Development of a Mixed-Strain Fermentation Process for Sour Pomegranate: An Analysis of Metabolites and Flavor Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Strains
2.2. Optimization of Mixed-Strain Fermentation Conditions
2.3. Determination of Soluble Solids, Total Acidity, and Polyphenols
2.4. Determination of Volatile Aroma Components
2.4.1. Electronic Nose Analysis
2.4.2. GC-IMS
2.5. Electronic Tongue Measurement
2.6. Non-Targeted Metabolomic Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimal Fermentation Conditions
3.1.1. Screening of Fermentation Strains
3.1.2. Screening of Mixed Bacteria Ratios
3.1.3. Screening of Mixed-Strain Inoculation Amount
3.1.4. Screening of Mixed-Strain Fermentation Time
3.2. Impact of Fermentation on Flavor Compounds in Sour Pomegranate Juice
3.2.1. Electronic Nose and Analysis
3.2.2. GC-IMS Analysis
Three-Dimensional Comparative Analysis of the Ion Mobility Spectra of Volatile Components in Samples Before and After Fermentation
PCA of Sour Pomegranate Juice Samples
Fingerprint Profile of Volatile Organic Compounds in Pomegranate Juice Samples Before and After Fermentation
3.3. The Impact of Mixed-Strain Fermentation on the Metabolic Profile of Pomegranate Juice
3.3.1. PLS-DA/OPLS-DA Score Plots and Permutation Tests
3.3.2. Differential Metabolite Analysis
3.3.3. KEGG Pathway Enrichment Analysis
4. Conclusions
5. Limitations and Prospects of Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tinebra, I.; Scuderi, D.; Sortino, G.; Mazzaglia, A.; Farina, V. Pomegranate cultivation in mediterranean climate: Plant adaptation and fruit quality of ‘mollar de elche’ and ’wonderful’ cultivars. Agronomy 2021, 11, 156. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Martinez-Zamora, L.; Castillejo, N.; Bueso, M.C.; Kessler, M.; Artes-Hernandez, F. Ultrasound-assisted ethanolic extraction of punicalagin from pomegranate by-products influenced by cultivar, pre-drying treatment, particle size, and temperature. LWT-Food Sci. Technol. 2023, 186, 115236. [Google Scholar] [CrossRef]
- Pokkaew, R.; Wang, S.-H.; Liu, C.-D.; Huang, F.-L.; Chang, J.-C.; Lo, C.-Y.; Chiou, R.Y.Y. Properties and characterization of antioxidant and antiglycative activities for the multiple harvests of aquatic- and field-cultivated peanut leaves and stems. J. Funct. Foods 2013, 5, 327–336. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agr. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef] [PubMed]
- Boggia, R.; Turrini, F.; Villa, C.; Lacapra, C.; Zunin, P.; Parodi, B. Green extraction from pomegranate marcs for the production of functional foods and cosmetics. Pharmaceuticals 2016, 9, 63. [Google Scholar] [CrossRef]
- Lan, Y.; Wu, J.; Wang, X.; Sun, X.; Hackman, R.M.; Li, Z.; Feng, X. Evaluation of antioxidant capacity and flavor profile change of pomegranate wine during fermentation and aging process. Food Chem. 2017, 232, 777–787. [Google Scholar] [CrossRef]
- Rios-Corripio, G.; Angel Guerrero-Beltran, J. Antioxidant and physicochemical characteristics of unfermented and fermented pomegranate (Punica granatum L.) beverages. J. Food Sci. Technol. 2019, 56, 132–139. [Google Scholar] [CrossRef]
