Nutritional, Bio-Functional, and Antioxidant Properties of Enzymatic Hydrolysates Derived from Spirulina platensis Proteins
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Proximate Analysis
2.3. Formation of S. platensis Protein Extract (SPPE)
2.4. Enzyme Concentration Optimization and Formation of S. platensis Protein Hydrolysate (SPPH)
2.5. Degree of Hydrolysis
2.6. SDS-PAGE
2.7. Solubility and Heat Stability
2.8. Nutritional Significance and Amino Acid Distribution
2.9. Antioxidant Potential
2.9.1. Diphenyl-1-Picrylhydrazyl Assay (DPPH Assay)
2.9.2. Ferric-Reducing Antioxidant Power Assay (FRAP)
2.9.3. Thiobarbituric Acid Reactive Substances (TBARS) Assay
2.10. Qualitative and Quantitative Phytochemical Analyses
2.10.1. Total Flavonoid Content (TFC)
2.10.2. Terpenoids
initial weight of sample (Wi)
2.10.3. Total Phenolic Content (TPC)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis of S. platensis (Whole Powder)
3.2. Protein Extraction and Yield
3.3. Enzyme Concentration Optimization for S. platensis Protein Hydrolysis
3.4. Degree of Hydrolysis
3.5. SDS-PAGE of SPPE and SPPH
3.6. Amino Acid Composition and Nutritional Significance
3.7. Solubility and Heat Stability of SPPE and SPPH
3.8. Antioxidant Potential of SPPE and SPPH
3.9. Phytochemical Analysis of SPPE and SPPH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PDCAAS | Protein digestibility-corrected amino acid score |
| BV | Biological value |
| ROS | Reactive oxygen species |
| NCDs | Non-communicable diseases |
| SPP | Spirulina platensis powder |
| NFE | Nitrogen-Free Extract |
| SPPE | Spirulina platensis protein extract |
| SPPH | Spirulina Platensis protein hydrolysate |
| DH | Degree of hydrolysis |
| PAGE | Polyacrylamide gel electrophoresis |
| AAS | Amino acid score |
| PER | Protein efficiency ratios |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| FRAP | Ferric reducing antioxidant power assay |
| TBARS | Thiobarbituric acid reactive substances |
References
- Michalak, M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Lafarga, T.; Sánchez-Zurano, A.; Villaró, S.; Morillas-España, A.; Acién, G. Industrial production of spirulina as a protein source for bioactive peptide generation. Trends Food Sci. Technol. 2021, 116, 176–185. [Google Scholar] [CrossRef]
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal proteins: Production strategies and nutritional and functional properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef]
- Eilam, Y.; Khattib, H.; Pintel, N.; Avni, D. Microalgae—Sustainable source for alternative proteins and functional ingredients promoting gut and liver health. Glob. Chall. 2023, 7, 2200177. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Kraemer, K.; Somoza, V. The true value of Spirulina. J. Agric. Food Chem. 2020, 68, 4109–4115. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Chen, E.; Zhang, X.; Li, D.; Wang, Q.; Sun, Y. Nutritional value and physicochemical characteristics of alternative protein for meat and dairy—A review. Foods 2022, 11, 3326. [Google Scholar] [CrossRef]
- Khalid, S.; Chaudhary, K.; Aziz, H.; Amin, S.; Sipra, H.M.; Ansar, S.; Rasheed, H.; Naeem, M.; Onyeaka, H. Trends in extracting protein from microalgae Spirulina platensis, using innovative extraction techniques: Mechanisms, potentials, and limitations. Crit. Rev. Food Sci. Nutr. 2025, 65, 4293–4309. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, K.A.; Herath, K.; Kim, Y.-S.; Jeon, Y.-J.; Kim, S.-K. Enzyme-assisted extraction of bioactive compounds from seaweeds and microalgae. Trends Anal. Chem. 2023, 167, 117266. [Google Scholar] [CrossRef]
