Monitoring of Polychlorinated Biphenyls (Pcbs) Contamination in Milk and Dairy Products and Beverages in Türkiye: A Public Health Perspective
Abstract
1. Introduction
2. Methodology
2.1. Materials
2.2. Analysis
2.2.1. Reagents and Standards
2.2.2. Sample Preparation and Analysis
2.2.3. Analytical Instrumentation
2.2.4. Quality Assurance/Quality Control (QA/QC)
2.3. Health Risk Assessment
2.4. Data Analysis
3. Results and Discussions
3.1. Evaluation of PCBs Levels in Milk and Dairy Products
3.2. Evaluation of PCB Levels in Beverages
3.3. Evaluation of PCBs Levels According to Packaging Types
3.4. Dietary PCBs Exposure
3.4.1. PCBs Exposure Level from Consumption of Milk and Dairy Products
3.4.2. PCBs Exposure Level from Consumption of Beverages
3.4.3. PCB Exposure Levels According to Product Packaging
3.5. Non-Carcinogenic Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, M.A.; Kamal, M.M.; Rahman, M.H.; Siddiqui, M.N.; Haque, M.A.; Saha, K.K.; Rahman, M.A. Functional dairy products as a source of bioactive peptides and probiotics: Current trends and future prospectives. J. Food Sci. Technol. 2022, 59, 1263–1279. [Google Scholar] [CrossRef]
- Cimmino, F.; Catapano, A.; Petrella, L.; Villano, I.; Tudisco, R.; Cavaliere, G. Role of milk micronutrients in human health. Front. Biosci.-Landmark 2023, 28, 41. [Google Scholar] [CrossRef] [PubMed]
- Bu, T.; Zheng, J.; Liu, L.; Li, S.; Wu, J. Milk proteins and their derived peptides on bone health: Biological functions, mechanisms, and prospects. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2234–2262. [Google Scholar] [CrossRef]
- Mukherjee, A.; Breselge, S.; Dimidi, E.; Marco, M.L.; Cotter, P.D. Fermented foods and gastrointestinal health: Underlying mechanisms. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 248–266. [Google Scholar] [CrossRef]
- Marangoni, F.; Pellegrino, L.; Verduci, E.; Ghiselli, A.; Bernabei, R.; Calvani, R.; Cetin, I.; Giampietro, M.; Perticone, F.; Piretta, L.; et al. Cow’s milk consumption and health: A health professional’s guide. J. Am. Coll. Nutr. 2019, 38, 197–208. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, S.; Shrivas, K.; Kant, T. Progress in analytical methods for monitoring of heavy metals and metalloid in milk and global health risk assessment. J. Food Compos. Anal. 2024, 135, 106568. [Google Scholar] [CrossRef]
- Ghanati, K.; Eghbaljoo, H.; Akbari, N.; Mazaheri, Y.; Aghebat-Bekheir, S.; Mahmoodi, B.; Zandsalimi, F.; Basaran, B.; Sadighara, P. Determination of melamine contamination in milk with various packaging: A risk assessment study. Environ. Monit. Assess. 2023, 195, 1095. [Google Scholar] [CrossRef]
- Basaran, B. Occurrence of potentially toxic metals detected in milk and dairy products in Türkiye: An assessment in terms of human exposure and health risks. Foods 2025, 14, 2561. [Google Scholar] [CrossRef]
- Azad, T.; Ahmed, S. Common milk adulteration and their detection techniques. Int. J. Food Contam. 2016, 3, 22. [Google Scholar] [CrossRef]
- Nagraik, R.; Sharma, A.; Kumar, D.; Chawla, P.; Kumar, A.P. Milk adulterant detection: Conventional and biosensor based approaches: A review. Sens. Bio-Sens. Res. 2021, 33, 100433. [Google Scholar] [CrossRef]
- Nandeshwar, R.; Mandal, P.; Tallur, S. Portable and low-cost colorimetric sensor for detection of urea in milk samples. IEEE Sens. J. 2023, 23, 16287–16292. [Google Scholar] [CrossRef]