- Zapasnik, A.; Sokolowska, B.; Bryla, M. Role of lactic acid bacteria in food preservation and safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Zhao, L.-Z.; Chen, J.; Wei, X.-Y.; Lin, B.; Zheng, F.-J.; Verma, K.K.; Chen, G.-L. Response of alcohol fermentation strains, mixed fermentation and extremozymes interactions on wine flavor. Front. Microbiol. 2025, 16, 1532539. [Google Scholar] [CrossRef]
- Li, D.; Wu, X.; Li, L.; Wang, Y.; Xu, Y.; Luo, Z. Epibrassinolide enhanced chilling tolerance of postharvest banana fruit by regulating energy status and pyridine nucleotide homeostasis. Food Chem. 2022, 382, 132273. [Google Scholar] [CrossRef]
- Tepper, B.J. ‘Refreshing’ perception and product design. J. Food Sci. 2021, 86, 1176–1177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tian, W.; Xie, B.; Sun, Z. Insight into the influence of lactic acid bacteria fermentation on the variations in flavor of chickpea milk. Foods 2022, 11, 2445. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yan, N.; Li, G. The effect of in vitro gastrointestinal digestion on the antioxidants, antioxidant activity, and hypolipidemic activity of green jujube vinegar. Foods 2022, 11, 1647. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, P.; Zhang, B.; Yu, X.; Li, X.; Han, G.; Ren, Y.; Zhang, J. Combining transcriptomics and polyphenol profiling to provide insights into phenolics transformation of the fermented chinese jujube. Foods 2022, 11, 2546. [Google Scholar] [CrossRef]
- Zhang, J.W.; Pan, L.Q.; Tu, K. Growth prediction of the total bacterial count in freshly squeezed strawberry juice during cold storage using electronic nose and electronic tongue. Sensors 2022, 22, 8205. [Google Scholar] [CrossRef]
- Christmann, J.; Weber, M.; Rohn, S.; Weller, P. Nontargeted Volatile Metabolite Screening and Microbial Contamination Detection in Fermentation Processes by Headspace GC-IMS. Anal. Chem. 2024, 96, 3794–3801. [Google Scholar] [CrossRef]
- Hong, X.; Wang, J. Detection of adulteration in cherry tomato juices based on electronic nose and tongue: Comparison of different data fusion approaches. J. Food Eng. 2014, 126, 89–97. [Google Scholar] [CrossRef]
- Rocchetti, G.; Becchi, P.P.; Salis, L.; Lucini, L.; Cabiddu, A. Impact of pasture-based diets on the untargeted metabolomics profile of sarda sheep milk. Foods 2023, 12, 143. [Google Scholar] [CrossRef]
- Semaniakou, A.; Chappe, F.; Anini, Y.; Chappe, V. VIP reduction in the pancreas of F508del homozygous cf mice and early signs of cystic fibrosis related diabetes (CFRD). J. Cyst. Fibros. 2021, 20, 881–890. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Y.; Yu, H.; Chen, Z.; Tian, H. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice. FBIO 2019, 27, 30–36. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Y.; Zhang, X.; Shao, S.; Han, Y.; Dinh-Toi, C.; Xie, G.; Ye, X. Metabolic profile of ginkgo kernel juice fermented with lactic aicd bacteria: A potential way to degrade ginkgolic acids and enrich terpene lactones and phenolics. Process Biochem. 2019, 76, 25–33. [Google Scholar] [CrossRef]
