The Efficacy of Hesperidin in the Reduction of Atherosclerosis in ApoE−/− Mice and Its Possible Mechanism of Action
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animal Procedures and Treatments
2.3. Analysis of Biochemical Indicators
2.4. Histopathology
2.5. Quantitative 16S rRNA Sequencing
2.6. Determination of BCAA Content
2.7. Data Analysis
3. Results
3.1. Mouse Body Weight and Blood Glucose Levels
3.2. Hesperidin Treatment Reduces Dyslipidaemia in Atherosclerotic Mice
3.3. Hesperidin Treatment Improves Lipid Deposition in Atherosclerotic Mice
3.4. Hesperidin Administration Ameliorates Liver Injury in Atherosclerotic Mice
3.5. Administration of Hesperidin Improves Levels of Atherosclerosis in Mice in the Model Group
3.6. Hesperidin Administration Improves the Gut Microbiota in Atherosclerotic Mice
3.6.1. Changes in the Intestinal Flora
3.6.2. Species Composition and Differential Analysis in the Gut Flora
3.7. Hesperidin Administration Improves BCAA Levels in Atherosclerotic Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ApoE−/− mice | apolipoprotein E-deficiency mice |
AS | atherosclerosis |
BCAA | branched-chain amino acid |
CVD | cardiovascular disease |
CMC-Na | Sodium carboxymethyl cellulose |
TC | total cholesterol |
TG | triglycerides |
HDL-C | high-density lipoprotein cholesterol |
LDL-C | low-density lipoprotein cholesterol |
AST | aspartate aminotransferase |
ALT | alanine aminotransferase |
TBA | total bile acids |
ox-LDL | oxidized low-density lipoprotein |
IL-6 | interleukin-6 |
TNF-α | tumor necrosis factor-alpha |
References
- Roy, P.; Orecchioni, M.; Ley, K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022, 22, 251–265. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [PubMed]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Kumar, R.; Khan, M.I.; Ashfaq, F.; Alsayegh, A.A.; Khatoon, F.; Altamimi, T.N.; Rizvi, S.I. Hesperidin Supplementation Improves Altered PON-1, LDL Oxidation, Inflammatory Response and Hepatic Function in an Experimental Rat Model of Hyperlipidemia. Indian J. Clin. Biochem. 2024, 39, 257–263. [Google Scholar] [CrossRef]
- Ma, E.; Jin, L.; Qian, C.; Feng, C.; Zhao, Z.; Tian, H.; Yang, D. Bioinformatics-Guided Identification of Ethyl Acetate Extract of Citri Reticulatae Pericarpium as a Functional Food Ingredient with Anti-Inflammatory Potential. Molecules 2022, 27, 5435. [Google Scholar] [CrossRef]
- Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A Therapeutic Agent for Obesity. Drug Des. Devel Ther. 2019, 13, 3855–3866. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Wang, J.; Ye, W.; Lu, J.; Li, C.; Zhang, D.; Ye, W.; Xu, S.; Chen, C.; Liu, P.; et al. Citri Reticulatae Pericarpium (Chenpi): A multi-efficacy pericarp in treating cardiovascular diseases. Biomed. Pharmacother. 2022, 154, 113626. [Google Scholar] [CrossRef] [PubMed]
- Mas-Capdevila, A.; Teichenne, J.; Domenech-Coca, C.; Caimari, A.; Del Bas, J.M.; Escoté, X.; Crescenti, A. Effect of Hesperidin on Cardiovascular Disease Risk Factors: The Role of Intestinal Microbiota on Hesperidin Bioavailability. Nutrients 2020, 12, 1488. [Google Scholar] [CrossRef]
- Wen, Y.; Sun, Z.; Xie, S.; Hu, Z.; Lan, Q.; Sun, Y.; Yuan, L.; Zhai, C. Intestinal Flora Derived Metabolites Affect the Occurrence and Development of Cardiovascular Disease. J. Multidiscip. Healthc. 2022, 15, 2591–2603. [Google Scholar]