- Bello, V.; Bodo, E.; Merlo, S. Speckle pattern acquisition and statistical processing for analysis of turbid liquids. IEEE Trans. Instrum. Meas. 2023, 72, 7005004. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, W. Recent developments on rapid detection of main constituents in milk: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Sugajski, M.; Buszewska-Forajta, M.; Buszewski, B. Functional beverages in the 21st century. Beverages 2023, 9, 27. [Google Scholar] [CrossRef]
- Saleem, S.M.; Jan, S.S.; Qureishi, M.A. Obesity Trends Across Borders. In Handbook of Public Health Nutrition; Preedy, V.R., Patel, V.B., Eds.; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Teixeira, F.J.; Gomes, C.S.F. Mineral Water: Essential to Life, Health, and Wellness. In Minerals Latu Sensu and Human Health; Gomes, C., Rautureau, M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Barker, S.; Moss, R.; McSweeney, M.B. Carbonated emotions: Consumers’ sensory perception and emotional response to carbonated and still fruit juices. Food Res. Int. 2021, 147, 110534. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, J.; Netzel, M.E.; Sultanbawa, Y.; Wright, O.R. Seeking sweetness: A systematic scoping review of factors influencing sugar-sweetened beverage consumption in remote Indigenous communities worldwide. Beverages 2023, 9, 11. [Google Scholar] [CrossRef]
- Sarhan, M.M.; Aljohani, S.A.; Alnazzawi, Y.A.; Alharbi, N.A.; Alotaibi, S.E.; Alhujaili, A.S.; Alwadi, M.A.M. Individuals’ perceptions of the factors linked to everyday soft drink consumption among university students: Qualitative study. Front. Nutr. 2024, 11, 1388918. [Google Scholar] [CrossRef]
- Zhu, M.; Yuan, Y.; Yin, H.; Guo, Z.; Wei, X.; Qi, X.; Liu, H.; Dang, Z. Environmental contamination and human exposure of polychlorinated biphenyls (PCBs) in China: A review. Sci. Total Environ. 2022, 805, 150270. [Google Scholar] [CrossRef]
- Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Occurrence of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Fogwater at Urban, Suburban, and Rural Sites in Northeast France between 2015 and 2021. Atmosphere 2024, 15, 291. [Google Scholar] [CrossRef]
- Te, B.; Yiming, L.; Tianwei, L.; Huiting, W.; Pengyuan, Z.; Wenming, C.; Jun, J. Polychlorinated biphenyls in a grassland food network: Concentrations, biomagnification, and transmission of toxicity. Sci. Total Environ. 2020, 709, 135781. [Google Scholar] [CrossRef]
- Chaitanya, M.V.N.L.; Arora, S.; Pal, R.S.; Ali, H.S.; El Haj, B.M.; Logesh, R. Assessment of environmental pollutants for their toxicological effects of human and animal health. In Organic Micropollutants in Aquatic and Terrestrial Environments; Springer Nature: Cham, Switzerland, 2024; pp. 67–85. [Google Scholar] [CrossRef]
- Güzel, B.; Canlı, O.; Dede, Ş.; Karademir, A. Assessment of PCDD/F and dioxin-like PCB levels in environmental and food samples in the vicinity of IZAYDAS waste incinerator plant (WIP): From past to present. Environ. Sci. Pollut. Res. 2020, 27, 13902–13914. [Google Scholar] [CrossRef]
- van der Fels-Klerx, H.J.; van Asselt, E.D.; van Leeuwen, S.P.J.; Dorgelo, F.O.; Hil, E.F.H.-v.D. Prioritization of chemical food safety hazards in the European feed supply chain. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70025. [Google Scholar] [CrossRef]
- Mehouel, F.; Giovanni Uc-Peraza, R.; Rose, M.; Squadrone, S. Polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in some foods of animal origin in some countries of the world: A review. Food Addit. Contam. Part A 2025, 42, 1065–1079. [Google Scholar] [CrossRef]
- Yüce, B.; Güzel, B.; Canlı, O.; Öktem Olgun, E.; Kaya, D.; Aşçı, B.; Murat Hocaoğlu, S. Comprehensive research and risk assessment on the pollution profile of organic micropollutants (OMPs) in different types of citrus essential oils produced from waste citrus peels in Türkiye. J. Food Compos. Anal. 2025, 142, 107463. [Google Scholar] [CrossRef]