- Alves Filho, E.d.G.; Soares Rodrigues, T.H.; Narciso Fernandes, F.A.; Fernandes Pereira, A.L.; Narain, N.; de Brito, E.S.; Rodrigues, S. Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice. Food Res. Int. 2017, 99, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Lim, S.H.; Sim, H.S.; Park, J.H.; Kwon, H.J.; Nam, H.S.; Kim, M.D.; Baek, H.H.; Ha, S.J. Changes in antioxidant activities and volatile compounds of mixed berry juice through fermentation by lactic acid bacteria. Food Sci. Biotechnol. 2017, 26, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Filannino, P.; Bai, Y.; Di Cagno, R.; Gobbetti, M.; Gaenzle, M.G. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol. 2015, 46, 272–279. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, Y.; Lin, Y.; Pang, X.; Zhao, L.; Wu, J. Differential sensitivity to thermal processing of two muskmelon cultivars with contrasting differences in aroma profile. LWT-Food Sci. Technol. 2021, 138, 110769. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, F.; Cai, W.; Zhao, X.; Shan, C. Evaluating the effect of lactic acid bacteria fermentation on quality, aroma, and metabolites of chickpea milk. Front. Nutr. 2022, 9, 1069714. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.; Ye, Y.; Wang, Y.; Xu, P. Structural insight into polyphenol oxidation during black tea fermentation. Food Chem. X 2023, 17, 100615. [Google Scholar] [CrossRef]
- Alvarez, M.M.; Aguirre-Ezkauriatza, E.J.; Ramirez-Medrano, A.; Rodriguez-Sanchez, A. Kinetic analysis and mathematical modeling of growth and lactic acid production of Lactobacillus casei var. rhamnosus in milk whey. J. Dairy Sci. 2010, 93, 5552–5560. [Google Scholar] [CrossRef]
- Tang, F.; Wei, B.; Qin, C.; Huang, L.; Xia, N.; Teng, J. Enhancing the inhibitory activities of polyphenols in passion fruit peel on α-amylase and α-glucosidase via β-glucosidase-producing Lactobacillus fermentation. FBIO 2024, 62, 105005. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Bhandari, B.; Adhikari, B. Application of electronic tongue for fresh foods quality evaluation: A review. Food Rev. Int. 2018, 34, 746–769. [Google Scholar] [CrossRef]
- Diepeveen, J.; Moerdijk-Poortvliet, T.C.W.; Leij. Molecular insights into human taste perception and umami tastants: A review. J. Food Sci. 2022, 87, 1449–1465. [Google Scholar] [CrossRef] [PubMed]
- Ordoudi, S.A.; Mantzouridou, F.; Daftsiou, E.; Malo, C.; Hatzidimitriou, E.; Nenadis, N.; Tsimidou, M.Z. Pomegranate juice functional constituents after alcoholic and acetic acid fermentation. J. Food Sci. 2014, 8, 161–168. [Google Scholar] [CrossRef]
- Andreu-Sevilla, A.J.; Mena, P.; Marti, N.; Garcia Viguera, C.; Carbonell-Barrachina, A.A. Volatile composition and descriptive sensory analysis of pomegranate juice and wine. Food Res. Int. 2013, 54, 246–254. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, C.; Su, W.; Tan, R.; Ma, L.; Pan, W.; Li, W. Dynamic effects of ultrasonic treatment on flavor and metabolic pathway of pumpkin juice during storage based on GC-MS and GC-IMS. Food Chem. 2025, 469, 142599. [Google Scholar] [CrossRef]
- Virdis, C.; Sumby, K.; Bartowsky, E.; Jiranek, V. Lactic acid bacteria in wine: Technological advances and evaluation of their functional role. Front. Microbiol. 2021, 11, 612118. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Curr. Opin. Biotech. 2018, 49, 64–72. [Google Scholar] [CrossRef]
