Effect of Food Proteins on Wheat Starch Pasting and Thermal Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Pasting Properties
2.3. Mathematical Modeling of Starch Pasting Behavior
2.4. Differential Scanning Calorimetry (DSC)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Proteins on the Pasting Properties of Starch
3.2. Modeling of Pasting Curves
3.3. Differential Scanning Calorimetry (DSC)
3.3.1. Gelatinization
3.3.2. Retrogradation
3.4. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Zhao, S.; Min, G.; Qiao, D.; Zhang, B.; Niu, M.; Jia, C.; Xu, Y.; Lin, Q. Starch-protein interplay varies the multi-scale structures of starch undergoing thermal processing. Int. J. Biol. Macromol. 2021, 175, 179–187. [Google Scholar] [CrossRef]
- Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Batey, I.L. Interpretation of RVA curves. In The RVA Handbook; Crosbie, G.B., Ross, A.S., Eds.; American Association of Cereal Chemists (AACC): Saint Paul, MN, USA, 2007; pp. 19–31. [Google Scholar]
- Zaidul, I.S.M.; Yamauchi, H.; Takigawa, S.; Matsuura-Endo, C.; Suzuki, T.; Noda, T. Correlation between the compositional and pasting properties of various potato starches. Food Chem. 2007, 105, 164–172. [Google Scholar] [CrossRef]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Chen, M.H.; Bergman, C.J.; Pinson, R.M.; Fjellstrom, R.G. Waxy gene haplotypes: Associations with pasting properties in an international rice germplasm collection. J. Cereal Sci. 2008, 48, 781–788. [Google Scholar] [CrossRef]
- Sulaiman, B.; Dolan, K. Effect of amylose content on estimated kinetic parameters for a starch viscosity model. J. Food Eng. 2013, 114, 75–82. [Google Scholar] [CrossRef]
- Cozzolino, D. The use of the rapid visco analyser (RVA) in breeding and selection of cereals. J. Cereal Sci. 2016, 70, 282–290. [Google Scholar] [CrossRef]
- Nastasi, J.R.; Alagappan, S.; Cozzolino, D. The Combination of Machine Learning Tools with the Rapid Visco Analyser (RVA) to Enhance the Analysis of Starchy Food Ingredients and Products. Foods 2025, 15, 3376. [Google Scholar] [CrossRef]
- Palabiyik, İ.; Toker, O.S.; Karaman, S.; Yildiz, Ö. A modeling approach in the interpretation of starch pasting properties. J. Cereal Sci. 2017, 74, 272–278. [Google Scholar] [CrossRef]
- Vidaurre-Ruiz, J.; Salas-Valerio, W.; Briceño-Berrú, L.; Repo-Carrasco-Valencia, R.; Correa, M.J.; Balde, E.O. A proposal to model the pasting curve of gluten-free bakery formulations. J. Food Process Eng. 2024, 47, e14506. [Google Scholar] [CrossRef]