- Fernandes, A.; Lake, I.; Dowding, A.; Rose, M.; Jones, N.; Petch, R.; Smith, F.; Panton, S. The potential of recycled materials used in agriculture to contaminate food through uptake by livestock. Sci. Total Environ. 2019, 667, 359–370. [Google Scholar] [CrossRef]
- Fatima, M.; Rehman, K.; Akash, M.S.H. Polychlorinated Biphenyls and Neurological Disorders: From Exposure to Preventive Interventions. In Environmental Contaminants and Neurological Disorders. Emerging Contaminants and Associated Treatment Technologies; Akash, M.S.H., Rehman, K., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Krauskopf, J.; Eggermont, K.; Caiment, F.; Verfaillie, C.; de Kok, T.M. Molecular insights into PCB neurotoxicity: Comparing transcriptomic responses across dopaminergic neurons, population blood cells, and Parkinson’s disease pathology. Environ. Int. 2024, 186, 108642. [Google Scholar] [CrossRef]
- Qi, S.Y.; Xu, X.L.; Ma, W.Z.; Deng, S.L.; Lian, Z.X.; Yu, K. Effects of organochlorine pesticide residues in maternal body on infants. Front. Endocrinol. 2022, 13, 890307. [Google Scholar] [CrossRef]
- Berghuis, S.A.; Bos, A.F.; Groen, H.; de Jong, W.H.A.; Kobold, A.C.M.; Wagenmakers-Huizinga, L.; Sauer, P.J.J.; Bocca, G. Prenatal environmental exposure to persistent organic pollutants and reproductive hormone profile and pubertal development in Dutch adolescents. Int. J. Environ. Res. Public Health 2022, 19, 9423. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. 2025. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 14 August 2025).
- Güzel, B.; Canlı, O. An environmental friendly and stable analytical method for the determination of indicator polychlorinated biphenyls (PCBs) in solid and waste oil samples by gas chromatography-electron capture detector (GC-ECD). Microchem. J. 2022, 178, 107325. [Google Scholar] [CrossRef]
- Güzel, B.; Canlı, O. Applicability of purge and trap gas chromatography-mass spectrometry method for sensitive analytical detection of naphthalene and its derivatives in waters. J. Mass Spectrom. 2020, 55, e4672. [Google Scholar] [CrossRef]
- Güzel, B.; Canlı, O.; Aslan, E. Spatial distribution, source identification and ecological risk assessment of POPs and heavy metals in lake sediments of Istanbul, Turkey. Mar. Pollut. Bull. 2022, 175, 113172. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Polychlorinated Biphenyls: Human Health Aspects, Concise International Chemical Assessment Document 55. 2003. Available online: https://iris.who.int/bitstream/handle/10665/42640/9241530553.pdf (accessed on 12 July 2025).
- United States Environmental Protection Agency. IRIS Advanced Search. 2025. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 16 August 2025).
- United States Environmental Protection Agency. Guidance Manual for Assessing Human Health Risks from Chemically Contaminated, Fish and Shellfish [EPA-503/8-89-002]. U.S. Environmental Protection Agency; 1989. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/40001CR2.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1986+Thru+1990&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C86thru90%5CTxt%5C00000017%5C40001CR2.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 15 July 2025).
- Commission Regulation. Commission Regulation (EU) No 1259/2011 of 2 December 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Dioxins, Dioxin-Like PCBs and Nondioxin-Like PCBs in Foodstuffs Text with EEA Relevance. 2011. Available online: https://eur-lex.europa.eu/eli/reg/2011/1259/oj/eng (accessed on 16 September 2025).