- Ashraf, A.; Guo, Y.; Yang, T.; ud Din, A.S.; Ahmad, K.; Li, W.; Hou, H. Microalgae-derived peptides: Exploring bioactivities and functional food innovations. J. Agric. Food Chem. 2025, 73, 1000–1013. [Google Scholar] [CrossRef]
- Stack, J.; Le Gouic, A.V.; FitzGerald, R.J. Bioactive proteins and peptides from microalgae. J. Mar. Biotechnol. 2020, 3, 1443–1474. [Google Scholar]
- Villaró, S.; Jiménez-Márquez, S.; Musari, E.; Bermejo, R.; Lafarga, T. Production of enzymatic hydrolysates with in vitro antioxidant, antihypertensive, and antidiabetic properties from proteins derived from Arthrospira platensis. Food Res. Int. 2023, 163, 112270. [Google Scholar] [CrossRef]
- Bai, R.; Nguyen, T.T.; Zhou, Y.; Diao, Y.; Zhang, W. Identification of Antioxidative peptides derived from Arthrospira maxima in the Biorefinery process after extraction of C-phycocyanin and lipids. Mar. Drugs 2023, 21, 146. [Google Scholar] [CrossRef]
- Otero, C.; Verdasco-Martín, C.M. Preparation and Characterization of a Multicomponent Arthrospira platensis Biomass Hydrolysate with Superior Anti-Hypertensive, Anti-Hyperlipidemic and Antioxidant Activities via Selective Proteolysis. Mar. Drugs 2023, 21, 255. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Zhou, J.; Niu, T.; Xuan, R.; Chen, H.; Wu, W. In vivo antifatigue activity of spirulina peptides achieved by their antioxidant activity and by acting on fat metabolism pathway in mice. Nat. Prod. Commun. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, Y.; Qiu, Y.; Yang, F.; Liu, G.; Dong, X.; Chen, G.; Cao, C.; Zhang, Q.; Zhang, S. Three novel antioxidant peptides isolated from C-phycocyanin against H2O2-induced oxidative stress in zebrafish via Nrf2 signaling pathway. Front. Mar. Sci. 2022, 9, 1098091. [Google Scholar] [CrossRef]
- Sarkar, P.; Guru, A.; Raju, S.V.; Farasani, A.; Oyouni, A.A.A.; Alzahrani, O.R.; Althagafi, H.A.E.; Alharthi, F.; Karuppiah, K.M.; Arockiaraj, J. GP13, an Arthrospira platensis cysteine desulfurase-derived peptide, suppresses oxidative stress and reduces apoptosis in human leucocytes and zebrafish (Danio rerio) embryo via attenuated caspase-3 expression. J. King Saud. Univ. Sci. 2021, 33, 101665. [Google Scholar] [CrossRef]
- Zhao, B.; Cui, Y.; Fan, X.; Qi, P.; Liu, C.; Zhou, X.; Zhang, X. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS ONE 2019, 14, e0218543. [Google Scholar] [CrossRef] [PubMed]
- Htoo, N.Y.M.; Kraseasintra, O.; Buncharoen, W.; Kaewkod, T.; Pekkoh, J.; Tragoolpua, Y.; Khoo, K.S.; Chaipoot, S.; Srinuanpan, S.; Pumas, C. In vitro immunomodulation activity of protein hydrolysate from spirulina (Arthrospira platensis): The ingredient of future foods. Front. Mar. Sci. 2024, 11, 1303025. [Google Scholar] [CrossRef]
- Cinar, Z.Ö. Elucidation of the Effects of Fermented Spirulina Protein Hydrolysate and Bioactive Peptide Fractions on Anti-Inflammatory, Anticancer, and Indirect Antioxidant Mechanisms for Therapeutic and Nutraceutical Applications. Master’s Thesis, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, Turkey, 2023. [Google Scholar]
