The Screening Strategy and Activity Investigation of Skipjack Tuna (Katsuwonus pelamis) Umami Peptides Based on Computer Simulation Prediction and Experimental Hydrolysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Database
2.2. In Silico Hydrolysis of Skipjack Tuna
2.3. Prediction of Water Solubility and Toxicity
2.4. Umami Characteristic Screening
2.5. Preparation and Separation Purification of Skipjack Tuna Protein Hydrolysate
2.6. Sequence Identification by LC-MS/MS
2.7. Molecular Simulation
2.7.1. Construction and Optimization of Protein Receptor
2.7.2. Molecular Docking
2.7.3. Molecular Dynamics (MD) Simulation
2.8. Peptide Synthesis
2.9. Sensory Evaluation
2.10. Electronic Tongue Measurement
2.11. Prediction of Peptide Antioxidant Activity Based on BIOPEP-UWM and Molecular Docking Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. In Silico Proteolysis of Skipjack Protein
3.2. Virtual Screening of Potential Umami Peptides
3.3. Taste Analysis and Separation Purification of Skipjack Tuna Protein Hydrolysate (SPHs)
3.4. Identification and Screening of Umami Peptides from SPH-F3 and Virtual Hydrolysis
3.5. Construction and Optimization of the T1R1/T1R3 Receptor
3.6. Molecular Docking Analysis of Umami Peptides Interacting with T1R1/T1R3
3.7. Prediction of Umami Intensity
3.8. Intermolecular Interaction Force Analysis
3.9. Molecular Dynamics (MD) Simulation

3.10. Sensory Evaluation of Synthetic Peptides
3.11. Electronic Tongue Evaluation
3.12. Peptide Activity Prediction and Molecular Docking Analysis

4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamasaki, Y.; Maekawa, K. A Peptide with Delicious Taste. Agric. Biol. Chem. 1978, 42, 1761–1765. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Ninomiya, K. Umami and Food Palatability. J. Nutr. 2000, 130, 921S–926S. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, B.; Xhafa, F.; Wang, X.A.; Li, C. Energy-efficient secure outsourcing decryption of attribute based encryption for mobile device in cloud computation. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 429–438. [Google Scholar] [CrossRef]
- Zhang, J.; Sun Waterhouse, D.; Su, G.; Zhao, M. New insight into umami receptor, umami/umami-enhancing peptides and their derivatives: A review. Trends Food Sci. Technol. 2019, 88, 429–438. [Google Scholar] [CrossRef]
- Kinnamon, S.C. Umami taste transduction mechanisms123. Am. J. Clin. Nutr. 2009, 90, 753S–755S. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Y.; Yang, J.; Sun, Y.F.; Li, Y.W.; Ye, Z.H.; Lin, H.B.; Yang, Y. Overview of the preparation method, structure and function, and application of natural peptides and polypeptides. Biomed. Pharmacother. 2022, 153, 113493. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Sieniawski, K.; Starowicz, P. BIOPEP database of sensory peptides and amino acids. Food Res. Int. 2016, 85, 155–161. [Google Scholar] [CrossRef]
- Elisabeth, G.; Alexandre, G.; Christine, H.; Ivan, I.; Ron, D.A.; Amos, B. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Charoenkwan, P.; Yana, J.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iUmami-SCM: A Novel Sequence-Based Predictor for Prediction and Analysis of Umami Peptides Using a Scoring Card Method with Propensity Scores of Dipeptides. J. Chem. Inf. Model. 2020, 60, 6666–6678. [Google Scholar] [CrossRef]
