Indoor Recirculating Aquaculture Versus Traditional Ponds: Effects on Muscle Nutrient Profiles, Texture, and Flavour Compounds in Largemouth Bass (Micropterus salmoides)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Schematic Diagram of F-RAS
2.3. Morphological Characteristics of Largemouth Bass
2.4. Physical Properties of Dorsal Muscle
2.5. Nutritional Composition of Dorsal Muscle
2.6. Volatile Compound Analysis
2.7. Statistical Analysis
3. Results
3.1. Morphological Characteristics
3.2. WHC
3.3. Textural Characteristics
3.4. Muscle Fibre Characteristics
3.5. Muscle Nutrient Composition
3.6. Comparative Analysis of Muscle Principal Components
3.7. Fingerprinting and Qualitative Analysis of Muscle Composition
4. Discussion
4.1. Effects of Different Aquaculture Systems on Physical Properties of Largemouth Bass Muscle
4.2. Effects of Different Aquaculture Systems on Nutrient Composition of Largemouth Bass Muscle
4.3. Effects of Different Aquaculture Systems on Volatile Compounds in Largemouth Bass Muscle
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| F-RAS | Factory-based recirculating aquaculture system |
| TP | Traditional pond |
| WHC | Water-holding capacity |
| ΣMUFA | The content of monounsaturated fatty acids |
| ΣPUFA | The content of polyunsaturated fatty acids |
| Σn-6 | The total n-6 fatty acids |
| Σn-3 | The total n-3 fatty acids |
| EPA | C20:5n-3 |
| DHA | C22:6n-3 |
| EAA | The total essential amino acids |
| UAA | The total umami amino acids |
| NEAA | The total nonessential amino acids |
| PCA | Principal component analysis |
References
- FAO. The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2024: Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Tellbüscher, A.A.; Dvořák, P.; Roy, K.; Mráz, J. Feeding value of low opportunity cost biomasses (agri-food by-products) for development of circular pond fish feeds: An evaluation with common carp (Cyprinus carpio). Aquac. Rep. 2025, 42, 102753. [Google Scholar] [CrossRef]
- Damsgård, B.; Bjorklund, F.; Johnsen, H.K.; Toften, H. Short- and long-term effects of fish density and specific water flow on the welfare of Atlantic cod, Gadus morhua. Aquaculture 2011, 322, 184–190. [Google Scholar] [CrossRef]
- Munni, M.A.; Fardus, Z.; Mia, M.Y.; Afrin, R. Assessment of pond water quality for fish culture: A case study of Santosh region in Tangail, Bangladesh. J. Environ. Sci. Nat. Resour. 2015, 6, 157–162. [Google Scholar] [CrossRef]
- Almeida, D.B.; Magalhães, C.; Sousa, Z.; Borges, M.T.; Silva, E.; Blanquet, I.; Mucha, A.P. Microbial community dynamics in a hatchery recirculating aquaculture system (RAS) of sole (Solea senegalensis). Aquaculture 2021, 539, 736592. [Google Scholar] [CrossRef]
- Sarosh, S.; Kulkarni, R.M.; Varma, E.; Sirivibha, S.P.; Ramaswami, S. Recirculating aquaculture system and nitrification: A review. J. Indian Inst. Sci. 2024, 104, 869–892. [Google Scholar] [CrossRef]
- Gupta, S.; Makridis, P.; Henry, I.; Velle-George, M.; Ribicic, D.; Bhatnagar, A.; Skalska-Tuomi, K.; Daneshvar, E.; Ciani, E.; Persson, D.; et al. Recent developments in recirculating aquaculture systems: A review. Aquac Res. 2024, 2024, 6096671. [Google Scholar] [CrossRef]