- Xiao, S.; Lu, Z.; Yang, J.; Shi, X.; Zheng, Y. Phycocyanobilin from Arthrospira platensis: A potential photodynamic anticancer agent. Dye. Pigment. 2023, 219, 111516. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Liu, Y.; Wu, Z. Complex enzyme-assisted extraction releases antioxidative phenolic compositions from guava leaves. Molecules 2017, 22, 1648. [Google Scholar] [CrossRef]
- Arteaga, V.G.; Guardia, M.A.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innov. Food Sci. Emerg. Technol. 2020, 65, 102449. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and oxidative stress: An overview of basic concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Costa, M.; Losada-Barreiro, S.; Paiva-Martins, F.; Bravo-Diaz, C. Polyphenolic antioxidants in lipid emulsions: Partitioning effects and interfacial phenomena. Foods 2021, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Adwas, A.A.; Elsayed, A.; Azab, A.E.; Quwaydir, F.A. Oxidative stress and antioxidant mechanisms in human body. J. Appl. Biotechnol. Bioeng. 2019, 6, 43–47. [Google Scholar] [CrossRef]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef]
- AlFadhly, N.K.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A. Trends and technological advancements in the possible food applications of Spirulina and their health benefits: A Review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef]
- Alotaiby, S.; Zhao, X.; Boesch, C.; Sergeeva, N.N. Sustainable approach towards isolation of photosynthetic pigments from Spirulina and the assessment of their prooxidant and antioxidant properties. Food Chem. 2024, 436, 137653. [Google Scholar] [CrossRef]
- Gentscheva, G.; Nikolova, K.; Panayotova, V.; Peycheva, K.; Makedonski, L.; Slavov, P.; Radusheva, P.; Petrova, P.; Yotkovska, I. Application of Arthrospira platensis for medicinal purposes and the food industry: A review of the literature. Life 2023, 13, 845. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2006. [Google Scholar]
- Fan, X.; Cui, Y.; Zhang, R.; Zhang, X. Purification and identification of anti-obesity peptides derived from Spirulina platensis. J. Funct. Foods 2018, 47, 350–360. [Google Scholar] [CrossRef]
- Karamac, M.; Amarowicz, R.; Kostyra, H. Effect of temperature and enzyme/substrate ratio on the hydrolysis of pea protein isolates by trypsin. Czech J. Food Sci. 2002, 20, 1–6. [Google Scholar] [CrossRef]
- Hao, L.; Li, X.; Zhao, B.; Song, X.; Zhang, Y.; Liang, Q. Enzymatic hydrolysis optimization of yak whey protein concentrates and bioactivity evaluation of the ultrafiltered peptide fractions. Molecules 2024, 29, 1403. [Google Scholar] [CrossRef]
- Al-Bukhaiti, W.Q.; Al-Dalali, S.; Noman, A.; Qiu, S.; Abed, S.M.; Qiu, S.-X. Response surface modeling and optimization of enzymolysis parameters for the in vitro antidiabetic activities of peanut protein hydrolysates prepared using two proteases. Foods 2022, 11, 3303. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J. Sci. Food Agric. 2017, 97, 918–922. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, N. Quality of fish protein hydrolyzates from herring. J. Food Sci. 1994, 59, 129. [Google Scholar] [CrossRef]
- Aiello, G.; Li, Y.; Boschin, G.; Bollati, C.; Arnoldi, A.; Lammi, C. Chemical and biological characterization of spirulina protein hydrolysates: Focus on ACE and DPP-IV activities modulation. J. Funct. Foods 2019, 63, 103592. [Google Scholar] [CrossRef]
- Nalinanon, S.; Benjakul, S.; Kishimura, H.; Shahidi, F. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem. 2011, 124, 1354–1362. [Google Scholar] [CrossRef]