- Karakelle, B.; Kian-Pour, N.; Said, O.; Palabiyik, I. Effect of process conditions and amylose/amylopectin ratio on the pasting behavior of maize starch: A modeling approach. J. Cereal Sci. 2020, 94, 102998. [Google Scholar] [CrossRef]
- Tu, J.; Adhikari, B.; Anne, M.; Cheng, P.; Bai, W.; Stephen, C. Interactions between sorghum starch and mushroom polysaccharides and their effects on starch gelatinization and digestion. Food Hydrocoll. 2023, 139, 108504. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, G.; Wen, P.; Chen, Y.; Yu, Q.; Shen, M.; Xie, J. Effect of purple red rice bran anthocyanins on pasting, rheological and gelling properties of rice starch. Int. J. Biol. Macromol. 2023, 247, 125689. [Google Scholar] [CrossRef]
- Pinto, C.; Aparecido, E.; Teresa, M.; Silva, P.; Henrique, P.; Souza, D. X-ray diffraction and Rietveld characterization of radiation-induced physicochemical changes in Ariá (Goeppertia allouia) C-type starch. Food Hydrocoll. 2021, 117, 106682. [Google Scholar] [CrossRef]
- Guo, J.; Lian, X.; Kang, H.; Gao, K.; Li, L. Effects of glutenin in wheat gluten on retrogradation of wheat starch. Eur. Food Res. Technol. 2016, 242, 1485–1494. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, S.; Sun, B.; Wang, F.; Huang, J.; Wang, X.; Bao, Q. Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. Int. J. Biol. Macromol. 2021, 177, 474–484. [Google Scholar] [CrossRef]
- Zhang, B.; Qiao, D.; Zhao, S.; Lin, Q.; Wang, J.; Xie, F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci. Technol. 2021, 114, 212–231. [Google Scholar] [CrossRef]
- Jekle, M.; Mühlberger, K.; Becker, T. Starch-gluten interactions during gelatinization and its functionality in dough-like model systems. Food Hydrocoll. 2016, 54, 196–201. [Google Scholar] [CrossRef]
- Zaidul, I.S.M.; Norulaini, N.A.N.; Omar, A.K.M.; Yamauchi, H.; Noda, T. RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydr. Polym. 2007, 69, 784–791. [Google Scholar] [CrossRef]
- Jarpa-Parra, M.; Bamdad, F.; Wang, Y.; Tian, Z.; Temelli, F.; Han, J.; Chen, L. Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality. LWT Food Sci. Technol. 2014, 57, 461–469. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Davis, J.P. Food protein functionality: A comprehensive approach. Food Hydrocoll. 2011, 25, 1853–1864. [Google Scholar] [CrossRef]
- Nicolai, T.; Durand, D. Controlled food protein aggregation for new functionality. Curr. Opin. Colloid. Interface Sci. 2013, 18, 249–256. [Google Scholar] [CrossRef]