- Liu, L.; Asche, F. Risk analysis for shrimp in a recirculating aquaculture system. Aquaculture 2026, 614, 743467. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Li, G.; Wu, H.B.; Liu, X.G.; Yao, Y.H.; Tao, L.; Liu, H. An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production. Aquac. Eng. 2011, 45, 93–102. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Liu, C.; Ma, F.; Huang, J.; Jin, Z.; Zhang, L.; Feng, D.; Zhang, M.; Yu, M.; et al. Multi-omics reveals the molecular mechanism of muscle quality changes in common carp (Cyprinus carpio) under two aquaculture systems. Comp. Biochem. Physiol. D Genom. Proteom. 2024, 52, 101290. [Google Scholar] [CrossRef]
- Feng, R.; Feng, D.; Wang, L.; Zhang, L.; Liu, C.; Ma, F.; Zhang, M.; Yu, M.; Jiang, H.; Qiao, Z.; et al. Comparative analysis of nutritional quality, serum biochemical indices, and visceral peritoneum of grass carp (Ctenopharyngodon idellus) fed with two distinct aquaculture systems. Foods 2024, 13, 1248. [Google Scholar] [CrossRef]
- Yang, S.; Ma, Y.; Lou, X.; Zhou, Z.; Zhang, H.; Yi, S.; Cheng, Y.; Qian, S.; Huang, M.; Fei, H. The role of TNF-α in the phagocytosis of largemouth bass (Micropterus salmoides) leukocytes. Fish Shellfish Immunol. 2023, 132, 108488. [Google Scholar] [CrossRef]
- Wang, D.; Yao, H.; Li, Y.-H.; Xu, Y.-J.; Ma, X.-F.; Wang, H.-P. Global diversity and genetic landscape of natural populations and hatchery stocks of largemouth bass Micropterus salmoides across American and Asian regions. Sci. Rep. 2019, 9, 16697. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Xu, J.; Feng, D.; Zheng, J.; Jin, Z.; Ma, F.; Zhang, M.; Yu, M.; Jiang, H.; et al. Effects of varied exercise intensities on growth, muscle quality, and volatile compounds in largemouth bass (Micropterus salmoides) cultured in recirculating aquaculture system. Aquaculture 2024, 592, 741172. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, J.; Pu, D.; Li, P.; Wei, X.; Li, D.; Gao, L.; Zhai, X.; Zhao, C.; Du, Y. Comparative evaluation of nutritional quality and flavor characteristics for Micropterus salmoides muscle in different aquaculture systems. Food Chem. X 2024, 24, 101787. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Chen, Y.; Li, C. Environmental factor impacts on behavioral and physiological responses of aquaculture species in recirculating aquaculture systems: Mechanisms and regulation. Aquac. Rep. 2025, 44, 103036. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Jia, S.P.; Wang, L.; Zhang, J.M.; Zhang, L.; Ma, F.R.; Huang, M.L.; Liu, S.S.; Gong, J.H.; Zhang, M.; Yu, M.; et al. Comparative study on the morphological characteristics and nutritional quality of largemouth bass (Micropterus salmoides) cultured in an aquaculture system using land-based container with recycling water and a traditional pond system. Aquaculture 2022, 549, 737721. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Y.; Al-Dalali, S.; Yan, W.; Cui, Y.; Yang, Z.; Sun, H.; Mao, R. Effect of different processing steps on the volatile flavor profiles of tea–fragrant chicken determined by HS–GC–IMS and chemometrics. J. Food Meas. Charact. 2025, 19, 3319–3333. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Yin, T.; You, J.; Liu, R.; Huang, Q.; Shi, L.; Wang, L.; Liao, T.; Wang, W.; et al. Recent understanding of stress response on muscle quality of fish: From the perspective of industrial chain. Trends Food Sci. Technol. 2023, 140, 104145. [Google Scholar] [CrossRef]
- Li, X.M.; Yuan, J.M.; Fu, S.J.; Zhang, Y.G. The effect of sustained swimming exercise on the growth performance, muscle cellularity, and flesh quality of juvenile qingbo (Spinibarbus sinensis). Aquaculture 2016, 465, 287–295. [Google Scholar] [CrossRef]