- Spackman, D.H.; Stein, W.H.; Moore, S. Automatic recording apparatus for use in chromatography of amino acids. Anal. Chem. 1958, 30, 1190–1206. [Google Scholar] [CrossRef]
- WHO. Protein and Amino Acid Requirements in Human Nutrition; WHO Technical Report Series 935; WHO: Geneva, Switzerland, 2007; p. 1. [Google Scholar]
- Alsmeyer, R.H.; Cunningham, A.; Happich, M. Equations predict PER from amino acid analysis. Food Technol. 1974, 28, 34–36, 38–40. [Google Scholar]
- Mørup, I.-L.K.; Olesen, E. New method for prediction of protein value from essential amino acid pattern. Nutr. Rep. Int. 1976, 13, 355–365. [Google Scholar]
- Romulo, A. The principle of some in vitro antioxidant activity methods. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 3rd International Conference on Eco Engineering Development, Solo, Indonesia, 13–14 November 2019; IOP Publishing: Bristol, UK, 2020; p. 012177. [Google Scholar]
- De Leon, J.A.D.; Borges, C.R. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J. Vis. Exp. 2020, e61122. [Google Scholar] [CrossRef]
- Shrestha, P.; Adhikari, S.; Lamichhane, B.; Shrestha, B.G. Phytochemical screening of the medicinal plants of Nepal. IOSR J. Environ. Sci. Toxicol. Food Technol. 2015, 1, 11–17. [Google Scholar]
- Kalita, P.; Barman, T.K.; Pal, T.; Kalita, R. Estimation of total flavonoids content (TFC) and antioxidant activities of methanolic whole plant extract of Biophytum sensitivum Linn. J. Drug Deliv. Ther. 2013, 3, 33–37. [Google Scholar] [CrossRef]
- Khanal, S. Qualitative and Quantitative Phytochemical Screening of Azadirachta indica Juss. Plant Parts. Int. J. Appl. Sci. Biotechnol. 2021, 9, 122–127. [Google Scholar] [CrossRef]
- Al-Jadidi, H.; Hossain, M. Determination of the total phenols, flavonoids and antimicrobial activity of the crude extracts from locally grown neem stems. Asian Pac. J. Trop. Dis. 2016, 6, 376–379. [Google Scholar] [CrossRef]
- Babashpour-Asl, M.; Eghlima, G. Detection of proximate, phytochemical compositions, phycocyanin and antioxidant activity of Arthrospira platensis (Spirulina). Appl. Psychol. 2025, 6, 178–189. [Google Scholar] [CrossRef]
- Taiti, C.; Di Vito, M.; Di Mercurio, M.; Costantini, L.; Merendino, N.; Sanguinetti, M.; Bugli, F.; Garzoli, S. Detection of secondary metabolites, proximate composition and bioactivity of organic dried Spirulina (Arthrospira platensis). Appl. Sci. 2023, 14, 67. [Google Scholar] [CrossRef]
- Mahmoud, E.; Elsayed, G.; Hassan, A.; Ateya, A.; El-Sayed, S.A.E.-S. Dietary spirulina platensis a promising growth promotor and immune stimulant in broiler chickens. Nat. Prod. Res. 2024, 39, 5236–5242. [Google Scholar] [CrossRef] [PubMed]
- Vernes, L.; Abert-Vian, M.; El Maâtaoui, M.; Tao, Y.; Bornard, I.; Chemat, F. Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects. Ultrason. Sonochem. 2019, 54, 48–60. [Google Scholar] [CrossRef]
- Antonov, V.K. New data on pepsin mechanism and specificity. In Acid Proteases: Structure, Function, and Biology; Springer: New York, NY, USA, 2012; pp. 179–198. [Google Scholar]
- Gropper, S.S.; Groff, J.L. Protein. In Advanced Nutrition and Human Metabolism, 5th ed.; Adams, P., Ed.; Dartmouth Publishing, Inc.: London, UK, 2009; p. 190. [Google Scholar]
- Vreeke, G.J.; Vincken, J.-P.; Wierenga, P.A. The path of proteolysis by bovine chymotrypsin. Food Res. Int. 2023, 165, 112485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, X. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol. Prog. 2013, 29, 1230–1238. [Google Scholar] [CrossRef]
