Metabolomic Analysis of Goji Berry Sun-Drying: Dynamic Changes in Small-Molecule Substances
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Drying Method
2.3. Compound Extraction and Instrument Analysis
2.4. Instrumental Optimization for UHPLC-HRMS Analysis
2.5. Data Analysis by Chemometrics
3. Results and Discussion
3.1. Compound Feature Extraction and Multivariate Statistical Analysis
3.2. Screening of Differential Compounds and Their Content Distribution
3.3. Changes in Key Metabolites During the Natural Drying Process of Goji Berries
3.3.1. The Impact of Drying Processes on Carbohydrates
3.3.2. Changes in Amino Acids and Phenolic Compounds
3.3.3. Changes in Alkaloids and Nucleotides
3.3.4. Effects of Moisture Loss During Drying on the Appearance of Goji Berries
3.4. Potential Metabolic Processes During Drying
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, R.-H.; Zhang, X.-X.; Ni, Z.-J.; Thakur, K.; Wang, W.; Yan, Y.-M.; Cao, Y.-L.; Zhang, J.-G.; Rengasamy, K.R.R.; Wei, Z.-J. Lycium barbarum (Goji) as functional food: A review of its nutrition, phytochemical structure, biological features, and food industry prospects. Crit. Rev. Food Sci. Nutr. 2023, 63, 10621–10635. [Google Scholar] [CrossRef]
- Ju, Y.; Liu, H.; Niu, S.; Kang, L.; Ma, L.; Li, A.; Zhao, Y.; Yuan, Y.; Zhao, D. Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition. Food Chem. 2025, 467, 142286. [Google Scholar] [CrossRef]
- Pedro, A.C.; Sánchez-Mata, M.C.; Pérez-Rodríguez, M.L.; Cámara, M.; López-Colón, J.L.; Bach, F.; Bellettini, M.; Haminiuk, C.W.I. Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems. Sci. Hortic. 2019, 257, 108660. [Google Scholar] [CrossRef]
- Yang, S.; Chen, X.; Sun, J.; Qu, C.; Chen, X. Polysaccharides from traditional Asian food source and their antitumor activity. J. Food Biochem. 2022, 46, e13927. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Rehman, F.; Ma, Y.; Zeng, S.; Yang, T.; Huang, J.; Li, Z.; Wu, D.; Wang, Y. Germplasm resources and strategy for genetic breeding of Lycium species: A Review. Front. Plant Sci. 2022, 13, 802936. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.-H.; Zhang, X.-X.; Thakur, K.; Zhang, J.-G.; Wei, Z.-J. Research progress of Lycium barbarum L. as functional food: Phytochemical composition and health benefits. Curr. Opin. Food Sci. 2022, 47, 100871. [Google Scholar] [CrossRef]
- Kosińska-Cagnazzo, A.; Bocquel, D.; Marmillod, I.; Andlauer, W. Stability of goji bioactives during extrusion cooking process. Food Chem. 2017, 230, 250–256. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, F.; Zang, Z.; Jiang, C.; Xu, Y.; Huang, X. Effect of ultrasonic far-infrared synergistic drying on the characteristics and qualities of wolfberry (Lycium barbarum L.). Ultrason. Sonochem. 2022, 89, 106134. [Google Scholar] [CrossRef]
- Hedayatizadeh, M.; Chaji, H. A review on plum drying. Renew. Sustain. Energy Rev. 2016, 56, 362–367. [Google Scholar] [CrossRef]
- Ye, Y.; Jiang, M.; Xu, M.; Zhou, Y.; Yang, Q.; Luo, S.; Wang, Y. Comparative evaluation of quality and microbial community of Yibin yacai as influenced by traditional sun drying-natural and mechanical drying-inoculation fermentation. Food Chem. X 2025, 30, 102911. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Wu, Z.; Wang, X.; Wan, N.; Yang, M. Dehydration of wolfberry fruit using pulsed vacuum drying combined with carboxymethyl cellulose coating pretreatment. LWT 2020, 134, 110159. [Google Scholar] [CrossRef]