- Lulu, Q.; Jialuo, D.; Yue, S.; Yongzhao, X.; Xinyao, Z.; Daodong, P.; Yueru, Z.; Yali, D.; Xinchang, G. Umami-MRNN: Deep learning-based prediction of umami peptide using RNN and MLP. Food Chem. 2023, 405, 134935. [Google Scholar] [CrossRef]
- Phasit, C.; Chanin, N.; Mehedi, H.M.; Ali, M.M.; Balachandran, M.; Watshara, S. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning. Int. J. Mol. Sci. 2021, 22, 13124. [Google Scholar] [CrossRef]
- Ragucci, S.; Clemente, A.; Alberico, L.; Campanile, M.G.; Hussain, H.Z.F.; Oliver, A.; Ruvo, M.; Saviano, M.; Landi, N.; Woodrow, P.; et al. Structure/function relationship of Atlantic bonito (Sarda sarda Bloch) myoglobin and comparison with Atlantic and Tinker mackerel myoglobins. Food Biosci. 2024, 59, 104065. [Google Scholar] [CrossRef]
- Zheng, S.L.; Luo, Q.B.; Suo, S.K.; Zhao, Y.Q.; Chi, C.F.; Wang, B. Preparation, Identification, Molecular Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack Tuna Muscle. Mar. Drugs 2022, 20, 176. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, B.; Yu, R.; Sun, X.; Wang, Z.; Zhou, J.; Lu, C.; Zhang, J.; Han, J.; Su, X. Studies on blocking the JAK2/STAT3 signaling pathway with elastin peptides from skipjack tuna (Katsuwonus pelamis) bulbus cordis to alleviate osteoarthritis. Food Biosci. 2023, 56, 103253. [Google Scholar] [CrossRef]
- Xin, X.Y.; Ruan, C.H.; Liu, Y.H.; Jin, H.N.; Park, S.K.; Hur, S.J.; Li, X.Z.; Choi, S.H. Identification of novel antioxidant and anti-inflammatory peptides from bovine hemoglobin by computer simulation of enzymolysis, molecular docking and molecular dynamics. Curr. Res. Food Sci. 2024, 9, 100931. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, J.; Niu, Y.; Sun, B.; Liu, Z.; Mao, X.; Zhang, Y. Virtual screening and characteristics of novel umami peptides from porcine type I collagen. Food Chem. 2024, 434, 137386. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, H.S.; Yan, J.X.; Shi, Q.; Yang, H.; Cao, S.Q.; Qi, X.Y. Identification and molecular mechanism of novel antioxidant peptides from squid skin protein hydrolysates: In silico and in vitro analysis. LWT 2024, 214, 117081. [Google Scholar] [CrossRef]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Makeneni, S.; Thieker, D.F.; Woods, R.J. Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking. J. Chem. Inf. Model. 2018, 58, 605–614. [Google Scholar] [CrossRef]
- Fang, J.; Wu, P.; Yang, R.; Gao, L.; Li, C.; Wang, D.; Wu, S.; Liu, A.L.; Du, G.H. Inhibition of acetylcholinesterase by two genistein derivatives: Kinetic analysis, molecular docking and molecular dynamics simulation. Acta Pharm. Sin. B 2014, 4, 430–437. [Google Scholar] [CrossRef]
- Sudheer, G.; Pallavi, K.; Kumardeep, C.; Ankur, G.; Rahul, K.; Gajendra, P.S.R. Peptide toxicity prediction. In Computational Peptidology; Zhou, P., Huang, J., Eds.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; Volume 1268, pp. 143–157. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, Z.; Zhou, T.; Zhou, X.; Zhang, Y.; Meng, H.; Wang, W.; Liu, Y. A TastePeptides-Meta system including an umami/bitter classification model UmamiYYDS, a TastePeptidesDB database and an open-source package AutoTasteML. Food Chem. 2023, 405, 134812. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, J.; Hansen, E.T.; Bredie, W.L.P.; Lametsch, R. Structural characteristics of low bitter and high umami protein hydrolysates prepared from bovine muscle and porcine plasma. Food Chem. 2018, 257, 163–171. [Google Scholar] [CrossRef]