- Day, L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Technol. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- Lin, Y.S.; Yeh, A.I.; Lii, C.Y. Correlation between starch retrogradation and water mobility as determined by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR). Cereal Chem. 2001, 78, 647–653. [Google Scholar] [CrossRef]
- Scott, G.; Awika, J.M. Effect of protein–starch interactions on starch retrogradation and implications for food product quality. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2081–2111. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, W.S.; Jackson, D.S. A new insight into the gelatinization process of native starches. Carbohydr. Polym. 2007, 67, 511–529. [Google Scholar] [CrossRef]
- Biliaderis, C.G.; Page, C.M.; Maurice, T.J.; Juliano, B.O. Thermal Characterization of rice starches: A polymeric approach to phase transitions of granular starch. J. Agric. Food Chem. 1986, 34, 6–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Chen, Y.; Chen, Y. Effect of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation. Food Hydrocoll. 2019, 91, 136–142. [Google Scholar] [CrossRef]
- Li, M.; Yue, Q.; Liu, C.; Zheng, X.; Hong, J.; Li, L.; Bian, K. Effect of gliadin/glutenin ratio on pasting, thermal, and structural properties of wheat starch. J. Cereal Sci. 2020, 93, 102973. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Colombo, A.; León, A.E.; Añón, M.C. Effects of soy protein on the gelatinization of wheat starch and the rheological properties of their composites. J. Sci. Food Agric. 2007, 87, 1429–1436. [Google Scholar] [CrossRef]
- Boltz, K.W.; Thompson, D.B. Initial heating temperature and native lipid affects ordering of amylose during cooling of high-amylose starches. Cereal Chem. 1999, 76, 204–212. [Google Scholar] [CrossRef]


| Sample | PV (cP) | BD (cP) | FV (cP) | SB (cP) | Pt (min) | PT (°C) |
|---|---|---|---|---|---|---|
| S90 | 2880 ± 2 a | 449 ± 59 a | 3527 ± 37 a | 1096 ± 20 a | 6.9 ± 0.0 b | 86.8 ± 0.6 a |
| S/G90:10 | 3357 ± 58 b | 764 ± 57 b | 4085 ± 64 b | 1492 ± 62 b | 6.5 ± 0.1 a | 85.2 ± 0.6 a |
| S90 | 2880 ± 2 b | 449 ± 59 a | 3527 ± 37 a | 1096 ± 20 a | 6.9 ± 0.0 b | 86.8 ± 0.6 a |
| S/SP90:10 | 2594 ± 23 a | 492 ± 69 a | 3583 ± 37 a | 1481 ± 82 b | 6.7 ± 0.0 a | 89.2 ± 0.5 b |
| S90 | 2880 ± 2 b | 449 ± 59 a | 3527 ± 37 a | 1096 ± 20 a | 6.9 ± 0.0 b | 86.8 ± 0.6 a |
| S/WP90:10 | 2730 ± 12 a | 595 ± 12 a | 3715 ± 4 b | 1580 ± 28 b | 6.4 ± 0.0 a | 87.6 ± 0.6 a |
