Enhancement of Quality and Safety of Low-Salt Pixian Douban Fermentation with Paenibacillus polymyxa M17 27-6
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Pixian Douban
2.3. Determination of Physicochemical Parameters During Fermentation
2.4. Determination of Safety Indicators
2.4.1. Determination of Biogenic Amines
2.4.2. Determination of Aflatoxin B1 and Foodborne Pathogenic Bacteria
2.5. Determination of Bioactive Compounds and Antioxidant Activity
2.5.1. Determination of Bioactive Compounds
2.5.2. Determination of Antioxidant Activity
2.6. Determination of Organic Acids
2.7. Determination of Volatile Compounds
2.7.1. Determination of Volatile Compounds by SPME-GC-MS
2.7.2. Determination of Volatile Compounds by HS-GC-IMS
2.8. Determination of Microbial Diversity
2.9. Determination of Electronic Sensory
2.9.1. Determination of Electronic Nose
2.9.2. Determination of Electronic Tongue
2.10. Statistical Analysis
3. Results
3.1. Physicochemical Parameters Analysis of Pixian Douban
3.2. Safety Indicators Analysis of Pixian Douban
3.3. Bioactive Compounds and Antioxidant Activity Analysis of Pixian Douban
3.4. Organic Acids Analysis of Pixian Douban
3.5. Volatile Compounds Analysis of Pixian Douban
3.5.1. Volatile Compounds Analyzed by SPME-GC-MS

3.5.2. Volatile Compounds Analyzed by HS-GC-IMS
3.6. Microbial Diversity Analysis of Pixian Douban
3.7. Electronic Sensory Analysis of Pixian Douban
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, X.Q.; Li, M.H.; Liu, Y.M.; Zhang, X.M.; Zheng, Y. Microbial diversity and function of soybroad-bean paste in East Asia: What we know and what we don’t. Curr. Opin. Food Sci. 2021, 37, 145–152. [Google Scholar] [CrossRef]
- Chun, B.H.; Kim, K.H.; Jeong, S.E.; Jeon, C.O. The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybroad-bean paste. Food Microbiol. 2020, 86, 103329. [Google Scholar] [CrossRef]
- Li, W.L.; Mei, S.; Zhou, H.Z.; Farid, M.S.; Hu, T.; Wu, T. Metabolite fingerprinting of the ripening process in Pixian douban using a feature-based molecular network and metabolomics analysis. Food Chem. 2023, 418, 135940. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.Q.; Lapu, M.; Kang, S.; Jiang, P.; Li, J.; Liu, Y.; Liu, D.Y.; Liu, M.X. Effects of Tartary buckwheat on physicochemical properties and microbial community of low salt natural fermented soybroad-bean paste. Food Control 2022, 138, 108953. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; Gkatzionis, K. Soy sauce fermentation: Microorganisms, aroma formation, and process modification. Food Res. Int. 2019, 120, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, N. Regarding “Dietary Sodium Intake and Risk of Incident Type 2 Diabetes”. Mayo Clin. Proc. 2024, 99, 1015. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.T.; Liu, Y.; Li, H.; Liu, C.F.; Wang, J.J.; Zheng, F.Y.; Li, Q. How to achieve sodium salt reduction in bean-based fermented foods: Strategies, application cases and future perspectives. Food Chem. 2025, 492, 145532. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, Y.; Kim, S.; Ha, J.; Choi, Y.; Oh, H.; Kim, Y.; Rhee, M.S.; Yoon, Y. Contamination of Clostridium perfringens in soy sauce, and quantitative microbial risk assessment for C. perfringens through soy sauce consumption. Food Sci. Nutr. 2021, 9, 2139–2146. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Zhu, C.L.; Wu, B.Z.; Wang, T.Y.; Yang, L.; Guan, J.; Yi, Y.W.; Deng, J.; Wu, H.C. Effect of Different Salt Additions on the Flavor Profile of Fermented Ciba Pepper. Fermentation 2024, 10, 111. [Google Scholar] [CrossRef]
- Akanksha, G.; Nagendra, P.S. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells. J. Food Sci. 2016, 81, 991–1000. [Google Scholar]
- Liao, H.; Luo, Y.C.; Asif, H.; Luo, Y.; Xia, X.L. Novel insights into safety and quality enhancement of low-salt fermented chilies: High-order positively interacting lactic acid bacteria co-fermentation regulates microflora structure, metabolomics, and volatilomics profiles. Food Biosci. 2024, 59, 103861. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019, 8, 17. [Google Scholar] [CrossRef]