- Huang, P.; Zhao, X.; Fan, Q.; Yang, H.; Ma, S.; Wang, H.; Yu, H.; Cui, C. Decoding of novel umami peptides from corn fermented powder and its mechanism via multisensory techniques, virtual screening, and molecular simulation approaches. Food Chem. 2025, 463, 141449. [Google Scholar] [CrossRef]
- Pierce, B.G.; Kevin, W.; Howook, H.; Bong Hyun, K.; Thom, V.; Zhiping, W. ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 2014, 30, 1771–1773. [Google Scholar] [CrossRef]
- John, J.; Richard, E.; Alexander, P.; Tim, G.; Michael, F.; Olaf, R.; Kathryn, T.; Russ, B.; Augustin, Ž.; Anna, P.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Dylan, C.; David, B. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32, W526–W531. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef]
- Zhuang, M.; Zhao, M.; Lin, L.; Dong, Y.; Chen, H.; Feng, M.; Sun-Waterhouse, D.; Su, G. Macroporous resin purification of peptides with umami taste from soy sauce. Food Chem. 2016, 190, 338–344. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, S.; Zhang, Y.; Gao, M.; Luo, Z.; Cai, S. Combining molecular docking and molecular dynamics simulation to discover four novel umami peptides from tuna skeletal myosin with sensory evaluation validation. Food Chem. 2024, 433, 137331. [Google Scholar] [CrossRef]
- Zhang, T.; Hua, Y.; Zhou, C.; Xiong, Y.; Pan, D.; Liu, Z.; Dang, Y. Umami peptides screened based on peptidomics and virtual screening from Ruditapes philippinarum and Mactra veneriformis clams. Food Chem. 2022, 394, 133504. [Google Scholar] [CrossRef]
- Yin, Z.; Chandrasekar, V.; Pan, Z.; Liu, W.; Zhao, L. Novel Umami Ingredients: Umami Peptides and Their Taste. J. Food Sci. 2017, 82, 16–23. [Google Scholar] [CrossRef]
- Cui, Z.; Meng, H.; Zhou, T.; Yu, Y.; Gu, J.; Zhang, Z.; Zhu, Y.; Zhang, Y.; Liu, Y.; Wang, W. Noteworthy Consensus Effects of D/E Residues in Umami Peptides Used for Designing the Novel Umami Peptides. J. Agric. Food Chem. 2024, 72, 2789–2800. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; Pan, D.; Zhang, Z.; Zhou, T.; Dang, Y. Isolation, characterization and molecular docking of novel umami and umami-enhancing peptides from Ruditapes philippinarum. Food Chem. 2020, 343, 128522. [Google Scholar] [CrossRef]
- Ji, D.; Xu, M.; Udenigwe, C.C.; Agyei, D. Physicochemical characterisation, molecular docking, and drug-likeness evaluation of hypotensive peptides encrypted in flaxseed proteome. Curr. Res. Food Sci. 2020, 3, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Sun, L.; Sun, X.; He, J.; Zhuang, Y. Novel umami peptides from tilapia lower jaw and molecular docking to the taste receptor T1R1/T1R3. Food Chem. 2021, 362, 130249. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, W.; Wang, D.; Wei, G.; Li, Z.; Li, Y.; Wang, Y.; Shi, J.; Tao, W.; Zhang, W.; et al. Identification and Taste Presentation Characteristics of Umami Peptides from Hybrid Pork Duroc × (Gaoligongshan × Saba) Based on Peptidomics, Machine Learning, Molecular Docking, and Molecular Dynamics Simulation. J. Agric. Food Chem. 2025, 73, 24917–24931. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Smieško, M.; Sellner, M.; Lill, M.A. Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results. J. Med. Chem. 2021, 64, 2489–2500. [Google Scholar] [CrossRef]