- Barone, G.; Storelli, A.; Garofalo, R.; Storelli, M.M. Update of Indicator PCB Levels in food in Southern Italy: Assessment of the dietary exposure for adult and elderly population. J. Food Qual. 2022, 2022, 1233977. [Google Scholar] [CrossRef]
- Đokić, M.; Nekić, T.; Varenina, I.; Varga, I.; Kolanović, B.S.; Sedak, M.; Čalopek, B.; Vratarić, D.; Bilandžić, N. Pesticides and polychlorinated biphenyls in milk and dairy products in Croatia: A health risk assessment. Foods 2024, 13, 1155. [Google Scholar] [CrossRef]
- Sirot, V.; Tard, A.; Venisseau, A.; Brosseaud, A.; Marchand, P.; Le Bizec, B.; Leblanc, J.C. Dietary exposure to polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls of the French population: Results of the second French Total Diet Study. Chemosphere 2012, 88, 492–500. [Google Scholar] [CrossRef]
- Chen, X.; Lin, Y.; Dang, K.; Puschner, B. Quantification of polychlorinated biphenyls and polybrominated diphenyl ethers in commercial cows’ milk from California by gas chromatography–triple quadruple mass spectrometry. PLoS ONE 2017, 12, e0170129. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Z.; Li, Y.; Wang, H.; Fan, W.; Dong, Z. Estimating the dietary exposure and risk of persistent organic pollutants in China: A national analysis. Environ. Pollut. 2021, 288, 117764. [Google Scholar] [CrossRef]
- Hasan, G.A.; Shaikh, M.A.A.; Satter, M.A.; Hossain, M.S. Detection of indicator polychlorinated biphenyls (I-PCBs) and polycyclic aromatic hydrocarbons (PAHs) in cow milk from selected areas of Dhaka, Bangladesh and potential human health risks assessment. Toxicol. Rep. 2022, 9, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Krause, T.; Moenning, J.-L.; Lamp, J.; Maul, R.; Schenkel, H.; Fürst, P.; Pieper, R.; Numata, J. Transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) from oral exposure into cow’s milk–part I: State of knowledge and uncertainties. Nutr. Res. Rev. 2023, 36, 448–470. [Google Scholar] [CrossRef] [PubMed]
- Stadion, M.; Blume, K.; Hackethal, C.; Lüth, A.; Schumacher, D.M.; Lindtner, O.; Sarvan, I. Germany’s first Total Diet Study-Occurrence of non-dioxin-like polychlorinated biphenyls and polybrominated diphenyl ethers in foods. Food Chem. X 2024, 22, 101274. [Google Scholar] [CrossRef]
- Del Piano, F.; Monnolo, A.; Lama, A.; Pirozzi, C.; Comella, F.; Melini, S.; Naccari, C.; Pelagalli, A.; Meli, R.; Ferrante, M. Non-dioxin-like polychlorinated biphenyls (PCB 101, 153, and 180) and adipocyte lipid dysfunctions: Involvement of glycerol and role of aquaglyceroporins in mature 3T3-L1 cells. Toxicology 2025, 511, 154050. [Google Scholar] [CrossRef]
- Witczak, A.; Mituniewicz-Małek, A. The impact of bacterial cultures on changes in contents of PCB congeners in yoghurt and bioyoghurt-alternative methods for PCB reduction in dairy products. Dairy/Mljekarstvo 2019, 69, 53–63. [Google Scholar] [CrossRef]
- Kiviranta, H.; Ovaskainen, M.L.; Vartiainen, T. Market basket study on dietary intake of PCDD/Fs, PCBs, and PBDEs in Finland. Environ. Int. 2004, 30, 923–932. [Google Scholar] [CrossRef]