- Sporn, M.B.; Liby, K.T.; Yore, M.M.; Fu, L.; Lopchuk, J.M.; Gribble, G.W. New synthetic triterpenoids: Potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress. J. Nat. Prod. 2011, 74, 537–545. [Google Scholar] [CrossRef]
- Guan, Y.F.; Lv, H.X.; Wu, G.F.; Chen, J.; Wang, M.; Zhang, M.; Pang, H.L.; Duan, Y.K.; Wang, L.; Tan, Z.F. Effects of Lactic Acid Bacteria Reducing the Content of Harmful Fungi and Mycotoxins on the Quality of Mixed Fermented Feed. Toxins 2023, 15, 226. [Google Scholar] [CrossRef]
- Hostetler, M.A.; Smith, C.; Nelson, S.; Budimir, Z.; Modi, R.; Woolsey, I.; Frerk, A.; Baker, B.; Gantt, J.; Parkinson, E.I. Synthetic natural product inspired cyclic peptides. ACS Chem. Biol. 2021, 16, 2604–2611. [Google Scholar] [CrossRef]
- Fabbri, L.P.; Cavallero, A.; Vidotto, F.; Gabriele, M. Bioactive peptides from fermented foods: Production approaches, sources, and potential health benefits. Foods 2024, 13, 3369. [Google Scholar] [CrossRef]
- Rogozinskaya, E.Y.; Lyapina, L.A.; Shubina, T.A.; Myasoedov, N.F.; Grigorieva, M.E.; Obergan, T.Y.; Andreeva, L.A. Thromboelastographic Research of Arginine-, Leucine and Lysine-Containing Peptides. Bull. Exp. Biol. Med. 2020, 169, 775–777. [Google Scholar] [CrossRef]
- Shen, M.; Yuan, L.; Zhang, J.; Wang, X.; Zhang, M.; Li, H.; Jing, Y.; Zeng, F.; Xie, J. Phytosterols: Physiological functions and potential application. Foods 2024, 13, 1754. [Google Scholar] [CrossRef]
- Bai, Y.P.; Gänzle, M.G. Conversion of ginsenosides by Lactobacillus plantarum studied by liquid chromatography coupled to quadrupole trap mass spectrometry. Food Res. Int. 2015, 76, 709–718. [Google Scholar] [CrossRef]








| Compound | Peak Volume Change (AU) | Peak Volume Change Rate (%) | Aromatic Attributes | 
|---|---|---|---|
| Acetic acid-D | 1469.64 | 217.08 | Aromatic | 
| Benzaldehyde | 201.77 | 146.15 | Pungent taste | 
| 2-Butanone, 3-hydroxy | 24.44 | 122.96 | Bitter almond flavor | 
| Acetic acid-M | 3458.88 | 77.41 | Creamy aroma | 
| Propyl propanoate-M | 0.46 | 0.06 | |
| Butanal | −28.92 | −8.21 | |
| 2-Butylfuran | 71.03 | 76.92 | Irritating taste | 
| 2-propanone | 1669.45 | 55.35 | Sweet and spicy aroma (similar to fruit wine) | 
| Pyrrolidine | 110.36 | 41.96 | Fruity and ether aroma | 
| Propyl propanoate-D | 36.49 | 26.4 | Ammonia-like odor | 
| 1-Butanol,3-methyl-D | 40.31 | 20.86 | Fruity aroma | 
| 1-Hexanol | 13.67 | 19.55 | Alcohol, ether, and banana aromas | 
| Benzene, butyl- | 3.30 | 18 | Fresh green, alcohol, fruit, and faint fatty aroma | 
| Acrylonitrile-D | 140.99 | 17.75 | Slightly sweet and delicate fragrance | 
| 1-Nonanal-D | 5.76 | 16.97 | Pungent odor | 
| Ethanol-M | −370.08 | −19.51 | |
| 1-Nonanal-M | 58.90 | 11.39 | |
| 1-Butanol,3-methyl M | 120.83 | 15.68 | Wax, citrus, fatty, and floral notes | 
| Acrylonitrile-M | 74.21 | 13.89 | Mellow, ether, and banana aromas | 
| 1-Propanol,2-methyl-D | 12.51 | 11.28 | Wax, citrus, fatty, and floral aromas | 
| Ethanol-D | 1386.41 | 9.6 | Distinct odor | 
| 2-Butanol-D | 22.50 | 9.34 | Alcohol odor | 
| Acetic acid ethyl ester-D | 107.92 | 8.85 | Hint of mint | 
| 2-Butanol-M | 7.67 | 7.58 | Fruity aroma | 
| 2-Ethylpyridine | 2.25 | 5.18 | Minty fragrance | 
| 2-Pentyl furan | 1.97 | 4.43 | Green grass flavor | 