- Niu, C.T.; Xing, X.L.; Zuo, W.J.; Zuo, Z.C.; Liu, F.M.; Liu, C.F.; Li, Q. Construction and application of a synthetic microbial community in reduced salinity fermentation of raw-materials based broad bean paste. Food Biosci. 2024, 61, 104851. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; Linforth, R.; El Kadri, H.; Gkatzionis, K. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce. Food Chem. 2018, 257, 243–251. [Google Scholar] [CrossRef]
- Xie, C.Z.; Zeng, H.Y.; Qin, L.K. Physicochemical, taste, and functional changes during the enhanced fermentation of low-salt Sufu paste, a Chinese fermented soybean food. Int. J. Food Prop. 2018, 21, 2714–2729. [Google Scholar] [CrossRef]
- Song, Y.R.; Jeong, D.Y.; Baik, S.H. Effects of indigenous yeasts on physicochemical and microbial properties of Korean soy sauce prepared by low-salt fermentation. Food Microbiol. 2015, 51, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Penttinen, P.; Zhang, L.Z.; Dong, L.; Zhang, F.J.; Zhang, S.Y.; Li, Z.H.; Zhang, X.P. A combination of omics-based analyses to elucidate the effect of NaCl concentrations on the metabolites and microbial dynamics during the ripening fermentation of Pixian-Douban. Food Chem. 2024, 448, 139052. [Google Scholar] [CrossRef]
- Tang, J.B.; Wu, X.M.; Lv, D.; Huang, S.; Zhang, Y.; Kong, F.H. Effect of salt concentration on the quality and microbial community during pickled peppers fermentation. Food Chem. X 2024, 23, 101594. [Google Scholar] [CrossRef]
- Lu, Y.H.; Tan, X.Y.; Lv, Y.P.; Yang, G.H.; Chi, Y.L.; He, Q. Physicochemical properties and microbial community dynamics during Chinese horse bean-chili-paste fermentation, revealed by culture-dependent and culture-independent approaches. Food Microbiol. 2020, 85, 103309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xu, L.L.; Ding, J.L.; Wang, M.Z.; Ge, R.; Zhao, H.F.; Zhang, B.L.; Fan, J. Natural antimicrobial lipopeptides secreted by Bacillus spp. and their application in food preservation, a critical review. Trends Food Sci. Technol. 2022, 127, 26–37. [Google Scholar] [CrossRef]
- Zhao, C.J.; Schieber, A.; Gänzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations-A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.P.; Kan, Q.X.; Yang, L.X.; Huang, W.T.; Wen, L.F.; Fu, J.Y.; Liu, Z.; Lan, Y.Q.; Huang, Q.R.; Ho, C.T.; et al. Characterization of the key aroma compounds in soy sauce by gas chromatography-mass spectrometry-olfactometry, headspace-gas chromatography-ion mobility spectrometry, odor activity value, and aroma recombination and omission analysis. Food Chem. 2023, 419, 135995. [Google Scholar] [CrossRef]
- Qi, N.; Zhan, X.; Milmine, J.; Sahar, M.; Chang, K.H.; Li, J. Isolation and characterization of a novel hydrolase-producing probiotic Bacillus licheniformis and its application in the fermentation of soybean meal. Front. Nutr. 2023, 10, 1123422. [Google Scholar] [CrossRef] [PubMed]
- Adobi, C.K.; Guézéré, C.B.; Didier-Axel, S.; Brou, K.; Mounjouenpou, P.; Durand, N.; Fontana, A.; Simplice, T. Guehi. Screening of Anti-fungal Bacillus Strains and Influence of their Application on Cocoa Beans Fermentation and Final Bean Quality. J. Adv. Microbiol. 2023, 23, 8–17. [Google Scholar]
- Ran, J.J.; Wu, Y.Z.; Zhang, B.; Su, Y.W.; Lu, N.H.; Li, Y.C.; Liang, X.H.; Zhou, H.X.; Shi, J.R. Paenibacillus polymyxa Antagonism towards Fusarium: Identification and Optimisation of Antibiotic Production. Toxins 2023, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, N.N.; Tan, Y.X.; Mi, Q.Q.; Mao, Y.R.; Zhao, C.; Tian, X.R.; Liu, W.; Huang, L.L. Paenibacillus polymyxa YLC1: A promising antagonistic strain for biocontrol of Pseudomonas syringae pv. actinidiae, causing kiwifruit bacterial canker. Pest Manag. Sci. 2023, 79, 4357–4366. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.L.; Bao, J.; Guo, B.S.; Dong, L.; Ji, C.F.; Zhang, S.F. Screening and Safety Study of Antimicrobial Substance Producing Strains in Traditional Soybean Paste in Northeast China. J. Chin. Inst. Food Sci. Technol. 2024, 24, 100–110. [Google Scholar]
- GB 5009.3-2016; National Food Safety Standard Determination of Moisture Content in Foods. National Health and Family Planning Commission: Beijing, China, 2016.