- Zhang, M.X.; Wang, X.C.; Liu, Y.; Xu, X.L.; Zhou, G.H. Isolation and identification of flavour peptides from Puffer fish (Takifugu obscurus) muscle using an electronic tongue and MALDI-TOF/TOF MS/MS. Food Chem. 2012, 135, 1463–1470. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; Zhao, W.; Dong, H.; Yang, J.; Bai, W. Identification and comparison of umami-peptides in commercially available dry-cured Spanish mackerels (Scomberomorus niphonius). Food Chem. 2022, 380, 132175. [Google Scholar] [CrossRef]
- Zhuang, M.; Lin, L.; Zhao, M.; Dong, Y.; Sun-Waterhouse, D.; Chen, H.; Qiu, C.; Su, G. Sequence, taste and umami-enhancing effect of the peptides separated from soy sauce. Food Chem. 2016, 206, 174–181. [Google Scholar] [CrossRef]
- Liang, L.; Zhou, C.; Zhang, J.; Huang, Y.; Zhao, J.; Sun, B.; Zhang, Y. Characteristics of umami peptides identified from porcine bone soup and molecular docking to the taste receptor T1R1/T1R3. Food Chem. 2022, 387, 132870. [Google Scholar] [CrossRef]
- Yu, Z.; Kang, L.; Zhao, W.; Wu, S.; Ding, L.; Zheng, F.; Liu, J.; Li, J. Identification of novel umami peptides from myosin via homology modeling and molecular docking. Food Chem. 2020, 344, 128728. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hua, Y.; Pan, D.; Qi, L.; Xiao, C.; Xiong, Y.; Lu, W.; Dang, Y.; Gao, X.; Zhao, Y. A rapid selection strategy for umami peptide screening based on machine learning and molecular docking. Food Chem. 2023, 404, 134562. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Ye, J.; Chen, H.; Tao, R. Design, virtual screening, molecular docking and molecular dynamics studies of novel urushiol derivatives as potential HDAC2 selective inhibitors. Gene 2017, 637, 63–71. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, S.; Yi, J.; Du, M.; Liu, J.; Liu, Y.; Cai, S. Identification of Novel Umami Peptides in Termitornyces albuminosus (Berk) Heim Soup by In Silico Analyses Combined with Sensory Evaluation: Discovering Potential Mechanism of Umami Taste Formation with Molecular Perspective. J. Agric. Food Chem. 2023, 71, 17243–17252. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, C.; Tian, Y.; Han, A.; Liu, Y. Simulation screening of umami peptides in the microbiota of soy sauce based on molecular docking and molecular dynamics. Food Biosci. 2024, 61, 104722. [Google Scholar] [CrossRef]
- Li, X.; Xie, X.; Wang, J.; Xu, Y.; Yi, S.; Zhu, W.; Mi, H.; Li, T.; Li, J. Identification, taste characteristics and molecular docking study of novel umami peptides derived from the aqueous extract of the clam Meretrix meretrix Linnaeus. Food Chem. 2020, 312, 126053. [Google Scholar] [CrossRef]
- Vidal-Limon, A.; Aguilar-Toalá, J.E.; Liceaga, A.M. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J. Agric. Food Chem. 2022, 70, 934–943. [Google Scholar] [CrossRef]