- Cheasley, R.; Keller, C.P.; Setton, E. Lifetime excess cancer risk due to carcinogens in food and beverages: Urban versus rural differences in Canada. Can. J. Public Health 2017, 108, e288–e295. [Google Scholar] [CrossRef]
- Shin, E.S.; Nguyen, K.H.; Kim, J.; Kim, C.I.; Chang, Y.S. Progressive risk assessment of polychlorinated biphenyls through a Total Diet Study in the Korean population. Environ. Pollut. 2015, 207, 403–412. [Google Scholar] [CrossRef]
- Varrà, M.O.; Lorenzi, V.; Zanardi, E.; Menotta, S.; Fedrizzi, G.; Angelone, B.; Gasparini, M.; Fusi, F.; Foschini, S.; Padovani, A.; et al. Safety evaluation and probabilistic health risk assessment of cow milk produced in northern Italy according to dioxins and PCBs contamination levels. Foods 2023, 12, 1869. [Google Scholar] [CrossRef]
- Gupta, R.K.; Pipliya, S.; Karunanithi, S.; Eswaran U, G.M.; Kumar, S.; Mandliya, S.; Srivastav, P.P.; Suthar, T.; Shaikh, A.M.; Harsányi, E.; et al. Migration of chemical compounds from packaging materials into packaged foods: Interaction, mechanism, assessment, and regulations. Foods 2024, 13, 3125. [Google Scholar] [CrossRef]
- Rex, K.R.; Chakraborty, P. Polychlorinated biphenyls in bovine milk from a typical informal electronic waste recycling and related source regions in southern India before and after the COVID-19 pandemic outbreak. Sci. Total Environ. 2024, 912, 168879. [Google Scholar] [CrossRef]
- Wang, C.; Gao, W.; Liang, Y.; Jiang, Y.; Wang, Y.; Zhang, Q.; Jiang, G. Migration of chlorinated paraffins from plastic food packaging into food simulants: Concentrations and differences in congener profiles. Chemosphere 2019, 225, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Pascall, M.A.; Zabik, M.E.; Zabik, M.J.; Hernandez, R.J. Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films. J. Agric. Food Chem. 2005, 53, 164–169. [Google Scholar] [CrossRef]
- Andersson, M.; Ottesen, R.T.; Jartun, M.; Eggen, O.; Enqvist, A.C. PCB contamination from sampling equipment and packaging. Appl. Geochem. 2012, 27, 146–150. [Google Scholar] [CrossRef]
- Şahin, G.G.; Karaboyacı, M. Process and machinery design for the recycling of tetra pak components. J. Clean. Prod. 2021, 323, 129186. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Panjagari, N.R. Review on metal packaging: Materials, forms, food applications, safety and recyclability. J. Food Sci. Technol. 2020, 57, 2377–2392. [Google Scholar] [CrossRef]
- Vázquez-Loureiro, P.; Lestido-Cardama, A.; Sendón, R.; Bustos, J.; Cariou, R.; Paseiro-Losada, P.; de Quirós, A.R.B. Investigation of migrants from can coatings: Occurrence in canned foodstuffs and exposure assessment. Food Packag. Shelf Life 2023, 40, 101183. [Google Scholar] [CrossRef]
- Lestido-Cardama, A.; Sendón, R.; Bustos, J.; Nieto, M.T.; Paseiro-Losada, P.; Rodríguez-Bernaldo de Quirós, A. Food and beverage can coatings: A review on chemical analysis, migration, and risk assessment. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3558–3611. [Google Scholar] [CrossRef]