| S90 | 2880 ± 2 b | 449 ± 59 a | 3527 ± 37 b | 1096 ± 20 a | 6.9 ± 0.0 b | 86.8 ± 0.6 a |
| S/ALB90:10 | 2420 ± 4 a | 373 ± 23 a | 3385 ± 2 a | 1338 ± 28 b | 6.7 ± 0.0 a | 88.4 ± 0.6 a |
| S80 | 1803 ± 30 a | 294 ± 13 a | 2175 ± 43 a | 666 ± 25 a | 6.7 ± 0.0 b | 90.5 ± 0.0 b |
| S/G80:20 | 2509 ± 9 b | 896 ± 20 b | 2758 ± 8 b | 1146 ± 19 b | 6.1 ± 0.0 a | 86.3 ± 0.1 a |
| S80 | 1803 ± 30 b | 294 ± 13 a | 2175 ± 43 a | 666 ± 25 a | 6.7 ± 0.0 b | 90.5 ± 0.0 a |
| S/SP80:20 | 1598 ± 45 a | 303 ± 3 a | 2394 ± 2 b | 1099 ± 40 b | 6.4 ± 0.0 a | 92.0 ± 0.1 b |
| S80 | 1803 ± 30 a | 294 ± 13 a | 2175 ± 43 a | 666 ± 25 a | 6.7 ± 0.0 b | 90.5 ± 0.0 a |
| S/WP80:20 | 1958 ± 40 b | 609 ± 17 b | 2693 ± 22 b | 1344 ± 1 b | 5.9 ± 0.0 a | 89.3 ± 0.6 a |
| S80 | 1803 ± 30 b | 294 ± 13 b | 2175 ± 43 a | 666 ± 25 a | 6.7 ± 0.0 a | 90.5 ± 0.0 a |
| S/ALB80:20 | 1468 ± 62 a | 116 ± 17 a | 2229 ± 110 a | 878 ± 66 a | 6.9 ± 0.1 a | 91.7 ± 0.6 a |
| S70 | 1076 ± 33 a | 189 ± 5 a | 1259 ± 4 a | 371 ± 34 a | 6.6 ± 0.1 b | 93.3 ± 0.5 b |
| S/G70:30 | 2208 ± 15 b | 839 ± 18 b | 2442 ± 0 b | 1073 ± 3 b | 5.9 ± 0.0 a | 87.2 ± 0.1 a |
| S70 | 1076 ± 33 b | 189 ± 5 a | 1259 ± 4 a | 371 ± 34 a | 6.6 ± 0.1 a | 93.3 ± 0.5 a |
| S/SP70:30 | 916 ± 16 a | 158 ± 21 a | 1394 ± 7 b | 636 ± 2 b | 6.0 ± 0.1 a | 94.1 ± 0.6 a |
| S70 | 1076 ± 33 a | 189 ± 5 a | 1259 ± 4 a | 371 ± 34 a | 6.6 ± 0.1 b | 93.3 ± 0.5 b |
| S/WP70:30 | 1312 ± 35 b | 337 ± 12 b | 1934 ± 13 b | 959 ± 10 b | 5.7 ± 0.0 a | 88.4 ± 0.6 a |
| S70 | 1076 ± 33 a | 189 ± 5 b | 1259 ± 4 a | 371 ± 34 a | 6.6 ± 0.1 a | 93.3 ± 0.5 a |
| S/ALB70:30 | 945 ± 54 a | 53 ± 4 a | 1684 ± 87 b | 792 ± 36 b | 6.5 ± 0.0 a | 93.3 ± 0.5 a |
| [Protein] | Effect | Protein | PV (%) | BD (%) | FV (%) | SB (%) |
|---|---|---|---|---|---|---|
| 10% | Protein addition | G | +17 | +70 | +16 | +36 |
| SP | −10 | Ns | Ns | +35 | ||
| WP | −5 | Ns | +5 | +44 | ||
| ALB | −16 | Ns | −4 | +22 | ||
| 20% | Protein addition | G | +39 | +185 | +27 | +72 |
| SP | −11 | +3 | +10 | +65 | ||
| WP | +9 | +107 | +24 | +102 | ||
| ALB | −19 | −61 | Ns | Ns | ||
| 30% | Protein addition | G | +105 | +375 | +94 | +189 |
| SP | −15 | Ns | +11 | +71 | ||
| WP | +22 | +79 | +54 | +158 | ||
| ALB | Ns | −72 | +34 | +113 |
| Sample | 1st Part | 2nd Part | 3rd Part | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| PVm (cP) | R (min) | S | R2 | K (cP) | n×100 | R2 | A0 | Ea (J/mol) | R2 | |
| S90 | 3119 ± 16 a | 5.42 ± 0.06 a | 11.3 ± 0.1 a | 0.999 | 3993 ± 80 a | 0.08 ± 0.00 a | 0.937 | 1615.2 ± 48.3 a | 241.1 ± 17.8 a | 0.979 |