- Jamdar, S.; Rajalakshmi, V.; Pednekar, M.; Juan, F.; Yardi, V.; Sharma, A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010, 121, 178–184. [Google Scholar] [CrossRef]
- Xie, J.; Du, M.; Shen, M.; Wu, T.; Lin, L. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chem. 2019, 270, 243–250. [Google Scholar] [CrossRef]
- Mohammadi, M.; Soltanzadeh, M.; Ebrahimi, A.R.; Hamishehkar, H. Spirulina platensis protein hydrolysates: Techno-functional, nutritional and antioxidant properties. Algal Res. 2022, 65, 102739. [Google Scholar] [CrossRef]
- Ogbuewu, I.; Mbajiorgu, C. Unlocking the feed supplement potentials of blue-green alga (spirulina) in broiler nutrition: A comprehensive review. Trop. Anim. Health Prod. 2025, 57, 364. [Google Scholar] [CrossRef]
- Podgórska-Kryszczuk, I. Spirulina—An invaluable source of macro-and micronutrients with broad biological activity and application potential. Molecules 2024, 29, 5387. [Google Scholar] [CrossRef]
- de Oliveira Bispo, L.; Peron-Schlosser, B.; Kalschne, D.L.; Martins Conde, M.B.; Baraldi, I.J.; Colla, E. Solubility of Spirulina platensis biomass: Effect of pH, saline concentration, and ultrasound treatment. Chem. Eng. Commun. 2025, 212, 1677–1686. [Google Scholar] [CrossRef]
- Opazo-Navarrete, M.; Burgos-Díaz, C.; Garrido-Miranda, K.A.; Acuña-Nelson, S. Effect of enzymatic hydrolysis on solubility and emulsifying properties of Lupin proteins (Lupinus luteus). Colloids Interfaces 2022, 6, 82. [Google Scholar] [CrossRef]
- Grossmann, L.; McClements, D.J. Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocoll. 2023, 137, 108416. [Google Scholar] [CrossRef]
- Du, M.; Xie, J.; Gong, B.; Xu, X.; Tang, W.; Li, X.; Li, C.; Xie, M. Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocoll. 2018, 76, 131–140. [Google Scholar] [CrossRef]
- Benelhadj, S.; Gharsallaoui, A.; Degraeve, P.; Attia, H.; Ghorbel, D. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chem. 2016, 194, 1056–1063. [Google Scholar] [CrossRef]
- Maag, P.; Dirr, S.; Özmutlu Karslioglu, Ö. Investigation of bioavailability and food-processing properties of Arthrospira platensis by enzymatic treatment and micro-encapsulation by spray drying. Foods 2022, 11, 1922. [Google Scholar] [CrossRef]
- Muhamyankaka, V.; Shoemaker, C.; Nalwoga, M.; Zhang, X. Physicochemical properties of hydrolysates from enzymatic hydrolysis of pumpkin (Cucurbita moschata) protein meal. Int. Food Res. J. 2013, 20, 2227. [Google Scholar]
- Klomklao, S.; Benjakul, S.; Visessanguan, W.; Kishimura, H.; Simpson, B.K. Purification and characterisation of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem. 2007, 100, 1580–1589. [Google Scholar] [CrossRef]
- Nourmohammadi, E.; SadeghiMahoonak, A.; Alami, M.; Ghorbani, M. Amino acid composition and antioxidative properties of hydrolysed pumpkin (Cucurbita pepo L.) oil cake protein. Int. J. Food Prop. 2017, 20, 3244–3255. [Google Scholar] [CrossRef]
- Masoumifeshani, B.; Abedian Kenari, A.; Sottorff, I.; Crüsemann, M.; Amiri Moghaddam, J. Identification and evaluation of antioxidant and anti-aging peptide fractions from enzymatically hydrolyzed proteins of Spirulina platensis and Chlorella vulgaris. Mar. Drugs 2025, 23, 162. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zeng, X.; Zhou, M.; Cheng, L.; Ren, D. Inhibitory effect of low-molecular-weight peptides (0–3 kDa) from Spirulina platensis on H2O2-induced oxidative damage in L02 human liver cells. Bioresour. Bioprocess. 2021, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sarkar, T.; Pati, S.; Kari, Z.A.; Edinur, H.A.; Chakraborty, R. Novel bioactive compounds from marine sources as a tool for functional food development. Front. Mar. Sci. 2022, 9, 832957. [Google Scholar] [CrossRef]