- Zhu, T.; Yang, R.; Xiao, R.; Ni, W.; Liu, L.; Zhao, J.; Ye, Z. Effect of swimming training on the flesh quality in Chinese perch (Siniperca chuatsi) and its relationship with muscle metabolism. Aquaculture 2023, 577, 739926. [Google Scholar] [CrossRef]
- Harimana, Y.; Tang, X.; Xu, P.; Xu, G.; Karangwa, E.; Zhang, K.; Sun, Y.; Li, Y.; Ma, S.; Uriho, A.; et al. Effect of long-term moderate exercise on muscle cellularity and texture, antioxidant activities, tissue composition, freshness indicators, and flavor characteristics in largemouth bass (Micropterus salmoides). Aquaculture 2019, 510, 100–108. [Google Scholar] [CrossRef]
- Erikson, U.; Misimi, E.; Gallart-Jornet, L. Superchilling of rested Atlantic salmon: Different chilling strategies and effects on fish and fillet quality. Food Chem. 2011, 127, 1427–1437. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, Y.; Wang, G.; Zheng, G.; Zou, S. Study on flesh quality and physiological response of grass carp cultivated at higher density in-pond raceway system. J. World Aquac. Soc. 2022, 54, 686–700. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, W.; Zhang, H.; Chai, Y.; Ruan, G. Comparison of muscle quality of the yellow catfish cultured in in-pond raceway systems and traditional ponds. Water 2022, 14, 1223. [Google Scholar] [CrossRef]
- Li, X.; Zheng, S.; Jia, S.; Song, F.; Zhou, C.; Wu, G. Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides). Amino Acids 2020, 52, 1017–1032. [Google Scholar] [CrossRef]
- Li, X.; Zheng, S.; Han, T.; Song, F.; Wu, G. Effects of dietary protein intake on the oxidation of glutamate, glutamine, glucose, and palmitate in tissues of largemouth bass (Micropterus salmoides). Amino Acids 2020, 52, 1491–1503. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, L.; Yang, Y.; He, Q.; Liu, Q.; Luo, J.; Luo, W.; Zhang, X.; Yan, T.; Yang, S. Exercise training promotes growth through hypertrophy and enhances capillarization and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Aquaculture 2023, 562, 738850. [Google Scholar] [CrossRef]
- Nirmal, S.; Olatunde, O.O.; Medhe, S.; Vitti, S.; Khemtong, C.; Nirmal, N.P. Betalains alleviate exercise-induced oxidative stress, inflammation, and fatigue and improve sports performance: An update on recent advancement. Curr. Nutr. Rep. 2023, 12, 778–787. [Google Scholar] [CrossRef]
- Wang, X.Q.; Yuan, B.; Zhang, F.L.; Liu, C.G.; Auesukaree, C.; Zhao, X.Q. Novel roles of the Greatwall kinase Rim15 in yeast oxidative stress tolerance through mediating antioxidant systems and transcriptional regulation. Antioxidants 2024, 13, 260. [Google Scholar] [CrossRef]
- Calder, P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef] [PubMed]
- Steffens, W. Aquaculture produces wholesome food: Cultured fish as a valuable source of n-3 fatty acids. Aquacult. Int. 2016, 24, 787–802. [Google Scholar] [CrossRef]
- Rasmussen, R.S.; Heinrich, R.M.T.; Hyldig, G.; Jacobsen, C.; Jokumsen, A. Moderate exercise of rainbow trout induces only minor differences in fatty acid profile, texture, white muscle fibres, and proximate chemical composition of fillets. Aquaculture 2011, 314, 159–164. [Google Scholar] [CrossRef]