| S/G90:10 | 3717 ± 98 b | 5.27 ± 0.04 a | 12.0 ± 0.2 b | 0.999 | 9081 ± 400 b | 0.25 ± 0.01 b | 0.970 | 1643.5 ± 40.9 a | 274.2 ± 17.6 a | 0.951 |
| S90 | 3119 ± 16 b | 5.42 ± 0.06 a | 11.3 ± 0.1 b | 0.999 | 3993 ± 80 a | 0.08 ± 0.00 a | 0.937 | 1615.2 ± 48.3 b | 241.1 ± 17.8 a | 0.979 |
| S/SP90:10 | 3027 ± 18 a | 5.55 ± 0.05 a | 10.5 ± 0.0 a | 0.997 | 5646 ± 1095 a | 0.19 ± 0.05 a | 0.948 | 1206.6 ± 78.5 a | 338.1 ± 30.5 b | 0.969 |
| S90 | 3119 ± 16 a | 5.42 ± 0.06 a | 11.3 ± 0.1 a | 0.999 | 3993 ± 80 a | 0.08 ± 0.00 a | 0.937 | 1615.2 ± 48.3 b | 241.1 ± 17.8 a | 0.979 |
| S/WP90:10 | 3118 ± 13 a | 5.37 ± 0.00 a | 13.4 ± 0.0 b | 0.999 | 7435 ± 298 b | 0.26 ± 0.01 b | 0.963 | 1262.7 ± 33.1 a | 333.5 ± 10.1 b | 0.972 |
| S90 | 3119 ± 16 b | 5.42 ± 0.06 a | 11.3 ± 0.1 a | 0.999 | 3993 ± 80 a | 0.08 ± 0.00 a | 0.937 | 1615.2 ± 48.3 b | 241.1 ± 17.8 a | 0.979 |
| S/ALB90:10 | 2667 ± 10 a | 5.37 ± 0.02 a | 11.2 ± 0.2 a | 0.998 | 4932 ± 396 a | 0.18 ± 0.02 b | 0.958 | 1030.7 ± 40.8 a | 409.1 ± 16.6 b | 0.991 |
| S80 | 1926 ± 37 a | 5.39 ± 0.00 b | 12.9 ± 0.0 a | 0.999 | 2716 ± 159 a | 0.10 ± 0.01 a | 0.932 | 937.2 ± 25.3 a | 267.6 ± 7.5 a | 0.977 |
| S/G80:20 | 2818 ± 11 b | 5.14 ± 0.01 a | 13.9 ± 0.1 b | 0.999 | 14,048 ± 1320 b | 0.46 ± 0.02 b | 0.989 | 924.6 ± 15.8 a | 357.8 ± 7.1 b | 0.993 |
| S80 | 1926 ± 37 a | 5.39 ± 0.00 a | 12.9 ± 0.0 b | 0.999 | 2716 ± 159 a | 0.10 ± 0.01 a | 0.932 | 937.2 ± 25.3 b | 267.6 ± 7.5 a | 0.977 |
| S/SP80:20 | 2480 ± 307 a | 5.78 ± 0.23 a | 8.5 ± 0.7 a | 0.989 | 3338 ± 112 b | 0.19 ± 0.00 b | 0.955 | 660.7 ± 30.7 a | 437.0 ± 10.8 b | 0.995 |
| S80 | 1926 ± 37 a | 5.39 ± 0.00 b | 12.9 ± 0.0 a | 0.999 | 2716 ± 159 a | 0.10 ± 0.01 a | 0.932 | 937.2 ± 25.3 b | 267.6 ± 7.5 a | 0.977 |
| S/WP80:20 | 2279 ± 10 b | 5.19 ± 0.03 a | 17.3 ± 0.5 b | 0.998 | 8603 ± 287 b | 0.41 ± 0.00 b | 0.977 | 645.0 ± 13.3 a | 494.8 ± 3.9 b | 0.987 |
| S80 | 1926 ± 37 b | 5.39 ± 0.00 a | 12.9 ± 0.0 a | 0.999 | 2716 ± 159 a | 0.10 ± 0.01 a | 0.932 | 937.2 ± 25.3 b | 267.6 ± 7.5 a | 0.977 |
| S/ALB80:20 | 1539 ± 66 a | 5.30 ± 0.04 a | 13.0 ± 0.2 a | 0.996 | 2162 ± 121 a | 0.09 ± 0.00 a | 0.983 | 766.9 ± 21.0 a | 347.2 ± 9.9 b | 0.973 |
| S70 | 1108 ± 38 a | 5.31 ± 0.07 b | 17.0 ± 0.9 a | 0.999 | 1794 ± 104 a | 0.13 ± 0.02 a | 0.968 | 545.8 ± 47.6 a | 272.2 ± 31.0 a | 0.985 |
| S/G70:30 | 2486 ± 28 b | 5.07 ± 0.01 a | 14.8 ± 0.0 a | 0.999 | 13,785 ± 72 b | 0.51 ± 0.00 b | 0.991 | 732.0 ± 1.3 b | 437.0 ± 10.8 b | 0.989 |