- Wang, H.; Feng, L.; Pei, Z.; Zhao, J.; Lu, S.; Lu, W. Gut microbiota metabolism of branched-chain amino acids and their metabolites can improve the physiological function of aging mice. Aging Cell 2025, 24, e14434. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Z.; Yu, W.; Wen, S.; Wang, X.; Qi, X.; Hao, H.; Lu, Y.; Li, J.; Li, S.; et al. Effects of PPM1K rs1440581 and rs7678928 on serum branched-chain amino acid levels and risk of cardiovascular disease. Ann. Med. 2021, 53, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Tobias, D.K.; Lawler, P.R.; Harada, P.H.; Demler, O.V.; Ridker, P.M.; Manson, J.E.; Cheng, S.; Mora, S. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ. Genom. Precis. Med. 2018, 11, e002157. [Google Scholar] [CrossRef] [PubMed]
- Man, J.J.; Beckman, J.A.; Jaffe, I.Z. Sex as a Biological Variable in Atherosclerosis. Circ. Res. 2020, 126, 1297–1319. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Chen, J.F.; Shen, L.M.; Zhou, J.; Wang, C.F. Anti-atherosclerotic effect of hesperidin in LDLr(-/-) mice and its possible mechanism. Eur. J. Pharmacol. 2017, 815, 109–117. [Google Scholar] [CrossRef]
- Mo, Z.T.; Zheng, J.; Liao, Y.L. Icariin inhibits the expression of IL-1β, IL-6 and TNF-α induced by OGD/R through the IRE1/XBP1s pathway in microglia. Pharm. Biol. 2021, 59, 1473–1479. [Google Scholar] [CrossRef]
- Curtis, M.J.; Bond, R.A.; Spina, D.; Ahluwalia, A.; Alexander, S.P.; Giembycz, M.A.; Gilchrist, A.; Hoyer, D.; Insel, P.A.; Izzo, A.A.; et al. Experimental design and analysis and their reporting: New guidance for publication in BJP. Br. J. Pharmacol. 2015, 172, 3461–3471. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.J.; Chagari, B.; An, A.; Chen, M.H.; Bao, Y.; Shi, W. Genetic Connection between Hyperglycemia and Carotid Atherosclerosis in Hyperlipidemic Mice. Genes 2022, 13, 510. [Google Scholar] [CrossRef] [PubMed]
- Rosenblit, P.D. Extreme Atherosclerotic Cardiovascular Disease (ASCVD) Risk Recognition. Curr. Diab Rep. 2019, 19, 61. [Google Scholar] [CrossRef]
- Xiang, Q.; Tian, F.; Xu, J.; Du, X.; Zhang, S.; Liu, L. New insight into dyslipidemia-induced cellular senescence in atherosclerosis. Biol. Rev. Camb. Philos. Soc. 2022, 97, 1844–1867. [Google Scholar] [CrossRef]
- Yao, Y.S.; Li, T.D.; Zeng, Z.H. Mechanisms underlying direct actions of hyperlipidemia on myocardium: An updated review. Lipids Health Dis. 2020, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Gao, B.; Yu, Y.; Gu, Y.; Hu, L. Chronic Administration of Methamphetamine Aggravates Atherosclerotic Vulnerable Plaques in Apolipoprotein E Knockout Mice Fed with a High-cholesterol Diet. Curr. Mol. Med. 2024, 24, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, X.; Hu, W.; Wang, X.; Bian, H.; Zhang, W.; Feng, H.; Kang, N.; Zhang, L.; Ye, M. Association of IL-8 and CXCR2 with AST/ALT Ratio in Liver Abnormalities Screening during Oxidative Stress Injury Caused by VCM. J. Toxicol. 2024, 2024, 1951046. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, K.; Liu, W.; Wu, M.; Wang, Y.; Lv, Y.; Meng, H. Diets Enriched in Sugar, Refined, or Whole Grain Differentially Influence Plasma Cholesterol Concentrations and Cholesterol Metabolism Pathways with Concurrent Changes in Bile Acid Profile and Gut Microbiota Composition in ApoE(-/-) Mice. J. Agric. Food Chem. 2023, 71, 9738–9752. [Google Scholar] [CrossRef] [PubMed]
- Yntema, T.; Koonen, D.P.Y.; Kuipers, F. Emerging Roles of Gut Microbial Modulation of Bile Acid Composition in the Etiology of Cardiovascular Diseases. Nutrients 2023, 15, 1850. [Google Scholar] [CrossRef]
- Cortés, V.; Eckel, R.H. Insulin and Bile Acids in Cholesterol Homeostasis: New Players in Diabetes-Associated Atherosclerosis. Circulation 2022, 145, 983–986. [Google Scholar] [CrossRef]
- Hartley, A.; Haskard, D.; Khamis, R. Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis—Novel insights and future directions in diagnosis and therapy<sup/>. Trends Cardiovasc. Med. 2019, 29, 22–26. [Google Scholar]
- Zhang, S.; Li, L.; Chen, W.; Xu, S.; Feng, X.; Zhang, L. Natural products: The role and mechanism in low-density lipoprotein oxidation and atherosclerosis. Phytother. Res. 2021, 35, 2945–2967. [Google Scholar] [CrossRef]