- GB 5009.235-2016; National Food Safety Standard Determination of Amino Acid Nitrogen in Foods. National Health and Family Planning Commission: Beijing, China, 2016.
- Liang, H.P.; He, Z.; Wang, X.Y.; Song, G.; Chen, H.Y.; Lin, X.P.; Ji, C.F.; Zhang, S.F. Bacterial profiles and volatile flavor compounds in commercial Suancai with varying salt concentration from Northeastern China. Food Res. Int. 2020, 137, 109384. [Google Scholar] [CrossRef]
- Yue, C.S.; Selvi, C.; Tang, A.N.; Chee, K.N.; Ng, H.Y. Determination of biogenic amines in malaysian traditional wine by high-performance liquid chromatography (HPLC). Anal. Lett. 2021, 54, 1968–1994. [Google Scholar] [CrossRef]
- GB 4789.2-2022; National Food Safety Standard Microbiological Examination of Foods Determination of Total Colony Count. National Health and Family Planning Commission/State Administration for Market Regulation: Beijing, China, 2022.
- Kim, S.S.; Kwak, H.S.; Kim, M.J. The effect of various salinity levels on metabolomic profiles, antioxidant capacities and sensory attributes of doenjang, a fermented soybroad-bean paste. Food Chem. 2020, 328, 127176. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.N.; Han, S.K.; Sang, H.K. Effects of salinity on bacterial communities, Maillard reactions, isoflavone composition, antioxidation and antiproliferation in Korean fermented soybroad-bean paste (doenjang). Food Chem. 2018, 245, 402–409. [Google Scholar] [CrossRef]
- Xiong, K.X.; Dong, N.H.; Yang, B.; Chen, Y.X.; Liang, H.P.; Lin, X.P.; Zhang, S.F. Ergothioneine yield of Rhodotorula species positively correlated with hydrogen peroxide tolerance. Food Biosci. 2023, 53, 102745. [Google Scholar] [CrossRef]
- Zhao, Y.X.W.; Du, Y.G.; Dong, N.H.; Dai, Y.W.; Chen, Y.X.; Zhang, Y.J.; Zhang, S.F. Effect of simultaneous inoculation of ethyl carbamate-degrading non-Saccharomyces yeast and Saccharomyces cerevisiae on the quality and flavor of wine. Food Biosci. 2025, 66, 106236. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; He, Q.; Liu, P.; Che, Z.; Wang, X.; Huang, J. Characterization of odor components of Pixian Douban (broad-bean paste) by aroma extract dilute analysis and odor activity values. Int. J. Food Prop. 2019, 22, 1223–1234. [Google Scholar] [CrossRef]
- Wei, X.H.; Hao, J.; Xiong, K.X.; Guo, H.; Xue, S.Y.; Dai, Y.W.; Zhang, Y.J.; Chen, Y.X.; Zhang, S.F. Effect of pectinase produced by Bacillus velezensis W17-6 on methanol content and overall quality of kiwifruit wine. Food Biosci. 2024, 59, 104180. [Google Scholar] [CrossRef]
- GB/T 20560-2006; Geographical Indication Product: Pixian Douban. General Administration of Quality Supervision & Inspection and Quarantine/State Administration for Standardization: Beijing, China, 2006.