- Fratianni, A.; Niro, S.; Alam, M.D.R.; Cinquanta, L.; Di Matteo, M.; Adiletta, G.; Panfili, G. Effect of a physical pre-treatment and drying on carotenoids of goji berries (Lycium barbarum L.). LWT 2018, 92, 318–323. [Google Scholar] [CrossRef]
- Suna, S. Effects of hot air, microwave and vacuum drying on drying characteristics and in vitro bioaccessibility of medlar fruit leather (pestil). Food Sci. Biotechnol. 2019, 28, 1465–1474. [Google Scholar] [CrossRef]
- Yun, Z.; Gao, H.; Jiang, Y. Insights into metabolomics in quality attributes of postharvest fruit. Curr. Opin. Food Sci. 2022, 45, 100836. [Google Scholar] [CrossRef]
- Sena, B.; Robert, D.H.; Ric, C.H.; Roland, M.; Çetin, K.; Esra, C. Effect of drying treatments on the global metabolome and health-related compounds in tomatoes. Food Chem. 2023, 403, 134123. [Google Scholar] [CrossRef]
- Aulia, G.A.; Indah, A.S.; Hendy, F.; Abdul, M.E.; Sastia, P.P. Effect of pre-drying on flavor modulation in Indonesian cocoa beans: A metabolomics study of key flavor compounds and sensory profiles. Food Biosci. 2025, 65, 106056. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; He, C.; Zhou, J.; Chen, Y.; Yu, Z.; Wang, P.; Ni, D. Nonvolatile metabolism in postharvest tea (Camellia sinensis L.) leaves: Effects of different withering treatments on nonvolatile metabolites, gene expression levels, and enzyme activity. Food Chem. 2020, 327, 126992. [Google Scholar] [CrossRef]
- Zhu, Y.-J.; Dai, X.-Y.; Zhao, Y.-L.; Ma, Y.-G.; Zhao, Z.Z.; Su, C.F.; Hao, Z.Y.; Wang, D.D.; Chen, H. Lyciumines A and B: Two Pyrrole-Fused Alkaloids from the Fruits of Lycium barbarum. J. Nat. Prod. 2025, 88, 1237–1243. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, Z.; Leonard, W.; Zhang, P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. J. Funct. Foods. 2021, 77, 104340. [Google Scholar] [CrossRef]
- Zhang, J.-N.; Ma, M.-H.; Ma, X.-L.; Ma, F.-L.; Du, Q.-Y.; Liu, J.-N.; Wang, X.-C.; Zhao, Q.-P.; Yu, Y.-J.; She, Y.-B. A comprehensive study of the effect of drying methods on compounds in Elaeagnus angustifolia L. flower by GC-MS and UHPLC-HRMS based untargeted metabolomics combined with chemometrics. Ind. Crops Prod. 2023, 195, 116452. [Google Scholar] [CrossRef]
- Guo, X.-M.; Ma, M.-H.; Ma, X.-L.; Zhao, J.-J.; Zhang, Y.; Wang, X.-C.; Li, S.-F.; Yu, Y.-J. Quality assessment for the flower of Lonicera japonica Thunb. during flowering period by integrating GC-MS, UHPLC-HRMS, and chemometrics. Ind. Crops Prod. 2023, 191, 115938. [Google Scholar] [CrossRef]
- Wen, Y.-J.; Wang, L.-H.; Zhai, M.; Ma, H.; Cui, H.-P.; Han, L.; Chai, G.-B.; Lv, Y.; Zheng, Q.-X.; Yu, Y.-J.; et al. Integrating HS-SPME-GCMS with chemometrics for identifying adulterated flaxseed oils and tracing origins of additives. Food Control. 2025, 176, 111391. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, F.; Yue, Y.; Zang, Z.; Xu, Y.; Jiang, C.; Shang, J.; Wang, T.; Huang, X. Study on Ultrasonic Far-Infrared Radiation Drying and Quality Characteristics of Wolfberry (Lycium barbarum L.) under Different Pretreatments. Molecules 2023, 28, 1732. [Google Scholar] [CrossRef]