- Shen, X.; Li, L.; Sun, Z.; Zang, G.; Zhang, L.; Shao, C.; Wang, Z. Gut Microbiota and Atherosclerosis-Focusing on the Plaque Stability. Front. Cardiovasc. Med. 2021, 8, 668532. [Google Scholar] [CrossRef]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, M.; Sun, H.; Wang, Y. Branched-chain amino acid metabolism in heart disease: An epiphenomenon or a real culprit? Cardiovasc. Res. 2011, 90, 220–223. [Google Scholar] [CrossRef]
- Huffman, K.M.; Shah, S.H.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.; Slentz, C.A.; Tanner, C.J.; Kuchibhatla, M.; Houmard, J.A.; Newgard, C.B.; et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009, 32, 1678–1683. [Google Scholar] [CrossRef]
- Song, P.; Fang, Z.; Wang, H.; Cai, Y.; Rahimi, K.; Zhu, Y.; Fowkes, F.G.R.; Fowkes, F.J.I.; Rudan, I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob. Health 2020, 8, e721–e729. [Google Scholar] [CrossRef]
- Tarantino, N.; Santoro, F.; Correale, M.; De Gennaro, L.; Romano, S.; Di Biase, M.; Brunetti, N.D. Fenofibrate and Dyslipidemia: Still a Place in Therapy? Drugs 2018, 78, 1289–1296. [Google Scholar] [CrossRef]
- Sugasawa, N.; Katagi, A.; Kurobe, H.; Nakayama, T.; Nishio, C.; Takumi, H.; Higashiguchi, F.; Aihara, K.I.; Shimabukuro, M.; Sata, M.; et al. Inhibition of Atherosclerotic Plaque Development by Oral Administration of α-Glucosyl Hesperidin and Water-Dispersible Hesperetin in Apolipoprotein E Knockout Mice. J. Am. Coll. Nutr. 2019, 38, 15–22. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, S.; Yan, W.; Xia, Y.; Chen, X.; Wang, W.; Zhang, J.; Gao, C.; Peng, C.; Yan, F.; et al. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy. EBioMedicine 2016, 13, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Hu, Y.; Wang, L.; Wang, W.; Wang, P.; Ke, Z.; Lou, D.; Tian, W. Hesperidin Protects Against High-Fat Diet-Induced Lipotoxicity in Rats by Inhibiting Pyroptosis. J. Med. Food 2024, 27, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Xu, F.; Xin, R.; Yao, F. Palmatine regulates bile acid cycle metabolism and maintains intestinal flora balance to maintain stable intestinal barrier. Life Sci. 2020, 262, 118405. [Google Scholar] [CrossRef]
- Hanchang, W.; Wongmanee, N.; Yoopum, S.; Rojanaverawong, W. Protective role of hesperidin against diabetes induced spleen damage: Mechanism associated with oxidative stress and inflammation. J. Food Biochem. 2022, 46, e14444. [Google Scholar] [CrossRef]
- Lorey, M.B.; Öörni, K.; Kovanen, P.T. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Front. Cardiovasc. Med. 2022, 9, 841545. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, P.; Verma, V.K.; Malik, S.; Khan, S.I.; Bhatia, J.; Arya, D.S. Hesperidin regresses cardiac hypertrophy by virtue of PPAR-γ agonistic, anti-inflammatory, antiapoptotic, and antioxidant properties. J. Biochem. Mol. Toxicol. 2019, 33, e22283. [Google Scholar]
- Zhao, Y.; Yu, S.; Zhao, H.; Li, L.; Li, Y.; Liu, M.; Jiang, L. Integrated multi-omics analysis reveals the positive leverage of citrus flavonoids on hindgut microbiota and host homeostasis by modulating sphingolipid metabolism in mid-lactation dairy cows consuming a high-starch diet. Microbiome 2023, 11, 236. [Google Scholar] [CrossRef]
