Innovative Antifungal and Food Preservation Potential of Eucalyptus citriodora Essential Oil in Combination with Modified Potato Peel Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Preparation of Modified Starch
2.3. Characterization of Starch
2.3.1. Color Analysis
2.3.2. Microstructure Analysis
2.3.3. FTIR (Fourier-Transform Infrared Spectroscopy)
2.3.4. Thermo-Gravimetric Analysis
2.4. Extraction of E. citriodora EO
2.5. Characterization of E. citriodora EO
2.5.1. Chemical Composition of Essential Oil
2.5.2. Antifungal Activity
2.5.3. Effect of EO on Fungal Hyphae
2.5.4. Effect of EO on Leakage of Fungal Cellular Constituents
2.6. Preservation of Rice Grains by E. citriodora EO
2.7. Preservation of Peanuts by Modified Potato Peel Starch and E. citriodora EO-Based Coatings
2.8. Statistical Analysis
3. Results
3.1. Starch Extraction
3.2. Characterization of Starch
3.2.1. Color Analysis
3.2.2. Microstructure Analysis
3.2.3. FTIR (Fourier-Transform Infrared Spectroscopy)
3.2.4. TGA (Thermo-Gravimetric Analysis)
3.3. Composition of E. citriodora EO
3.4. Antifungal Activity
3.5. Effect of EO on Fungal Hyphae and Cellular Leakage
3.6. Preservation of Rice Grains by E. citriodora EO
3.7. Preservation of Peanuts by Modified Starch and E. citriodora EO-Based Coatings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EO | Essential oil |
M-PPS | Modified potato peel starch |
GC-MS | Gas chromatography–mass spectrometer |
MIC | Minimum inhibition concentration |
P. griseofulvum | Penicillium griseofulvum |
A. niger | Aspergillus niger |
E. citriodora | Eucalyptus citriodora |
RGI | Radial growth inhibition |
PPW | Potato peel waste |
NS | Native starch |
RS | Resistant starch |
N-PPS | Native potato peel starch |
M-PPS | Modified potato peel starch |
FTIR | Fourier-transform infrared spectroscopy |
TGA | Thermo-gravimetric analysis |
PDA | Potato dextrose agar |
PDB | Potato dextrose broth |
PBS | Phosphate buffer saline |
CI | Contamination index |
References
- Awogbemi, O.; Von Kallon, D.V.; Owoputi, A.O. Biofuel generation from potato peel waste: Current state and prospects. Recycling 2022, 7, 23. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Rodrigues, C.L.; Rezende, C.M.; Salgado, J.C.M.; Souza, M.F.; Ferraz, M.F.; Cunha, L.P. Potato peels as sources of functional compounds for the food industry: A review. Trends Food Sci. Technol. 2020, 103, 118–129. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Puranik, N.M.; Jambhulkar, S.J.; Kulkarni, B.D. Valorization of potato peel: A biorefinery approach. Crit. Rev. Biotechnol. 2018, 38, 218–230. [Google Scholar] [CrossRef]
- Khanal, S.; Kumar, M.; Singh, A.; Patel, R.; Motelica, L.; Smith, J. Sustainable utilization and valorization of potato waste: State of the art, challenges, and perspectives. Biomass Convers. Biorefin. 2024, 14, 23335–23360. [Google Scholar] [CrossRef]
- Mushtaq, Q.; Joly, N.; Martin, P.; Qazi, J.I. Optimization of alkali treatment for production of fermentable sugars and phenolic compounds from potato peel waste using topographical characterization and FTIR spectroscopy. Molecules 2023, 28, 7250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, H.; Rhim, J.-W.; Cao, J.; Jiang, W. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem. 2022, 367, 130671. [Google Scholar] [CrossRef] [PubMed]
- Merino, D.; Paul, U.C.; Athanassiou, A. Bio-based plastic films prepared from potato peels using mild acid hydrolysis followed by plasticization with a polyglycerol. Food Packag. Shelf Life 2021, 29, 100707. [Google Scholar] [CrossRef]
- Taha, T.H.; Abu-Saied, M.A.; Elnouby, M.; Hashem, M.; Alamri, S.; Desouky, E.E.; Morsy, K. Profitable exploitation of biodegradable polymer including chitosan blended potato peels’ starch waste as an alternative source of petroleum plastics. Biomass Convers. Biorefin. 2024, 14, 207–215. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Zhang, L.; Chen, F.; Li, J. Preparation and properties of biodegradable films made of cationic potato-peel starch and loaded with curcumin. Food Hydrocoll. 2022, 130, 107690. [Google Scholar] [CrossRef]