- Mihats, D.; Moche, W.; Prean, M.; Rauscher-Gabernig, E. Dietary exposure to non-dioxin-like PCBs of different population groups in Austria. Chemosphere 2015, 126, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Rusin, M.; Dziubanek, G.; Marchwińska-Wyrwał, E.; Ćwieląg-Drabek, M.; Razzaghi, M.; Piekut, A. PCDDs, PCDFs and PCBs in locally produced foods as health risk factors in Silesia Province, Poland. Ecotoxicol. Environ. Saf. 2019, 172, 128–135. [Google Scholar] [CrossRef] [PubMed]
Analytes | R2 | Calibration Curve Equation (y = ax + b) | Working Range (µg/L) | LOD (µg/L) | LOQ (µg/L) | RSD (%) |
---|---|---|---|---|---|---|
PCBs | ||||||
PCB 101 | 0.9967 | y = 8691x + 43.606 | 1–500 | 0.001 | 0.003 | 7.12 |
PCB 118 | 0.9988 | y = 20,290x − 8183.6 | 1–500 | 0.001 | 0.003 | 4.48 |
PCB 153 | 0.9975 | y = 5546.3x + 33.861 | 1–500 | 0.001 | 0.003 | 3.01 |
PCB 138 | 0.9986 | y = 6609x + 39.380 | 1–500 | 0.001 | 0.003 | 4.17 |
PCB 180 | 0.9970 | y = 2781.6x + 15.058 | 1–500 | 0.001 | 0.003 | 5.11 |
PCB 198 * | - | - | 25 | - | - | 6.19 |
PCB 28 | 0.9955 | y = 55.488x + 255.461 | 1–500 | 0.001 | 0.003 | 5.87 |
PCB 29 * | - | - | 25 | - | - | 6.66 |
PCB 52 | 0.9997 | y = 10.557x + 33.457 | 1–500 | 0.001 | 0.003 | 6.55 |
Analytes | Quality Control Conc. (µg/kg) | Measured Conc. (µg/L) | RSD (%) | Recovery (%) |
---|---|---|---|---|
PCB 101 | 250 | 239.2 | 7.15 | 95.7 |
PCB 118 | 250 | 228.7 | 3.34 | 91.5 |
PCB 153 | 250 | 248.4 | 3.18 | 99.4 |
PCB 138 | 250 | 240.7 | 9.94 | 96.3 |
PCB 180 | 250 | 261.2 | 4.04 | 104.5 |
PCB 101 | 250 | 255.7 | 5.15 | 102.3 |
PCB 28 | 250 | 229.9 | 8.21 | 92.0 |
PCB 52 | 250 | 235.5 | 4.18 | 94.2 |
Cutoff Point | Formula | Variables | Criteria |
---|---|---|---|
Estimated Daily Intake (EDI) (ng/kg/day) | C is the concentration of each PCB in each sample (ng/L), IR is the intake rate of each sample (mL/day), bw is the body weight (kg), and 1000 is the conversion factor. The analyzed milk, dairy, and beverage products are marketed as single-use items; therefore, the consumption amount was assumed to be equivalent to the portion size indicated on the packaging (Tables S1 and S2). The body weights of children and adults were assumed to be 17.5 and 70 kg, respectively. | ICES-7 exposure levels should not exceed the maximum reference value (20 ng/kg/day) [37]. | |
Hazard Index (HI) (It has no units) | Target Hazard Quotient (THQ). The RfD is the oral reference dose (ng/kg/day). The RfD values of PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153, and PCB 180 were determined as 20 ng/kg/day [38]. | While THQ indicates a significant health problem that is not carcinogenic, THQ <1 means that there is insignificant risk about health hazard [39]. |
PCB 28 | UHT milk = children’s milk = yogurt = kefir = ayran |
PCB 52 | Children’s milk > UHT milk > kefir = yogurt = ayran |
PCB 101 | Children’s milk > UHT milk > kefir > yogurt = ayran |
PCB 118 | Yogurt > UHT milk = kefir > children’s milk > ayran |