- Xu, Y.; Wan, F.; Zang, Z.; Jiang, C.; Wang, T.; Shang, J.; Huang, X. Effect of different pretreatment methods on drying characteristics and quality of wolfberry (Lycium barbarum) by radio frequency-hot air combined segmented drying. Food Bioprocess Technol. 2024, 17, 3861–3875. [Google Scholar] [CrossRef]
- Varela-Martínez, D.-A.; González-Curbelo, M.-Á.; González-Sálamo, J.; Hernández-Borges, J. Analysis of multiclass pesticides in dried fruits using QuEChERS-gas chromatography tandem mass spectrometry. Food Chem. 2019, 297, 124961. [Google Scholar] [CrossRef]
- Ma, H.; Zhai, M.; Tang, L.-H.; Wang, X.-C.; Han, L.; Li, S.-F.; Lv, Y.; Zheng, Q.-X.; Liu, P.-P.; Fu, H.-Y.; et al. Improving compound identification results by automatically recognizing in-source fragment ions in HRMS with AntDAS: A study on accurate pesticide screening in complex food samples. J. Chromatogr. A 2025, 1746, 465806. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, Y.; Wang, L.; Zheng, Y.; Jin, P. Amino acid metabolomic analysis involved in flavor quality and cold tolerance in peach fruit treated with exogenous glycine betaine. Food Res. Int. 2022, 157, 111204. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, L.; Huang, P.; Cui, C. Enzymatic synthesis and sensory evaluation of N-cinnamoyl-L-phenylalanine as a novel flavor enhancer: Impact on taste perception and mechanistic insights. Food Chem. 2025, 485, 144542. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Liu, Q.; Zhao, S.; Yao, Y.; Dong, B.; Zhao, G. Appealing smoky flavor formation and flavor quality enhancement in soy sauce: Synergistic ferulic acid metabolism by a yeast consortium (Starmerella etchellsii, Wickerhamiella versatilis, Debaryomyces hansenii). Food Chem. 2025, 494, 146209. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liang, C.; Bao, F.; Zhang, T.; Cheng, Y.; Zhang, W.; Lu, Y. Chemometric analysis illuminates the relationship among browning, polyphenol degradation, Maillard reaction and flavor variation of 5 jujube fruits during air-impingement jet drying. Food Chem. X 2024, 22, 101425. [Google Scholar] [CrossRef] [PubMed]
- López, J.; Vega-Gálvez, A.; Bilbao-Sainz, C.; Chiou, B.S.; Uribe, E.; Quispe-Fuentes, I. Influence of vacuum drying temperature on: Physico-chemical composition and antioxidant properties of murta berries. J. Food Process Eng. 2017, 40, e12569. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Q.; Liu, W.; XIao, H.; Hu, J.; Duan, X.; Sun, X.; Liu, C.; Wang, H. Changes and correlation analysis of volatile flavor compounds, amino acids, and soluble sugars in durian during different drying processes. Food Chem. X 2024, 21, 101238. [Google Scholar] [CrossRef]
- Bi, Y.-X.; Zielinska, S.; Ni, J.-B.; Li, X.-X.; Xue, X.-F.; Tian, W.-L.; Peng, W.-J.; Fang, X.-M. Effects of hot-air drying temperature on drying characteristics and color deterioration of rape bee pollen. Food Chem. X 2022, 16, 100464. [Google Scholar] [CrossRef]
- Lahaye, M.; Falourd, X.; Le Bot, L.; Bertin, N.; Musse, M. Impact of drying on the composition and organization tomato fruit cell walls: A biochemical and structural study. Food Res. Int. 2025, 213, 116567. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Duan, Z.; Yi, Y.; Tang, X. Differences in monophenolic content and composition of persimmon fruit slices from different regions under fresh and microwave drying. Food Biosci. 2024, 59, 103853. [Google Scholar] [CrossRef]