- Braşoveanu, M.; Nemţanu, M.R. Dual Modification of Starch by Physical Methods Based on Corona Electrical Discharge and Ionizing Radiation: Synergistic Impact on Rheological Behavior. Foods 2022, 11, 2479. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.M.; El Halal, S.L.M.; Dias, A.R.G.; da Rosa Zavareze, E. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr. Pol. 2021, 274, 118665. [Google Scholar] [CrossRef] [PubMed]
- Motelica, L.; Popa, M.; Iordache, O.; Gherghel, R.; Boros, A.; Mocanu, V. Antibacterial biodegradable films based on alginate with silver nanoparticles and lemongrass essential oil–innovative packaging for cheese. Nanomaterials 2021, 11, 2377. [Google Scholar] [CrossRef]
- Omerović, N.; Čolaković, B.; Jokić, B.; Čajović, M.; Čolaković, S. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2428–2454. [Google Scholar] [CrossRef] [PubMed]
- Motelica, L.; Popa, M.; Iordache, O.; Gherghel, R.; Boros, A.; Mocanu, V. Antimicrobial hydroxyethyl-cellulose-based composite films with zinc oxide and mesoporous silica loaded with cinnamon essential oil. Pharmaceutics 2024, 16, 1225. [Google Scholar] [CrossRef]
- Khalid, S.; Ali, S.M.; Siddique, Y.; Sadiq, M.B. Development of biodegradable coatings by the incorporation of essential oils derived from food waste: A new sustainable packaging approach. Packag. Technol. Sci. 2024, 37, 167–185. [Google Scholar] [CrossRef]
- Zanela, J.; dos Reis, A.S.; da Silva, F.A.; Rodrigues, M.C.; de Almeida, J.A.P. Active Biodegradable Starch/PBAT-poly (butylene adipate-co-terephthalate) Film with Eucalyptus citriodora Essential Oil Incorporation. Foods 2024, 13, 2104. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Siddique, Y.; Mehnaz, S.; Sadiq, M.B. Extraction and characterization of starch from low-grade potatoes and formulation of gluten-free cookies containing modified potato starch. Heliyon 2023, 9. [Google Scholar] [CrossRef]
- Yu, S.S.; Ahn, H.S.; Park, S.H. Heat penetration and quality analysis of retort processed vegetables for home meal replacement foods. Food Sci. Biotechnol. 2023, 32, 1057–1065. [Google Scholar] [CrossRef]
- Thakur, M.; Rai, A.K.; Mishra, B.B.; Singh, S.P. Novel insight into valorization of potato peel biomass into type III resistant starch and maltooligosaccharide molecules. Environ. Technol. Innov. 2021, 24, 101827. [Google Scholar] [CrossRef]
- Řebíčková, K.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Comparison of Chemical Composition and Biological Properties of Essential Oils Obtained by Hydrodistillation and Steam Distillation of Laurus nobilis L. Plant Foods Human Nutr. 2020, 75, 495–504. [Google Scholar] [CrossRef]
- Ibrahim, N.B.B.R.; Puchooa, D.; Govinden-Soulange, J.; Facknath, S. Chemical profiling and biological activity of Cassia abbreviata Oliv. S. Afr. J. Bot. 2022, 146, 325–339. [Google Scholar] [CrossRef]
- Sheikh, M.; Mehnaz, S.; Sadiq, M.B. Prevalence of fungi in fresh tomatoes and their control by chitosan and sweet orange (Citrus sinensis) peel essential oil coating. J. Sci. Food Agric. 2021, 101, 6248–6257. [Google Scholar] [CrossRef]
- Sriwattanachai, S.; Sadiq, M.B.; Anal, A.K. Synergistic antifungal effects of thyme essential oil and Lactobacillus plantarum cell-free supernatant against Penicillium spp. and in situ effects. J. Food Process Preserv. 2018, 42, e13400. [Google Scholar] [CrossRef]
- Danielewicz, J.; Nowak, K.; Wójkowska, M.; Piórkowska, A.; Kopeć, M. Impact of Various Essential Oils on the Development of Pathogens of the Fusarium Genus and on Health and Germination Parameters of Winter Wheat and Maize. Molecules 2024, 29, 2376. [Google Scholar] [CrossRef]
- Oyom, W.; Mienoh, R.; Ndah, C.H.; Asong, A.E.; Mbong, E.N. Effects of modified sweet potato starch edible coating incorporated with cumin essential oil on storage quality of ‘early crisp’. LWT 2022, 153, 112475. [Google Scholar] [CrossRef]
- Chein, S.H.; Sadiq, M.B.; Anal, A.K. Antifungal effects of chitosan films incorporated with essential oils and control of fungal contamination in peanut kernels. J. Food Process Preserv. 2019, 43, e14235. [Google Scholar] [CrossRef]
- Shrestha, S.; Sadiq, M.B.; Anal, A.K. Culled banana resistant starch-soy protein isolate conjugate based emulsion enriched with astaxanthin to enhance its stability. Int. J. Biol. Macromol. 2018, 120, 449–459. [Google Scholar] [CrossRef]