| γ-Butyrolactone | 1.18 | 0.45 | Fruity, earthy, and potato-like scent | 
| 1-Propanol,2-methyl-M | −1.13 | −0.11 | Fruity aroma | 
| 1-Octanal | −6.12 | −5.49 | |
| Acetic acid ethyl ester-M | −2.50 | −2.36 | Distinctive odor | 
| 2,3-Butanedione | −115.96 | −8.15 | Rich and waxy fragrance | 
| Cyclohexanone | −3.38 | −10.9 | Fruity and green leaf scent | 
| Triethylamine | −62.18 | −16.81 | Minty and acetone-like odor | 
| Categories of Metabolites | Metabolite | p_Value | FC (Fermented/Control) | 
|---|---|---|---|
| Triterpenoid | Presqualene diphosphate | 3.94 × 10−0.7 | 2.6877 | 
| Lucidenic acid H | 1.41 × 10−14 | 1.6145 | |
| Cyclic peptide | Nummularine A | 7.48 × 10−15 | 2.6017 | 
| Other categories | Arg-Val-Phe | 2.36 × 10−9 | 2.402 | 
| Met-Lys-Lys | 1.23 × 10−8 | 2.2977 | |
| Thr-Pro | 5.88 × 10−6 | 1.8648 | |
| Glu-Leu-Ser | 2.69 × 10−8 | 1.7702 | |
| Thr-Ser | 7.82 × 10−17 | 1.7545 | |
| Ile-Hyp | 2.43 × 10−13 | 1.6573 | |
| Hyp-Arg | 8.62 × 10−8 | 1.5598 | |
| Arg-Ile | 644 × 10−6 | 1.5183 | |
| Val-Pro-Gln | 1.29 × 10−14 | 1.5142 | |
| Other alkaloids and their derivatives | Amabiline | 7.81 × 10−16 | 2.1625 | 
| Oligopeptide | Mucronine D | 1.56 × 10−11 | 2.086 | 
| Other types of steroids and their derivatives | Cimiracemoside d | 9.55 × 10−19 | 2.0417 | 
| Taurocholic acid | 7.89 × 10−12 | 1.5708 | |
| Dipeptide | Val-Gly | 7.19 × 10−10 | 1.8839 | 
| Lys-Pro | 8.72 × 10−8 | 1.6304 | |
| Lys-Ile | 8.99 × 10−7 | 1.5577 | |
| Glycosides | Oleandomycin | 2.03 × 10−10 | 1.8717 | 
| Organic acids and their derivatives | Candoxatrilat | 2 × 10−16 | 1.8502 | 
| Macrolides and their derivatives | Ixabepilone | 1.46 × 10−8 | 1.806 | 
| Fatty acyls | (S)-(-)-2-Hydroxyisocaproic acid | 1.01 × 10−8 | 1.7731 | 
| Leukotriene E4 | 1.41 × 10−10 | 1.7348 | |
| 1-Hexanol arabinosylglucoside | 6.75 × 10−12 | 1.6402 | |
| Alpha amino acids and their derivatives | Cyclo(Pro-Leu) | 3.8 × 10−7 | 1.6134 | 
| Nucleotides and their derivatives | Zalcitabine | 5.4 × 10−6 | 1.6005 | 
| Coumarins and their derivatives | Dihydrocoumarin | 7.63 × 10−8 | 1.5597 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Mulati, A.; Huang, X.; Li, Y.; Shataer, D.; Liu, H.; Wang, J. Development of a Mixed-Strain Fermentation Process for Sour Pomegranate: An Analysis of Metabolites and Flavor Compounds. Foods 2025, 14, 3733. https://doi.org/10.3390/foods14213733
Yang Y, Mulati A, Huang X, Li Y, Shataer D, Liu H, Wang J. Development of a Mixed-Strain Fermentation Process for Sour Pomegranate: An Analysis of Metabolites and Flavor Compounds. Foods. 2025; 14(21):3733. https://doi.org/10.3390/foods14213733
Chicago/Turabian StyleYang, Yuting, Ailikemu Mulati, Xinmeng Huang, Yuanpeng Li, Dilireba Shataer, Haipeng Liu, and Jiayi Wang. 2025. "Development of a Mixed-Strain Fermentation Process for Sour Pomegranate: An Analysis of Metabolites and Flavor Compounds" Foods 14, no. 21: 3733. https://doi.org/10.3390/foods14213733
APA StyleYang, Y., Mulati, A., Huang, X., Li, Y., Shataer, D., Liu, H., & Wang, J. (2025). Development of a Mixed-Strain Fermentation Process for Sour Pomegranate: An Analysis of Metabolites and Flavor Compounds. Foods, 14(21), 3733. https://doi.org/10.3390/foods14213733
 
        



 
       