- Cui, H.; Li, H.; Wu, Y.; Hu, X. Identification, flavor characteristics and molecular docking of umami taste peptides of Xuanwei ham. Food Res. Int. 2023, 173, 113211. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Deng, Y.; Zhang, Y.; Zhang, C.; Liu, L.; Liu, Y.; Jiang, J.; Xie, P.; Huang, L. Screening and Evaluation of Novel α-Glucosidase Inhibitory Peptides from Ginkgo biloba Seed Cake Based on Molecular Docking Combined with Molecular Dynamics Simulation. J. Agric. Food Chem. 2023, 71, 10326–10337. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, R.; Lu, J.; Du, Q.; Cai, K.; Zhang, B.; Xu, B. Taste properties and mechanism of umami peptides from fermented goose bones based on molecular docking and molecular dynamics simulation using umami receptor T1R1/T1R3. Food Chem. 2024, 443, 138570. [Google Scholar] [CrossRef]
- Khabiri, M.; Freddolino, L. Deficiencies in Molecular Dynamics Simulation-Based Prediction of Protein-DNA Binding Free Energy Landscapes. J. Phys. Chem. B 2017, 121, 5151–5161. [Google Scholar] [CrossRef]
- Ishibashi, N.; Ono, I.; Kato, K.; Shigenaga, T.; Shinoda, I.; OKAi, H.; Fukui, S. Role of the Hydrophobic Amino Acid Residue in the Bitterness of Peptides. Agric. Biol. Chem. 1988, 52, 91–94. [Google Scholar] [CrossRef]
- Wei, L.; Shi, C.; Li, D.; Yuan, X.; Yu, X.; Liang, B.; Wu, J.; Zhang, Y.; Dai, Z.; Lu, Y.; et al. Discovery of novel umami peptides and their bitterness masking effects from yellowfin tuna (Thunnus albacares) via peptidomics, multisensory evaluation, and molecular docking approaches. Food Chem. 2025, 489, 145028. [Google Scholar] [CrossRef]
- Dang, Y.; Hao, L.; Cao, J.; Sun, Y.; Zeng, X.; Wu, Z.; Pan, D. Molecular docking and simulation of the synergistic effect between umami peptides, monosodium glutamate and taste receptor T1R1/T1R3. Food Chem. 2019, 271, 697–706. [Google Scholar] [CrossRef]
- Chen, L.; Chen, S.; Rong, Y.; Zeng, W.; Hu, Z.; Ma, X.; Feng, S. Identification and evaluation of antioxidant peptides from highland barley distiller’s grains protein hydrolysate assisted by molecular docking. Food Chem. 2024, 434, 137441. [Google Scholar] [CrossRef]
- Zhang, B.; Ren, L.; Lu, Y.; Wang, Z.; Zhang, G.; Liu, Z.; Wang, Y.; Zhu, F.; Li, X.; Jiang, Y.; et al. Novel antioxidative and hypoglycemic collagen peptides from Apostichopus japonicus: In silico preparation, functional mechanism, and structure-activity relationship study. Food Chem. 2025, 493, 145695. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Ren, J. Structural characterization of functional peptides by extending the hybrid orbital theory. eFood 2022, 3, e27. [Google Scholar] [CrossRef]
- Xu, B.; Dong, Q.; Yu, C.; Chen, H.; Zhao, Y.; Zhang, B.; Yu, P.; Chen, M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants 2024, 13, 479. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.D.; Mu, B.D.; Ge, C.X.; Chen, S.Q.; Cui, M.X.; Li, H.M.; Zhao, C.C.; Wang, J.; Piao, C.X.; Li, G.H. Exploring the novel antioxidant peptides in low-salt dry-cured ham: Preparation, purification, identification and molecular docking. Food Chem. 2024, 446, 138697. [Google Scholar] [CrossRef]
- Abou Diab, M.; Thibodeau, J.; Deracinois, B.; Flahaut, C.; Fliss, I.; Dhulster, P.; Bazinet, L.; Nedjar, N. Bovine Hemoglobin Enzymatic Hydrolysis by a New Eco-Efficient Process-Part II: Production of Bioactive Peptides. Membranes 2020, 10, 268. [Google Scholar] [CrossRef]
- Rzhepakovsky, I.; Piskov, S.; Avanesyan, S.; Dudchik, N.; Sizonenko, M.; Timchenko, L.; Kurchenko, V.; Osadchy, A.; Nagdalian, A.; Jafari, S.M. Functional and health-promoting bioactivities of fractions derived from chicken embryo hydrolysates. Food Res. Int. 2025, 219, 117058. [Google Scholar] [CrossRef]