- Liu, Z.; Reymick, O.-O.; Feng, Z.; Duan, B.; Tao, N. Phenylalanine enhances the efficiency of sodium dehydroacetate to control citrus fruit decay by stimulating reactive oxygen metabolism and phenylpropanoid pathway. Postharvest Biol. Technol. 2025, 222, 113392. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Hou, J.; Yang, E.; Zhao, L.; Zhou, Y.; Ma, W.-Y.; Ma, D.; Li, J. Metabolic profiling and molecular mechanisms underlying melatonin-induced secondary metabolism of postharvest goji berry (Lycium barbarum L.). Foods 2023, 12, 4326. [Google Scholar] [CrossRef]
- Qian, B.-J.; Liu, J.-H.; Zhao, S.-J.; Cai, J.-X.; Jing, P. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Food Chem. 2017, 228, 526–532. [Google Scholar] [CrossRef]
- Lv, X.; Li, L.; Lu, X.; Wang, W.; Sun, J.; Liu, Y.; Mu, J.; Ma, Q.; Wang, J. Effects of organic acids on color intensification, thermodynamics, and copigmentation interactions with anthocyanins. Food Chem. 2022, 396, 133691. [Google Scholar] [CrossRef]
- Kaur, H.; Chowrasia, S.; Gaur, V.-S.; Mondal, T.-K. Allantoin: Emerging role in plant abiotic stress tolerance. Plant Mol. Biol. Rep. 2021, 39, 648–661. [Google Scholar] [CrossRef]
- Huang, T.; Jia, N.; Zhu, L.; Jiang, W.; Tu, A.; Qin, K.; Yuan, X.; Li, J. Comparison of phenotypic and phytochemical profiles of 20 Lycium barbarum L. goji berry varieties during hot air-drying. Food Chem. X 2025, 27, 102436. [Google Scholar] [CrossRef] [PubMed]
- Stasolla, C.; Loukanina, N.; Ashihara, H.; Yeung, E.-C.; Thorpe, T.-A. Purine and pyrimidine metabolism during the partial drying treatment of white spruce (Picea glauca) somatic embryos. Physiol. Plant. 2001, 111, 93–101. [Google Scholar] [CrossRef]
- Kenny, T.-C.; Scharenberg, S.; Abu-Remaileh, M.; Birsoy, K. Cellular and organismal function of choline metabolism. Nat. Metab. 2025, 7, 35–52. [Google Scholar] [CrossRef]
- Sun, M.; Peng, F.; Xiao, Y.; Yu, W.; Zhang, Y.; Gao, H. Exogenous phosphatidylcholine treatment alleviates drought stress and maintains the integrity of root cell membranes in peach. Sci. Hortic. 2020, 259, 108821. [Google Scholar] [CrossRef]
- Wang, D.; Yeats, T.-H.; Uluisik, S.; Rose, J.K.; Seymour, G.-B. Fruit softening: Revisiting the role of pectin. Trends Plant Sci. 2018, 23, 302–310. [Google Scholar] [CrossRef]
- Hasan, M.-U.; Singh, Z.; Shah, H.-M.S.; Kaur, J.; Woodward, A. Water loss: A postharvest quality marker in apple storage. Food Bioprocess Technol. 2024, 17, 2155–2180. [Google Scholar] [CrossRef]
- Zhang, A.-A.; Shu, C.; Xie, L.; Wang, Q.-H.; Xu, M.-Q.; Pan, Y.; Hao, W.-L.; Zheng, Z.-A.; Jiang, W.-H.; Xiao, H.-W. Enhancing shelf-life of dried goji berry: Effects of drying methods and packaging conditions on browning evolution. Food Rev. Int. 2025, 201, 115648. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Li, F.; Zhang, N.; Yin, X.; Zhang, B.; Zhang, B.; Ni, W.; Wang, M.; Fan, J. Effects of traditional and advanced drying techniques on the physicochemical properties of Lycium barbarum L. polysaccharides and the formation of Maillard reaction products in its dried berries. Food Chem. 2023, 409, 135268. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Zieliński, H. How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]





| Num | m/z | RT (Min) | MF (MS 1) | MF (MS/MS) | Name | Formular | Class |