- Amiri, M.; Hassani, B.; Babapour, H.; Nikmanesh, A.; Hosseini, S.E.; Asadi, G.; Abedinia, A. Optimization of enzyme hydrolysis to improve functional and structural properties of microalgae protein extract. J. Food Sci. 2025, 90, e70129. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Dong, L.; Deng, M.; Chen, Y.; Zhang, M. The effects of different enzymes on the liberation of bound phenolics from rice bran dietary fibre and their antioxidant activities. Food Biosci. 2023, 56, 103449. [Google Scholar] [CrossRef]
- de Carvalho Oliveira, L.; Martinez-Villaluenga, C.; Frias, J.; Cartea, M.E.; Francisco, M.; Cristianini, M.; Penas, E. High pressure-assisted enzymatic hydrolysis potentiates the production of quinoa protein hydrolysates with antioxidant and ACE-inhibitory activities. Food Chem. 2024, 447, 138887. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.S.; Kim, M.; Son, K.-T.; Jeong, Y.; Jeon, Y.-J. Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. J. Med. Food 2016, 19, 615–628. [Google Scholar] [CrossRef]
- Kasprzak, M.M.; Erxleben, A.; Ochocki, J. Properties and applications of flavonoid metal complexes. Rsc Adv. 2015, 5, 45853–45877. [Google Scholar] [CrossRef]
- Omar, S.M.; Alhotan, R.; Hussein, E.O.; Galik, B.; Zahran, N.N.A.; Alagawany, M.; Saleh, A.A. The Impact of Microalgae and Their Bioactive Compounds on Liver Well-being in Rats Subjected to Synthetic Phenolic Antioxidants. Egypt. J. Vet. Sci. 2025, 56, 47–60. [Google Scholar] [CrossRef]


| Pepsin (IU) | Bradford Value Protein Conc. (mg/mL) | Ninhydrin Value Glycine Equivalent (mg/mL) |
|---|---|---|
| 3% SPPE (Untreated) | 22.62 ± 0.03 | 1.19 ± 0.09 |
| 3% SPPH (280) | 20.60 ± 0.23 | 2.54 ± 0.02 |
| 3% SPPH (560) | 11.56 ± 0.13 | 3.84 ± 0.06 |
| 3% SPPH (1125) | 6.09 ± 0.07 | 4.58 ± 0.08 |
| 3% SPPH (2250) | 5.67 ± 0.06 | 6.22 ± 0.05 |
| 3% SPPH (4500) | 4.20 ± 0.05 | 7.79 ± 0.05 |
| Trypsin (IU) | ||
| 3% SPPE (Untreated) | 22.62 ± 0.03 | 1.19 ± 0.09 |
| 3% SPPH (250) | 20.98 ± 0.13 | 2.11 ± 0.04 |
| 3% SPPH (500) | 12.15 ± 0.08 | 3.34 ± 0.10 |
| 3% SPPH (1000) | 7.02 ± 0.04 | 4.54 ± 0.04 |
| 3% SPPH (1500) | 6.12 ± 0.04 | 5.48 ± 0.01 |
| 3% SPPH (2000) | 4.02 ± 0.03 | 6.14 ± 0.04 |
| Chymotrypsin (IU) | ||
| 3% SPPE (Untreated) | 22.62 ± 0.03 | 1.19 ± 0.09 |
| 3% SPPH (125) | 20.75 ± 0.52 | 2.42 ± 0.11 |
| 3% SPPH (250) | 17.66 ± 0.44 | 3.88 ± 0.05 |
| 3% SPPH (500) | 13.37 ± 0.34 | 5.16 ± 0.06 |
| 3% SPPH (750) | 9.92 ± 0.25 | 6.20 ± 0.08 |
| 3% SPPH (1000) | 7.01 ± 0.18 | 6.91 ± 0.08 |
| Amino Acids (g/100 g) | SPPE | Pepsin-SPPH | Trypsin-SPPH | Chymotrypsin-SPPH |
|---|---|---|---|---|
| Histidine | 0.793 ± 0.058 | 0.989 ± 0.092 | 0.920 ± 0.087 | 0.746 ± 0.061 |
| Threonine | 2.968 ± 0.068 | 2.949 ± 0.104 | 2.956 ± 0.110 | 2.874 ± 0.034 |
| Methionine + Cysteine | 1.144 ± 0.059 | 0.831 ± 0.060 | 1.164 ± 0.127 | 0.971 ± 0.085 |
| Phenylalanine + Tyrosine | 4.612 ± 0.045 | 4.620 ± 0.095 | 4.560 ± 0.060 | 4.236 ± 0.054 |
| Leucine | 4.031 ± 0.068 | 4.017 ± 0.092 | 4.000 ± 0.082 | 3.880 ± 0.097 |
| Lysine | 3.116 ± 0.016 | 3.073 ± 0.080 | 2.760 ± 0.044 | 3.047 ± 0.055 |