| S70 | 1108 ± 38 a | 5.31 ± 0.07 a | 17.0 ± 0.9 b | 0.999 | 1794 ± 104 a | 0.13 ± 0.02 a | 0.968 | 545.8 ± 47.6 b | 272.2 ± 31.0 a | 0.985 |
| S/SP70:30 | 6726 ± 187 b | 9.21 ± 0.47 b | 4.9 ± 0.3 a | 0.955 | 1847 ± 138 a | 0.19 ± 0.02 a | 0.986 | 371.0 ± 3.0 a | 470.4 ± 0.9 b | 0.991 |
| S70 | 1108 ± 38 a | 5.31 ± 0.07 b | 17.0 ± 0.9 a | 0.999 | 1794 ± 104 a | 0.13 ± 0.02 a | 0.968 | 545.8 ± 47.6 a | 272.2 ± 31.0 a | 0.985 |
| S/WP70:30 | 1420 ± 38 b | 4.89 ± 0.01 a | 20.3 ± 0.0 b | 0.999 | 4377 ± 255 b | 0.35 ± 0.01 b | 0.975 | 500.4 ± 20.2 a | 465.7 ± 9.2 b | 0.976 |
| S70 | 1108 ± 38 a | 5.31 ± 0.07 a | 17.0 ± 0.9 b | 0.999 | 1794 ± 104 b | 0.13 ± 0.02 a | 0.968 | 545.8 ± 47.6 a | 272.2 ± 31.0 a | 0.985 |
| S/ALB70:30 | 1033 ± 67 a | 5.25 ± 0.03 a | 13.3 ± 0.2 a | 0.990 | 1214 ± 112 a | 0.06 ± 0.00 a | 0.944 | 479.1 ± 25.9 a | 427.4 ± 1.5 b | 0.993 |
| Sample | ΔHg (J/g) | TO (°C) | PWg (°C) | ΔHr (J/g) | TOr (°C) | PWr (°C) |
|---|---|---|---|---|---|---|
| S90 | 7.16 ± 0.09 b | 55.4 ± 0.7 a | 7.3 ± 0.1 a | 2.41 ± 0.47 a | 37.1 ± 0.3 a | 12.0 ± 0.6 a |
| S/G90:10 | 6.39 ± 0.12 a | 56.3 ± 0.6 a | 7.2 ± 0.1 a | 2.89 ± 0.54 a | 42.2 ± 2.1 a | 12.7 ± 0.7 a |
| S90 | 7.16 ± 0.09 a | 55.4 ± 0.7 a | 7.3 ± 0.1 a | 2.41 ± 0.47 a | 37.1 ± 0.3 a | 12.0 ± 0.6 a |
| S/SP90:10 | 7.88 ± 0.27 a | 56.5 ± 0.2 a | 7.5 ± 0.3 a | 2.07 ± 0.08 a | 41.5 ± 0.4 b | 12.7 ± 0.3 a |
| S90 | 7.16 ± 0.09 a | 55.4 ± 0.7 a | 7.3 ± 0.1 b | 2.41 ± 0.47 a | 37.1 ± 0.3 a | 12.0 ± 0.6 a |
| S/WP90:10 | 6.56 ± 0.43 a | 57.0 ± 0.0 a | 6.2 ± 0.0 a | 2.24 ± 0.08 a | 43.7 ± 0.1 b | 10.1 ± 0.4 a |
| S90 | 7.16 ± 0.09 b | 55.4 ± 0.7 a | 7.3 ± 0.1 b | 2.41 ± 0.47 a | 37.1 ± 0.3 a | 12.0 ± 0.6 b |
| S/ALB90:10 | 5.98 ± 0.02 a | 57.8 ± 0.6 b | 6.5 ± 0.1 a | 1.98 ± 0.06 a | 44.7 ± 0.6 b | 9.5 ± 0.0 a |
| S80 | 7.88 ± 0.06 b | 55.3 ± 0.4 a | 7.0 ± 0.2 a | 2.08 ± 0.14 a | 41.6 ± 0.5 a | 12.4 ± 0.2 b |
| S/G80:20 | 6.75 ± 0.20 a | 56.3 ± 0.3 b | 7.3 ± 0.2 a | 1.93 ± 0.21 a | 40.6 ± 0.1 a | 10.7 ± 0.2 a |
| S80 | 7.88 ± 0.06 b | 55.3 ± 0.4 a | 7.0 ± 0.2 a | 2.08 ± 0.14 a | 41.6 ± 0.5 a | 12.4 ± 0.2 b |
| S/SP80:20 | 7.24 ± 0.05 a | 57.1 ± 0.1 b | 7.2 ± 0.1 a | 2.64 ± 0.28 a | 42.2 ± 0.8 a | 11.0 ± 0.2 a |
| S80 | 7.88 ± 0.06 b | 55.3 ± 0.4 a | 7.0 ± 0.2 a | 2.08 ± 0.14 a | 41.6 ± 0.5 a | 12.4 ± 0.2 b |
| S/WP80:20 | 6.02 ± 0.29 a | 58.2 ± 1.5 b | 6.9 ± 0.3 a | 1.97 ± 0.08 a | 44.5 ± 0.3 b | 10.0 ± 0.5 a |
| S80 | 7.88 ± 0.06 b | 55.3 ± 0.4 a | 7.0 ± 0.2 b | 2.08 ± 0.14 a | 41.6 ± 0.5 a | 12.4 ± 0.2 b |
| S/ALB80:20 | 5.68 ± 0.14 a | 58.2 ± 0.0 b | 6.4 ± 0.0 a | 2.42 ± 0.05 a | 44.9 ± 0.2 b | 10.2 ± 0.6 a |