- Nesci, A.; Carnuccio, C.; Ruggieri, V.; D’Alessandro, A.; Di Giorgio, A.; Santoro, L.; Gasbarrini, A.; Santoliquido, A.; Ponziani, F.R. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int. J. Mol. Sci. 2023, 24, 9087. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, X.; Li, C.; Wang, D.; Shen, Y.; Lu, J.; Zhao, L.; Li, X.; Gao, H. BCAA mediated microbiota-liver-heart crosstalk regulates diabetic cardiomyopathy via FGF21. Microbiome 2024, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, S.; Goody, P.R.; Oelze, M.; Ghanem, A.; Mueller, C.F.; Laufs, U.; Daiber, A.; Jansen, F.; Nickenig, G.; Wassmann, S. Inhibition of Rac1 GTPase Decreases Vascular Oxidative Stress, Improves Endothelial Function, and Attenuates Atherosclerosis Development in Mice. Front. Cardiovasc. Med. 2021, 8, 680775. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Liu, H.; Tang, Y.; Zhan, Q.; Lai, W.; Ao, L.; Meng, X.; Ren, H.; Xu, D.; et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease. Atherosclerosis 2019, 284, 121–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Li, B.; Luo, Y.; Gong, Y.; Jin, X.; Zhang, J.; Zhou, Y.; Zhuo, X.; Wang, Z.; et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc. Res. 2022, 118, 785–797. [Google Scholar] [CrossRef]
- Han, H.; Wang, M.; Zhong, R.; Yi, B.; Schroyen, M.; Zhang, H. Depletion of Gut Microbiota Inhibits Hepatic Lipid Accumulation in High-Fat Diet-Fed Mice. Int. J. Mol. Sci. 2022, 23, 9350. [Google Scholar] [CrossRef]
- Liu, C.Z.; Chen, W.; Wang, M.X.; Wang, Y.; Chen, L.Q.; Zhao, F.; Shi, Y.; Liu, H.J.; Dou, X.B.; Liu, C.; et al. Dendrobium officinale Kimura et Migo and American ginseng mixture: A Chinese herbal formulation for gut microbiota modulation. Chin. J. Nat. Med. 2020, 18, 446–459. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Ni, Y.; Yu, Y.; Guo, F.; Lu, Y.; Wang, X.; Hao, H.; Li, S.; Wei, P.; et al. Branched-chain amino acids promote occurrence and development of cardiovascular disease dependent on triglyceride metabolism via activation of the mTOR/SREBP-1/betatrophin pathway. Mol. Cell. Endocrinol. 2024, 584, 112164. [Google Scholar] [CrossRef]
- Dobashi, Y.; Miyakawa, Y.; Yamamoto, I.; Amao, H. Effects of intestinal microflora on superoxide dismutase activity in the mouse cecum. Exp. Anim. 2011, 60, 133–139. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw_Reads | Raw_Bases | Valid_Tags | Valid_Bases | Valid% | Q20% | Q30% | GC% |
---|---|---|---|---|---|---|---|---|
CD | 82,502 | 41.25 M | 77,365 | 32.26 M | 93.76 | 98.11 | 94.15 | 54.86 |
HFD | 83,714 | 41.86 M | 77,985 | 32.34 M | 93.06 | 98 | 93.86 | 53.89 |
HFD + Hes | 81,481 | 40.74 M | 76,150 | 31.32 M | 93.45 | 98.04 | 93.95 | 54.53 |
Sample | Observed_Species | Shannon | Simpson | Chao1 | Goods_Coverage | Pielou_e | Ace |
---|---|---|---|---|---|---|---|
CD | 400 | 4.82 | 0.81 | 401.25 | 1 | 0.57 | 402.37 |
HFD | 236 | 3.47 | 0.76 | 236.16 | 1 | 0.44 | 236.76 |
HFD + Hes | 354 | 3.94 | 0.74 | 354.11 | 1 | 0.47 | 354.87 |
HFD + AT | 355 | 3.24 | 0.60 | 355.55 | 1 | 0.38 | 356.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Huang, X.; Zhang, M.; Sang, S.; Fang, L.; Zhang, R.; Xia, S.; Liu, Y. The Efficacy of Hesperidin in the Reduction of Atherosclerosis in ApoE−/− Mice and Its Possible Mechanism of Action. Foods 2025, 14, 3560. https://doi.org/10.3390/foods14203560
Wang Q, Huang X, Zhang M, Sang S, Fang L, Zhang R, Xia S, Liu Y. The Efficacy of Hesperidin in the Reduction of Atherosclerosis in ApoE−/− Mice and Its Possible Mechanism of Action. Foods. 2025; 14(20):3560. https://doi.org/10.3390/foods14203560
Chicago/Turabian StyleWang, Qi, Xiaoxia Huang, Mengyao Zhang, Shangyuan Sang, Linrong Fang, Ruilin Zhang, Silei Xia, and Yanan Liu. 2025. "The Efficacy of Hesperidin in the Reduction of Atherosclerosis in ApoE−/− Mice and Its Possible Mechanism of Action" Foods 14, no. 20: 3560. https://doi.org/10.3390/foods14203560
APA StyleWang, Q., Huang, X., Zhang, M., Sang, S., Fang, L., Zhang, R., Xia, S., & Liu, Y. (2025). The Efficacy of Hesperidin in the Reduction of Atherosclerosis in ApoE−/− Mice and Its Possible Mechanism of Action. Foods, 14(20), 3560. https://doi.org/10.3390/foods14203560