|---|---|---|---|---|---|---|---|
| 1 | 104.107 | 1.214 | 0.999 | 0.913 | Choline | C5H14NO | Active Ingredients |
| 2 | 198.097 | 1.276 | 0.710 | 0.342 | Galactose | C6H12O6 | Active Ingredients |
| 3 | 118.086 | 1.291 | 1.000 | 0.995 | Betaine | C5H11NO2 | Active Ingredients |
| 4 | 159.051 | 1.377 | 0.826 | 0.973 | Allantoin | C4H6N4O3 | Active Ingredients |
| 5 | 136.061 | 1.668 | 1.000 | 0.945 | ADENINE | C5H5N5 | Active Ingredients |
| 6 | 113.034 | 1.668 | 0.999 | 0.794 | Uracil | C4H4N2O2 | Active Ingredients |
| 7 | 121.964 | 1.676 | 0.691 | 0.584 | Phenylacetaldehyde | C8H8O | Active Ingredients |
| 8 | 249.196 | 1.692 | 0.975 | 0.995 | Matrine | C15H24N2O | Active Ingredients |
| 9 | 166.086 | 3.552 | 0.978 | 0.909 | Phenylalanine | C9H11NO2 | Active Ingredients |
| 10 | 192.077 | 4.230 | 0.466 | 0.984 | Carbendazim | C9H9N3O2 | Pesticides |
| 11 | 355.101 | 4.658 | 0.848 | 0.995 | Undulatoside A | C16H18O9 | Active Ingredients |
| 12 | 387.200 | 4.875 | 0.645 | 0.898 | Roseoside | C19H30O8 | Active Ingredients |
| 13 | 161.107 | 4.947 | 0.985 | 1.000 | Tryptamine | C10H12N2 | Active Ingredients |
| 14 | 165.054 | 5.004 | 0.595 | 0.988 | trans-4-Coumaric acid | C9H8O3 | Active Ingredients |
| 15 | 344.148 | 7.206 | 0.996 | 0.977 | N- trans-feruloyl-4′-O-methyldopamine | C19H21NO5 | Active Ingredients |
| 16 | 173.080 | 8.285 | 0.962 | 0.788 | Thymol | C10H14O | Active Ingredients |
| 17 | 217.107 | 8.285 | 0.946 | 0.315 | 4-Formyl-antipyrine | C12H12N2O2 | Others |
| 18 | 193.049 | 8.437 | 0.956 | 0.987 | Scopoletin | C10H8O4 | Active Ingredients |
| 19 | 195.064 | 8.573 | 0.941 | 0.853 | trans-Ferulic acid | C10H10O4 | Active Ingredients |
| 20 | 256.059 | 8.998 | 0.915 | 0.989 | Imidacloprid | C9H10ClN5O2 | Pesticides |
| 21 | 243.087 | 9.768 | 0.993 | 0.977 | 7,8-dimethylalloxazine | C12H10N4O2 | Others |
| 22 | 223.075 | 10.033 | 0.907 | 0.990 | Acetamiprid | C10H11ClN4 | Pesticides |
| 23 | 275.200 | 15.381 | 0.579 | 0.666 | Nandrolone | C18H26O2 | Others |
| 24 | 360.176 | 27.365 | 0.989 | 0.987 | Etoxazole | C21H23F2NO2 | Pesticides |
| 25 | 300.289 | 29.589 | 0.999 | 0.983 | D-erythro-Sphingosine | C18H37NO2 | Others |
| 26 | 243.150 | 33.095 | 0.971 | 0.993 | Huperzine | C15H18N2O | Active Ingredients |
| 27 | 357.299 | 34.795 | 0.543 | 0.850 | monoolein | C21H40O4 | Others |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ma, H.; Zou, W.-T.; Zhu, Y.-Y.; Ma, G.-J.; Lv, Y.; Yu, Y.-J. Metabolomic Analysis of Goji Berry Sun-Drying: Dynamic Changes in Small-Molecule Substances. Foods 2025, 14, 4241. https://doi.org/10.3390/foods14244241
Zhang Y, Ma H, Zou W-T, Zhu Y-Y, Ma G-J, Lv Y, Yu Y-J. Metabolomic Analysis of Goji Berry Sun-Drying: Dynamic Changes in Small-Molecule Substances. Foods. 2025; 14(24):4241. https://doi.org/10.3390/foods14244241
Chicago/Turabian StyleZhang, Yao, Hui Ma, Wan-Ting Zou, Yan-Yan Zhu, Gui-Juan Ma, Yi Lv, and Yong-Jie Yu. 2025. "Metabolomic Analysis of Goji Berry Sun-Drying: Dynamic Changes in Small-Molecule Substances" Foods 14, no. 24: 4241. https://doi.org/10.3390/foods14244241
APA StyleZhang, Y., Ma, H., Zou, W.-T., Zhu, Y.-Y., Ma, G.-J., Lv, Y., & Yu, Y.-J. (2025). Metabolomic Analysis of Goji Berry Sun-Drying: Dynamic Changes in Small-Molecule Substances. Foods, 14(24), 4241. https://doi.org/10.3390/foods14244241