- Li, C.; Cui, Q.; Li, L.; Huang, H.; Chen, S.; Zhao, Y.; Wang, Y. Formation and improvement mechanism of physical property and volatile flavor of fermented tilapia surimi by newly isolated lactic acid bacteria based on two dimensional correlation networks. Food Chem. 2024, 440, 138260. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, S. Higher straight-chain aliphatic aldehydes: Importance as odor-active volatiles in human foods and issues for future research. J. Agric. Food Chem. 2019, 67, 4720–4725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xiong, S.; Yu, X.; An, Y. Fishy odorants in pre-processed fish fillet and surimi products made from freshwater fish: Formation mechanism and control methods. Trends Food Sci. Technol. 2023, 142, 104212. [Google Scholar] [CrossRef]
- Chen, L.; Liu, R.; Wu, M.; Ge, Q.; Yu, H. A review on aroma-active compounds derived from branched-chain amino acid in fermented meat products: Flavor contribution, formation pathways, and enhancement strategies. Trends Food Sci. Technol. 2024, 145, 104371. [Google Scholar] [CrossRef]
- Cai, L.; Tong, F.; Tang, T.; Ao, Z.; Wei, Z.; Yang, F.; Shu, Y.; Liu, S.; Mai, K. Comparative evaluation of nutritional value and flavor quality of muscle in triploid and diploid common carp: Application of genetic improvement in fish quality. Aquaculture 2021, 541, 736780. [Google Scholar] [CrossRef]
- Song, X.; Canellas, E.; Nerín, C. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction-gas chromatography-mass spectrometry and chemometrics. Food Chem. 2021, 342, 128341. [Google Scholar] [CrossRef]
- Wang, C.; Yu, J.; Gallagher, D.L.; Byrd, J.; Yao, W.; Wang, Q.; Guo, Q.; Dietrich, A.M.; Yang, M. Pyrazines: A diverse class of earthy-musty odorants impacting drinking water quality and consumer satisfaction. Water Res. 2020, 182, 115971. [Google Scholar] [CrossRef]
- Mao, J.; Fu, J.; Zhu, Z.; Cao, Z.; Zhang, M.; Yuan, Y.; Chai, T.; Chen, Y. Flavor characteristics of semi-dried yellow croaker (Pseudosciaena crocea) with KCl and ultrasound under sodium-reduced conditions before and after low temperature vacuum heating. Food Chem. 2023, 426, 136574. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Li, A.H.; Dizy, M.; Ullah, N.; Sun, W.X.; Tao, Y.S. Evaluation of aroma enhancement for “Ecolly” dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Food Chem. 2017, 228, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, Y.; Bai, F.; Wang, J.; Gao, R.; Zhao, Y.; Xu, X. Contribution of phospholipase B to the formation of characteristic flavor in steamed sturgeon meat. Food Chem. X 2024, 22, 101391. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Liang, J.; Hong, H.; Luo, Y.; Li, B.; Tan, Y. From formation to solutions: Off-flavors and innovative removal strategies for farmed freshwater fish. Trends Food Sci. Technol. 2024, 144, 104318. [Google Scholar] [CrossRef]
- Dai, W.; He, S.; Huang, L.; Lin, S.; Zhang, M.; Chi, C.; Chen, H. Strategies to reduce fishy odor in aquatic products: Focusing on formation mechanism and mitigation means. Food Chem. 2024, 444, 138625. [Google Scholar] [CrossRef]





| Parameters | TP | F-RAS |
|---|---|---|
| IBW (g) | 16 ± 0.19 | 16 ± 0.58 |
| FBW (g) | 309.25 ± 20.62 | 319.15 ± 9.18 |
| BL (cm) | 23.13 ± 0.54 | 23.14 ± 0.25 |
| CF (g/m3) | 2.44 ± 0.05 | 2.58 ± 0.06 |
| Aquaculture System | Short Diameter/µm | Long Diameter/µm | Density/(n/mm2) |
|---|---|---|---|
| TP | 112.53 ± 0.55 ** | 139.60 ± 2.42 ** | 126.97 ± 2.18 ** |
| F-RAS | 81.03 ± 3.55 | 115.11 ± 1.48 | 169.65 ± 8.54 |
| Parameters | TP | F-RAS |
|---|---|---|
| Moisture | 76.70 ± 0.19 | 77.09 ± 0.78 |
| Ash | 1.16 ± 0.01 | 1.17 ± 0.05 |
| Crude lipid | 2.60 ± 0.03 | 3.02 ± 0.40 |