- Kim, S.S.; Heo, J.; Kim, Y.; Kim, M.J.; Kwak, H.S. Salt contents and aging period effects on the physicochemical properties and sensory quality of Korean traditional fermented soybroad-bean paste (doenjang). Food Biosci. 2022, 36, 100645. [Google Scholar]
- Lee, J.H.; Jo, E.H.; Hong, E.J.; Kim, K.M.; Lee, I. Safety evaluation of filamentous fungi isolated from industrial doenjang koji. J. Microbiol. Biotechnol. 2014, 24, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Niu, C.T.; Shan, W.X.; Zheng, F.Y.; Liu, C.F.; Wang, J.J.; Li, Q. Physicochemical, flavor and microbial dynamic changes during low-salt doubanjiang (broad-bean paste) fermentation. Food Chem. 2021, 351, 128454. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Liu, X.W.; Huang, J.L.; Baloch, S.; Xu, X.; Pei, X.F. Microbial diversity and chemical analysis of Shuidouchi, traditional Chinese fermented soybean. Food Res. Int. 2019, 116, 1289–1297. [Google Scholar] [CrossRef]
- Shim, J.M.; Lee, K.W.; Yao, Z.; Kim, H.J.; Kim, J.H. Properties of doenjang (soybroad-bean paste) prepared with different types of salts. J. Microbiol. Biotechnol. 2016, 26, 1533–1541. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef]
- Özogul, F.; Hamed, I. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1660–1670. [Google Scholar] [CrossRef]
- Laranjo, M.; Gomes, A.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Rocha, J.M.; Roseiro, L.C.; Fernandes, M.J.; Fraqueza, M.J.; et al. Impact of salt reduction on biogenic amines, fatty acids, microbiota, texture and sensory profile in traditional blood dry-cured sausages. Food Chem. 2017, 218, 129–136. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, T.T.; Guo, R.R.; Ye, Q.; Zhao, H.L.; Huang, X.H. The regulation of key flavor of traditional fermented food by microbial metabolism: A review. Food Chem X 2023, 19, 100871. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.B.; Yu, X.Y.; Fang, J.X.; Lu, Y.H.; Liu, P.; Xing, Y.G.; Wang, Q.; Che, Z.M.; He, Q. Flavor compounds in pixian broad-bean paste: Non-volatile organic acids and amino acids. Molecules 2018, 23, 1299. [Google Scholar] [CrossRef]
- Yang, M.L.; Huang, J.; Zhou, R.Q.; Qi, Q.; Peng, C.; Zhang, L.; Jin, Y.; Wu, C.D.; Tang, Q.X. Characterization of the flavor in traditional Pixian Doubanjiang by polyphasic quantitative detection technology. Food Res. Int. 2020, 138, 109753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Che, Z.M.; Xu, W.Z.; Yue, P.; Li, R.; Li, Y.F.; Pei, X.F.; Zeng, P.B. Dynamics of physicochemical factors and microbial communities during ripening fermentation of Pixian Doubanjiang, a typical condiment in Chinese cuisine. Food Microbiol. 2020, 86, 103342. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Tan, X.Y.; Lv, Y.P.; Yang, G.H.; Chi, Y.L.; He, Q. Flavor volatiles evolution of Chinese horse bean-chili-paste during ripening, accessed by GC×GC-TOF/MS and GC-MS-olfactometry. Int. J. Food Prop. 2020, 23, 570–581. [Google Scholar] [CrossRef]
- Liu, P.; Xiang, Q.; Chen, G.; Liu, Y.; Zhai, G.; Lu, S.X.; Che, Z.M. Consumer preference of Chinese traditional fermented fava pastes. Int. J. Food Prop. 2018, 21, 2469–2490. [Google Scholar] [CrossRef]
- Chen, J.; Liu, T.; Zhang, Y.; Zheng, L.; Goh, K.L.; Zivkovic, V.; Zheng, M. Ultrasound-assisted enzymatic synthesis of cinnamyl acetate by immobilized lipase on ordered mesoporous silicon with CFD simulation and molecular docking analysis. Food Chem. 2025, 464, 141843. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Elisha, I.L.; van Vuuren, S.; Viljoen, A. Volatile phenolics: A comprehensive review of the anti-infective properties of an important class of essential oil constituents. Phytochemistry 2021, 190, 112864. [Google Scholar] [CrossRef]
