
Predicted | 11.6 | 70.6 | 102.7 | 57.20 | 11.7 |
Actual | 12.1 ± 1.53 | 65.3 ± 5.66 | 88.4 ± 7.19 | 56.7 ± 7.31 | 10.6 ± 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koskinakis, S.E.; Stergiopoulos, C.; Vasileiou, C.; Krokida, M. Sustainable Valorization of Coffee Silverskin Waste: Pressurized Liquid Extraction of Bioactive Compounds. Foods 2025, 14, 615. https://doi.org/10.3390/foods14040615
Koskinakis SE, Stergiopoulos C, Vasileiou C, Krokida M. Sustainable Valorization of Coffee Silverskin Waste: Pressurized Liquid Extraction of Bioactive Compounds. Foods. 2025; 14(4):615. https://doi.org/10.3390/foods14040615
Chicago/Turabian StyleKoskinakis, Sokratis E., Chrysanthos Stergiopoulos, Christoforos Vasileiou, and Magdalini Krokida. 2025. "Sustainable Valorization of Coffee Silverskin Waste: Pressurized Liquid Extraction of Bioactive Compounds" Foods 14, no. 4: 615. https://doi.org/10.3390/foods14040615
APA StyleKoskinakis, S. E., Stergiopoulos, C., Vasileiou, C., & Krokida, M. (2025). Sustainable Valorization of Coffee Silverskin Waste: Pressurized Liquid Extraction of Bioactive Compounds. Foods, 14(4), 615. https://doi.org/10.3390/foods14040615