- Nikonenko, N.A.; Buslov, D.K.; Sushko, N.I.; Zhbankov, R.G. Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides. J. Mol. Struct. 2005, 752, 20–24. [Google Scholar] [CrossRef]
- Surawan, F.E.D.; Harmayani, E.; Marseno, D.W. Effect of the Autoclaving-Cooling Cycle on the Chemical, Morphological, Color, and Pasting Properties of Foxtail Millet Starch. Prev. Nutr. Food Sci. 2024, 29, 365. [Google Scholar] [CrossRef]
- Kalita, D.; Kaushik, N.; Mahanta, C.L. Physicochemical, morphological, thermal and IR spectral changes in the properties of waxy rice starch modified with vinyl acetate. J. Food Sci. Technol. 2014, 51, 2790–2796. [Google Scholar] [CrossRef]
- Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int. J. Biol. Macromol. 2002, 31, 79–85. [Google Scholar] [CrossRef]
- Genkina, N.K.; Kozlov, S.S.; Martirosyan, V.V.; Kiseleva, V.I. Thermal behavior of maize starches with different amylose/amylopectin ratio studied by DSC analysis. Starch-Stärke 2014, 66, 700–706. [Google Scholar] [CrossRef]
- Amri, I.; Chehri, H.; Mnif, W.; Hamdi, S. Essential Oils and Biological Activities of Eucalyptus falcata, E. sideroxylon and E. citriodora Growing in Tunisia. Plants 2023, 12, 816. [Google Scholar] [CrossRef]
- Souza, E.J.D.d.; Kringel, D.H.; Lima Costa, I.H.d.; Hackbart, H.C.d.S.; Cantillano, R.F.F.; Ueno, B.; Dias, A.R.G.; Zavareze, E.d.R. Antifungal potential of essential oils from different botanical sources against Penicillium digitatum: Chemical composition and antifungal mechanisms of action by direct contact and volatile. Nat. Prod. Res. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cristani, M.; Di Mattia, F.; Di Tommaso, M.; Di Vincenzo, F.; Conte, L.; Dugo, P.; Dugo, G.; Mondello, F. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 630. [Google Scholar] [CrossRef]
- Zulu, L.; Maphosa, F.P.; Msimange, S.G.; Kfir, S.C.; du Plessis, D.J. Antifungal effects of seven plant essential oils against Penicillium digitatum. Chem. Biol. Technol. Agric. 2023, 10, 82. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Shahi, S.K.; Patra, M.; Shukla, A.C.; Dikshit, A. Use of essential oil as botanical-pesticide against post harvest spoilage in Malus pumilo fruit. BioControl 2003, 48, 223–232. [Google Scholar] [CrossRef]
- Sapper, M.; Palou, L.; Pérez-Gago, M.B.; Chiralt, A. Antifungal starch–gellan edible coatings with thyme essential oil for the postharvest preservation of apple and persimmon. Coatings 2019, 9, 333. [Google Scholar] [CrossRef]
Peak # | Retention Time (mins) | % of Total | Compound | Molecular Formula |
---|---|---|---|---|
1 | 6.848 | 1.236 | Cyclohexene, 4-methylene-1-(1-methylethyl) | C10H16 |
2 | 7.688 | 0.778 | Bicyclo[3.1.0]hex-2-ene, 4-methyl-1-(1-methylethyl) | C10H16 |
3 | 8.733 | 4.610 | Eucalyptol | C10H18O |
4 | 9.199 | 0.714 | (+)-4-Carene | C10H16 |
5 | 9.718 | 1.315 | (+)-4-Carene | C10H16 |
6 | 11.005 | 58.214 * | Citronellal * | C10H18O |
7 | 11.198 | 0.724 | Cyclohexanol, 5-methyl-2-(1-methylethenyl) | C10H18O |
8 | 12.062 | 13.805 | Citronellol | C10H20O |
9 | 13.760 | 9.790 | 2,6-Octadiene, 2,6-dimethyl | C10H18 |
10 | 14.793 | 8.271 | Caryophyllene | C15H24 |
11 | 15.192 | 0.543 | Humulene | C15H24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Fatima, S.; Sadiq, M.B. Innovative Antifungal and Food Preservation Potential of Eucalyptus citriodora Essential Oil in Combination with Modified Potato Peel Starch. Foods 2025, 14, 602. https://doi.org/10.3390/foods14040602
Khan N, Fatima S, Sadiq MB. Innovative Antifungal and Food Preservation Potential of Eucalyptus citriodora Essential Oil in Combination with Modified Potato Peel Starch. Foods. 2025; 14(4):602. https://doi.org/10.3390/foods14040602
Chicago/Turabian StyleKhan, Nabila, Saeeda Fatima, and Muhammad Bilal Sadiq. 2025. "Innovative Antifungal and Food Preservation Potential of Eucalyptus citriodora Essential Oil in Combination with Modified Potato Peel Starch" Foods 14, no. 4: 602. https://doi.org/10.3390/foods14040602
APA StyleKhan, N., Fatima, S., & Sadiq, M. B. (2025). Innovative Antifungal and Food Preservation Potential of Eucalyptus citriodora Essential Oil in Combination with Modified Potato Peel Starch. Foods, 14(4), 602. https://doi.org/10.3390/foods14040602