- Liu, L.B.; Chen, X.Q.; Hao, L.L.; Zhang, G.F.; Jin, Z.; Li, C.; Yang, Y.Z.; Rao, J.J.; Chen, B.C. Traditional fermented soybean products: Processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 2022, 62, 1971–1989. [Google Scholar] [CrossRef]
- Haag, F.; Frey, T.; Hoffmann, S.; Kreissl, J.; Stein, J.; Kobal, G.; Haunei, H.; Krautwurst, D. The multi-faceted food odorant 4-methylphenol selectively activates evolutionary conserved receptor OR9Q2. Food Chem. 2023, 426, 136492. [Google Scholar] [CrossRef]
- Feng, L.; Wang, S.; Chen, H. Research progress on volatile compounds and microbial metabolism of traditional fermented soybean products in China. Food Biosci. 2024, 61, 104558. [Google Scholar] [CrossRef]
- Botezatu, A.; Pickering, G.J.; Kotseridis, Y. Development of a rapid method for the quantitative analysis of four methoxypyrazines in white and red wine using multi-dimensional gas chromatography–mass spectrometry. Food Chem. 2014, 160, 141–147. [Google Scholar] [CrossRef]
- Wang, J.W.; Yan, C.Y.; Ma, C.L.; Huang, S.K.; Chang, X.; Li, Z.J.; Chen, X.; Li, X. Effects of two kinds of Bacillus on flavour formation of Baijiu solid—State fermentation with pure mixed bacteria. Int. J. Food Sci. Technol. 2023, 58, 1250–1262. [Google Scholar] [CrossRef]
- Yu, J.; Lu, K.; Zi, J.W.; Yang, X.H.; Xie, W.C. Characterization of aroma profiles and aroma-active compounds in high-salt and low-salt shrimp paste by molecular sensory science. Food Biosci. 2022, 45, 101470. [Google Scholar]
- Tian, M.; Lin, K.; Yang, L.; Jiang, B.; Zhang, B.Y.; Zhu, X.M.; Ren, D.Y.; Yu, H.S. Characterization of key aroma compounds in gray sufu fermented using Leuconostoc mesenteroides subsp. Mesenteroides F24 as a starter culture. Food Chem. X 2023, 20, 100881. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, H.L.; Tu, Z.C.; Wang, X.L. High-throughput sequencing of microbial community diversity and dynamics during douchi fermentation. PLoS ONE 2016, 11, e0168166. [Google Scholar] [CrossRef]
- An, F.Y.; Zhao, Y.; Zhang, Y.; Mu, D.L.; Hu, X.Y.; You, S.B.; Wu, J.R.; Wu, R. Metatranscriptome-based investigation of flavor-producing core microbiota in different fermentation stages of dajiang, a traditional fermented soybean paste of Northeast China. Food Chem. 2021, 343, 128509. [Google Scholar] [CrossRef]
- Yang, B.B.; Liu, Y.L.; Sang, Y.X.; Sun, J.X. Bacterial diversity and physicochemical properties of low-salt shrimp paste fermented at different temperatures. LWT 2023, 187, 115227. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, S.; Wang, J. Debaryomyces hansenii strains from traditional Chinese dry-cured ham as good aroma enhancers in fermented sausage. Fermentation 2024, 10, 152. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Tao, W.; Ren, X.; Qin, N.; Chen, Y.; Ji, C.; Lin, X.; Dai, Y.; Zhang, S. Enhancement of Quality and Safety of Low-Salt Pixian Douban Fermentation with Paenibacillus polymyxa M17 27-6. Foods 2025, 14, 4200. https://doi.org/10.3390/foods14244200
Gao Z, Tao W, Ren X, Qin N, Chen Y, Ji C, Lin X, Dai Y, Zhang S. Enhancement of Quality and Safety of Low-Salt Pixian Douban Fermentation with Paenibacillus polymyxa M17 27-6. Foods. 2025; 14(24):4200. https://doi.org/10.3390/foods14244200
Chicago/Turabian StyleGao, Zirong, Weihong Tao, Xiaolei Ren, Ningbo Qin, Yingxi Chen, Chaofan Ji, Xinping Lin, Yiwei Dai, and Sufang Zhang. 2025. "Enhancement of Quality and Safety of Low-Salt Pixian Douban Fermentation with Paenibacillus polymyxa M17 27-6" Foods 14, no. 24: 4200. https://doi.org/10.3390/foods14244200
APA StyleGao, Z., Tao, W., Ren, X., Qin, N., Chen, Y., Ji, C., Lin, X., Dai, Y., & Zhang, S. (2025). Enhancement of Quality and Safety of Low-Salt Pixian Douban Fermentation with Paenibacillus polymyxa M17 27-6. Foods, 14(24), 4200. https://doi.org/10.3390/foods14244200