- Hao, L.; Gao, X.; Zhou, T.; Cao, J.; Sun, Y.; Dang, Y.; Pan, D. Angiotensin I-Converting Enzyme (ACE) Inhibitory and Antioxidant Activity of Umami Peptides after In Vitro Gastrointestinal Digestion. J. Agric. Food Chem. 2020, 68, 8232–8241. [Google Scholar] [CrossRef]




| Peptide | Abbreviation | Solubility | Toxicity | iUmami-SCM | Affinity Energy (kcal/mol) |
|---|---|---|---|---|---|
| GVGGHGVGG | GG-9 | Good | Non-Toxin | Score = 648.27, Umami | −9.2 |
| GVTGVG | GG-6 | Good | Non-Toxin | Score = 590.36, Umami | −8.5 |
| GGAGVP | GP-6 | Good | Non-Toxin | Score = 668.0, Umami | −7.5 |
| GA | GA-2 | Good | Non-Toxin | Score = 617.35, Umami | −6.6 |
| GVGG | GG-4 | Good | Non-Toxin | Score = 595.78, Umami | −7.5 |
| GGVAGCQGK | GK-9 | Good | Non-Toxin | Score = 620.05, Umami | −8.4 |
| SPAAK | SK-5 | Good | Non-Toxin | Score = 599.76, Umami | −8 |
| PGY | PY-3 | Good | Non-Toxin | Score = 588.09, Umami | −7.6 |
| MANR | MR-4 | Good | Non-Toxin | Score = 589.65, Umami | −8 |
| GVAT | GT-4 | Good | Non-Toxin | Score = 590.54, Umami | −7.5 |
| Sequences | Amino Acid Fragments Corresponding to Taste | Frequency of Occurrence of Umami | ||||
|---|---|---|---|---|---|---|
| Umami | Sweet | Bitter | Salty | Sour | ||
| GG-9 | VG, VGG | V, G | V, GV, VG | / | / | 50% |
| GG-6 | VG | V, G | V, GV, VG | / | / | 33% |
| GK-9 | / | K, V, G, A | V, GV, GGV, K, VA | K | K | 0% |
| MR-4 | / | A | / | / | / | 0% |
| SK-5 | / | K, AA, P, A | P, K, PA | K | K | 0% |
| Sequence | Threshold Value (mg/mL) | Umami Scores |
|---|---|---|
| GG-9 | 0.125 | 7.3 |
| GG-6 | 0.25 | 7 |
| GK-9 | 0.25 | 6.2 |
| MR-4 | 0.75 | 5.3 |
| SK-5 | 0.5 | 6.4 |
| Sequence | Amino Acid Fragments | Frequency of Occurrence | Affinity Energy (kcal/mol) |
|---|---|---|---|
| GG-9 | GV, VG, GH, GG, HG, GHG | 0.67 | −7.5 |
| GG-6 | GV, VG, TG | 0.5 | −7.3 |
| GK-9 | GG, GV, AG, QG, GK | 0.45 | −8.1 |
| MR-4 | / | 0 | −6.8 |
| SK-5 | AA | 0.2 | −6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Wang, P.; Li, Y.; Guan, W.; Cai, L. The Screening Strategy and Activity Investigation of Skipjack Tuna (Katsuwonus pelamis) Umami Peptides Based on Computer Simulation Prediction and Experimental Hydrolysis. Foods 2025, 14, 3777. https://doi.org/10.3390/foods14213777
Song Q, Wang P, Li Y, Guan W, Cai L. The Screening Strategy and Activity Investigation of Skipjack Tuna (Katsuwonus pelamis) Umami Peptides Based on Computer Simulation Prediction and Experimental Hydrolysis. Foods. 2025; 14(21):3777. https://doi.org/10.3390/foods14213777
Chicago/Turabian StyleSong, Qiufeng, Panpan Wang, Yue Li, Weiliang Guan, and Luyun Cai. 2025. "The Screening Strategy and Activity Investigation of Skipjack Tuna (Katsuwonus pelamis) Umami Peptides Based on Computer Simulation Prediction and Experimental Hydrolysis" Foods 14, no. 21: 3777. https://doi.org/10.3390/foods14213777
APA StyleSong, Q., Wang, P., Li, Y., Guan, W., & Cai, L. (2025). The Screening Strategy and Activity Investigation of Skipjack Tuna (Katsuwonus pelamis) Umami Peptides Based on Computer Simulation Prediction and Experimental Hydrolysis. Foods, 14(21), 3777. https://doi.org/10.3390/foods14213777