| S70 | 7.44 ± 0.53 a | 55.1 ± 0.3 a | 6.6 ± 0.0 a | 1.66 ± 0.12 a | 42.9 ± 0.7 a | 11.4 ± 0.4 b |
| S/G70:30 | 6.63 ± 0.05 a | 56.5 ± 0.3 b | 6.9 ± 0.2 a | 1.25 ± 0.22 a | 45.0 ± 0.4 a | 9.5 ± 0.4 a |
| S70 | 7.44 ± 0.53 a | 55.1 ± 0.3 a | 6.6 ± 0.0 a | 1.66 ± 0.12 a | 42.9 ± 0.7 a | 11.4 ± 0.4 a |
| S/SP70:30 | 7.17 ± 0.68 a | 57.8 ± 0.7 b | 7.3 ± 0.0 b | 2.03 ± 0.02 b | 43.7 ± 0.0 a | 10.4 ± 0.0 a |
| S70 | 7.44 ± 0.53 b | 55.1 ± 0.3 a | 6.6 ± 0.0 a | 1.66 ± 0.12 a | 42.9 ± 0.7 a | 11.4 ± 0.4 b |
| S/WP70:30 | 5.38 ± 0.42 a | 57.1 ± 1.3 a | 6.8 ± 0.2 a | 2.58 ± 0.08 b | 44.9 ± 0.1 a | 9.5 ± 0.3 a |
| S70 | 7.44 ± 0.53 b | 55.1 ± 0.3 a | 6.6 ± 0.0 b | 1.66 ± 0.12 a | 42.9 ± 0.7 a | 11.4 ± 0.4 a |
| S/ALB70:30 | 5.58 ± 0.21 a | 59.1 ± 0.3 b | 6.1 ± 0.1 a | 2.12 ± 0.44 a | 43.6 ± 0.0 a | 9.6 ± 0.6 a |
| [Protein] | Effect | Protein | ΔHg (%) | ΔTO (°C) | ΔPWg (°C) | ΔHr (%) | ΔTOr (°C) | ΔPWr (°C) |
|---|---|---|---|---|---|---|---|---|
| 10% | Protein addition | G | −10.8 | Ns | Ns | Ns | Ns | Ns |
| SP | Ns | Ns | Ns | Ns | +4.3 | Ns | ||
| WP | Ns | Ns | −1.1 | Ns | +6.5 | Ns | ||
| ALB | −16.5 | +2.5 | −0.8 | Ns | +7.6 | −2.5 | ||
| 20% | Protein addition | G | −14.3 | +1.0 | Ns | Ns | Ns | −1.7 |
| SP | −8.2 | +1.8 | Ns | Ns | Ns | −1.2 | ||
| WP | −23.6 | +2.8 | Ns | Ns | +2.9 | −2.5 | ||
| ALB | −27.9 | +2.8 | −0.6 | ns | +3.3 | −2.3 | ||
| 30% | Protein addition | G | Ns | +1.5 | Ns | Ns | Ns | −1.9 |
| SP | Ns | +2.7 | +0.7 | +22.8 | Ns | Ns | ||
| WP | −27.7 | Ns | Ns | +55.9 | Ns | −1.9 | ||
| ALB | −24.9 | +4.1 | −0.5 | Ns | Ns | Ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teobaldi, A.G.; Carrillo Parra, E.J.; Barrera, G.N.; Ribotta, P.D. Effect of Food Proteins on Wheat Starch Pasting and Thermal Properties. Foods 2025, 14, 3865. https://doi.org/10.3390/foods14223865
Teobaldi AG, Carrillo Parra EJ, Barrera GN, Ribotta PD. Effect of Food Proteins on Wheat Starch Pasting and Thermal Properties. Foods. 2025; 14(22):3865. https://doi.org/10.3390/foods14223865
Chicago/Turabian StyleTeobaldi, Andrés Gustavo, Esteban Josué Carrillo Parra, Gabriela Noel Barrera, and Pablo Daniel Ribotta. 2025. "Effect of Food Proteins on Wheat Starch Pasting and Thermal Properties" Foods 14, no. 22: 3865. https://doi.org/10.3390/foods14223865
APA StyleTeobaldi, A. G., Carrillo Parra, E. J., Barrera, G. N., & Ribotta, P. D. (2025). Effect of Food Proteins on Wheat Starch Pasting and Thermal Properties. Foods, 14(22), 3865. https://doi.org/10.3390/foods14223865