| Valine | 2.661 ± 0.049 | 2.707 ± 0.098 | 2.648 ± 0.059 | 2.618 ± 0.029 |
| Isoleucine | 2.613 ± 0.095 | 2.505 ± 0.058 | 2.546 ± 0.069 | 2.490 ± 0.013 |
| Tryptophan | 0.463 ± 0.104 | 0.231 ± 0.071 | 0.339 ± 0.042 | 0.037 ± 0.059 |
| Aspartic acid | 4.955 ± 0.020 | 4.954 ± 0.033 | 4.984 ± 0.084 | 4.952 ± 0.068 |
| Glutamic acid | 7.955 ± 0.072 | 7.867 ± 0.089 | 7.925 ± 0.079 | 7.883 ± 0.051 |
| Serine | 3.038 ± 0.031 | 2.991 ± 0.104 | 3.072 ± 0.110 | 3.043 ± 0.075 |
| Arginine | 3.113 ± 0.012 | 3.050 ± 0.021 | 2.790 ± 0.065 | 3.100 ± 0.087 |
| Glycine | 2.947 ± 0.046 | 2.970 ± 0.107 | 2.896 ± 0.053 | 2.917 ± 0.044 |
| Alanine | 3.375 ± 0.063 | 3.220 ± 0.007 | 3.296 ± 0.030 | 3.318 ± 0.056 |
| Distribution of amino acids (%) | ||||
| Hydrophobic | 28.52 | 28.19 | 28.61 | 28.47 |
| Positive | 11.94 | 12.34 | 11.18 | 12.12 |
| Negative | 21.96 | 22.25 | 22.31 | 22.57 |
| Polar | 20.06 | 19.59 | 20.10 | 19.72 |
| Aromatic | 8.63 | 8.42 | 8.47 | 7.51 |
| Nutritional Parameters | ||||
| PER1 | 1.14 | 1.13 | 1.12 | 1.07 |
| PER2 | 1.11 | 1.11 | 1.10 | 1.07 |
| PER3 | 0.93 | 0.74 | 0.94 | 1.10 |
| %AAS | 69 | 65 | 62 | 64 |
| %BV | 74.25 | 71.24 | 78.83 | 65.84 |
| %EAA/TAA | 46.87 | 46.66 | 46.72 | 45.32 |
| Sample Type | DPPH IC50 (Trolox µM/mL) | FRAP IC50 (Fe (II) µMol/g) | MDA (µMol/L) |
|---|---|---|---|
| SPPE | 0.0092 c ± 0.0061 | 0.0097 b ± 0.001 | 0.103 a ± 0.005 |
| Pepsin-SPPH | 0.0181 b ± 0.0084 | 0.0138 a ± 0.0015 | 0.063 b ± 0.011 |
| Trypsin-SPPH | 0.0283 a ± 0.0017 | 0.0209 a ± 0.004 | 0.058 b ± 0.012 |
| Chymotrypsin-SPPH | 0.0119 bc ± 0.0061 | 0.0164 a ± 0.0016 | 0.059 b ± 0.031 |
| p value | 0.003 * | 0.012 * | 0.039 * |
| Phytochemical Test | SPPE | Pepsin-SPPH | Trypsin-SPPH | Chymotrypsin-SPPH |
|---|---|---|---|---|
| Alkaloids | + | + | + | + |
| Flavonoids | + | + | + | + |
| Saponin | + | + | + | + |
| Terpenoids | + | + | + | + |
| Phytosterol | − | − | − | − |
| Glycosides | + | − | + | + |
| Tannin | + | + | − | − |
| Polyphenols | + | + | + | + |
| Sample Type | TPC (Gallic Acid µg/mL) | TFC (Catechin mg/mL) | Terpenoids (%) |
|---|---|---|---|
| SPPE | 211.28 c ± 3.66 | 2.24 b ± 0.12 | 7.63 c ± 0.14 |
| SPPH Pepsin | 290.76 b ± 20.48 | 3.55 a ± 0.33 | 10.44 a ± 0.18 |
| SPPH trypsin | 458.52 a ± 6.10 | 3.98 a ± 0.23 | 9.44 ab ± 0.14 |
| SPPH Chymotrypsin | 225.59 c ± 0.49 | 2.12 b ± 0.11 | 8.60 bc ± 0.13 |
| p value | 0.000 * | 0.001 * | 0.026 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Iqbal, S.; Khan, A.; Rabbani, I. Nutritional, Bio-Functional, and Antioxidant Properties of Enzymatic Hydrolysates Derived from Spirulina platensis Proteins. Foods 2025, 14, 4242. https://doi.org/10.3390/foods14244242
Ali A, Iqbal S, Khan A, Rabbani I. Nutritional, Bio-Functional, and Antioxidant Properties of Enzymatic Hydrolysates Derived from Spirulina platensis Proteins. Foods. 2025; 14(24):4242. https://doi.org/10.3390/foods14244242
Chicago/Turabian StyleAli, Ahmad, Sanaullah Iqbal, Azmatullah Khan, and Imtiaz Rabbani. 2025. "Nutritional, Bio-Functional, and Antioxidant Properties of Enzymatic Hydrolysates Derived from Spirulina platensis Proteins" Foods 14, no. 24: 4242. https://doi.org/10.3390/foods14244242
APA StyleAli, A., Iqbal, S., Khan, A., & Rabbani, I. (2025). Nutritional, Bio-Functional, and Antioxidant Properties of Enzymatic Hydrolysates Derived from Spirulina platensis Proteins. Foods, 14(24), 4242. https://doi.org/10.3390/foods14244242