| Crude protein | 18.50 ± 0.06 * | 20.04 ± 0.33 |
| Fatty Acids | TP | F-RAS |
|---|---|---|
| C10:0 | 0.49 ± 0.03 ** | 1.19 ± 0.12 |
| C12:0 | 0.70 ± 0.04 ** | 1.61 ± 0.12 |
| C14:0 | 1.84 ± 0.12 ** | 2.65 ± 0.10 |
| C15:0 | 0.26 ± 0.01 | 0.30 ± 0.05 |
| C16:0 | 20.42 ± 0.81 | 18.23 ± 0.08 |
| C18:0 | 5.64 ± 0.18 * | 7.52 ± 0.63 |
| C20:0 | 0.31 ± 0.01 | 0.28 ± 0.05 |
| ΣSFA | 31.79 ± 0.91 | 29.67 ± 0.87 |
| C15:1 | 0.23 ± 0.09 | 0.53 ± 0.20 |
| C16:1 | 3.67 ± 0.12 * | 3.06 ± 0.24 |
| C18:1n-9c | 29.22 ± 0.32 ** | 24.72 ± 0.20 |
| C20:1 | 1.00 ± 0.01 * | 0.87 ± 0.04 |
| C22:1n-9 | 0.64 ± 0.01 ** | 0.90 ± 0.01 |
| C24:1n-9 | 0.21 ± 0.01 * | 0.41 ± 0.05 |
| ΣMUFA | 34.98 ± 0.44 ** | 30.48 ± 0.25 |
| C18:2n-6c | 23.97 ± 0.30 ** | 21.45 ± 0.32 |
| C18:3n-3 | 2.10 ± 0.05 * | 1.69 ± 0.08 |
| C20:2 | 0.55 ± 0.01 ** | 0.60 ± 0.01 |
| C20:3n-6 | 0.59 ± 0.02 ** | 1.21 ± 0.05 |
| C20:5n-3 (EPA) | 0.94 ± 0.02 ** | 1.48 ± 0.06 |
| C22:6n-3 (DHA) | 6.36 ± 0.08 ** | 10.84 ± 0.16 |
| ΣPUFA | 34.50 ± 0.47 * | 37.26 ± 0.68 |
| EPA + DHA | 7.30 ± 0.10 ** | 12.31 ± 0.20 |
| Σn-3 | 9.40 ± 0.15 ** | 14.01 ± 0.24 |
| Σn-6 | 24.55 ± 0.33 * | 22.66 ± 0.46 |
| Amino Acids | TP | F-RAS |
|---|---|---|
| Aspartic acid | 10.24 ± 0.04 | 10.22 ± 0.04 |
| Threonine | 4.63 ± 0.04 | 4.67 ± 0.04 |
| Serine | 3.38 ± 0.07 | 3.57 ± 0.10 |
| Glutamate | 16.10 ± 0.05 * | 15.83 ± 0.06 |
| Glycine | 4.99 ± 0.04 | 5.14 ± 0.05 |
| Alanine | 6.36 ± 0.01 | 6.38 ± 0.04 |
| Cysteine | 1.18 ± 0.01 * | 1.22 ± 0.01 |
| Valine | 5.23 ± 0.04 | 5.22 ± 0.02 |
| Methionine | 3.27 ± 0.03 | 3.29 ± 0.01 |
| Isoleucine | 5.06 ± 0.03 | 5.07 ± 0.04 |
| Leucine | 8.63 ± 0.03 * | 8.51 ± 0.02 |
| Tyrosine | 3.50 ± 0.05 | 3.65 ± 0.03 |
| Phenylalanine | 4.77 ± 0.02 | 4.67 ± 0.04 |
| Lysine | 10.26 ± 0.07 | 10.27 ± 0.07 |
| Histidine | 2.34 ± 0.03 * | 2.43 ± 0.02 |
| Arginine | 6.46 ± 0.05 | 6.37 ± 0.05 |
| Proline | 3.59 ± 0.02 * | 3.52 ± 0.02 |
| ΣEAA | 50.65 ± 0.04 | 50.49 ± 0.06 |
| ΣNEAA | 11.66 ± 0.10 | 11.94 ± 0.11 |
| ΣUAA | 37.69 ± 0.11 | 37.57 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, D.; Feng, R.; Liu, C.; Wang, L.; Li, Y.; Zhang, M.; Yu, M.; Jiang, H.; Qiao, Z.; Wang, L. Indoor Recirculating Aquaculture Versus Traditional Ponds: Effects on Muscle Nutrient Profiles, Texture, and Flavour Compounds in Largemouth Bass (Micropterus salmoides). Foods 2025, 14, 4339. https://doi.org/10.3390/foods14244339
Feng D, Feng R, Liu C, Wang L, Li Y, Zhang M, Yu M, Jiang H, Qiao Z, Wang L. Indoor Recirculating Aquaculture Versus Traditional Ponds: Effects on Muscle Nutrient Profiles, Texture, and Flavour Compounds in Largemouth Bass (Micropterus salmoides). Foods. 2025; 14(24):4339. https://doi.org/10.3390/foods14244339
Chicago/Turabian StyleFeng, Di, Rui Feng, Chang Liu, Lingran Wang, Yongjing Li, Meng Zhang, Miao Yu, Hongxia Jiang, Zhigang Qiao, and Lei Wang. 2025. "Indoor Recirculating Aquaculture Versus Traditional Ponds: Effects on Muscle Nutrient Profiles, Texture, and Flavour Compounds in Largemouth Bass (Micropterus salmoides)" Foods 14, no. 24: 4339. https://doi.org/10.3390/foods14244339
APA StyleFeng, D., Feng, R., Liu, C., Wang, L., Li, Y., Zhang, M., Yu, M., Jiang, H., Qiao, Z., & Wang, L. (2025). Indoor Recirculating Aquaculture Versus Traditional Ponds: Effects on Muscle Nutrient Profiles, Texture, and Flavour Compounds in Largemouth Bass (Micropterus salmoides). Foods, 14(24), 4339. https://doi.org/10.3390/foods14244339