PCB 138 | UHT milk > children’s milk >yogurt = kefir > ayran |
PCB 153 | UHT milk > children’s milk > kefir > yogurt > ayran |
PCB 180 | UHT milk > children’s milk > yogurt = kefir > ayran |
PCB 28 | Traditional turnip juice = cold coffee > fruit juice = bottled water = soft drink = ice tea = energy drink > lemonade |
PCB 52 | Traditional turnip juice > fruit juice = bottled water = cold coffee = soft drink > ice tea > energy drink = lemonade |
PCB 101 | Fruit juice > bottled water = traditional turnip juice> soft drink > cold coffee = ice tea > energy drink = lemonade |
PCB 118 | Cold coffee > bottled water > ice tea > soft drink = fruit juice= traditional turnip juice= energy drink = lemonade |
PCB 138 | Bottled water > fruit juice = cold coffee > soft drink = ice tea = traditional turnip juice > energy drink > lemonade |
PCB 153 | Fruit juice > bottled water = cold coffee > soft drink > ice tea = traditional turnip juice > energy drink > lemonade |
PCB 180 | Fruit juice > bottled water > cold coffee = soft drink > ice tea > traditional turnip juice > energy drink > lemonade |
Products | Low (mean ± SD; min–max) | Medium (mean ± SD; min–max) | High (mean ± SD; min–max) |
---|---|---|---|
Milk and dairy products | |||
UHT Milk | 0.19 ± 0.27 (0–0.93) | 0.20 ± 0.27 (0.01–0.93) | 0.21 ± 0.26 (0.02–0.93) |
Children’s milk | 0.61 ± 0.92 (0–3.39) | 0.63 ± 0.91 (0.04–3.39) | 0.65 ± 0.90 (0.08–3.39) |
Ayran | 0.05 ± 0.08 (0–0.17) | 0.06 ± 0.08 (0.01–0.17) | 0.07 ± 0.07 (0.02–0.17) |
Yogurt | 0.10 ± 0.13 (0–0.40) | 0.11 ± 0.13 (0.01–0.40) | 0.12 ± 0.13 (0.01–0.40) |
Kefir | 0.23 ± 0.28 (0–0.74) | 0.24 ± 0.28 (0.01–0.74) | 0.25 ± 0.27 (0.02–0.74) |
Beverages | |||
Soft drink | 0.15 ± 0.22 (0–0.74) | 0.17 ± 0.20 (0.02–0.74) | 0.19 ± 0.20 (0.03–0.74) |
Lemonade | 0.03 ± 0.04 (0–0.09) | 0.05 ± 0.03 (0.02–0.09) | 0.07 ± 0.03 (0.03–0.09) |
Ice tea | 0.14 ± 0.23 (0–0.64) | 0.15 ± 0.23 (0.02–0.64) | 0.17 ± 0.22 (0.03–0.64) |
Energy drink | 0.04 ± 0.07 (0–0.22) | 0.06 ± 0.07 (0.02–0.22) | 0.08 ± 0.06 (0.03–0.22) |
Fruit juice | 0.06 ± 0.20 (0–0.75) | 0.07 ± 0.19 (0.01–0.75) | 0.09 ± 0.18 (0.02–0.75) |
Traditional turnip juice | 0.12 ± 0.23 (0–0.46) | 0.13 ± 0.22 (0.01–0.46) | 0.14 ± 0.22 (0.02–0.46) |
Cold coffee | 0.20 ± 0.41 (0–1.19) | 0.21 ± 0.40 (0.02–1.19) | 0.23 ± 0.40 (0.03–1.19) |
Bottled water | 0.17 ± 0.23 (0–0.70) | 0.18 ± 0.23 (0.02–0.70) | 0.19 ± 0.22 (0.04–0.70) |
Products | Low | Medium | High |
---|---|---|---|
Milk and dairy products | |||
Plastic | 0.13 ± 0.18 (0–0.74) | 0.14 ± 0.18 (0.01–0.74) | 0.15 ± 0.17 (0.01–0.74) |
Tetra Pak | 0.45 ± 0.72 (0–3.39) | 0.46 ± 0.72 (0.01–3.39) | 0.48 ± 0.71 (0.02–3.39) |
Beverages | |||
Tin | 0.14 ± 0.26 (0–1.19) | 0.16 ± 0.25 (0.01–1.19) | 0.18 ± 0.24 (0.03–1.19) |
Plastic | 0.11 ± 0.19 (0–0.70) | 0.12 ± 0.18 (0.01–0.70) | 0.14 ± 0.18 (0.02–0.70) |
Tetra Pak | 0.07 ± 0.21 (0–0.75) | 0.08 ± 0.20 (0.01–0.75) | 0.10 ± 0.20 (0.02–0.75) |
Products | Low (mean ± SD; min–max) | Medium (mean ± SD; min–max) | High (mean ± SD; min–max) |
---|---|---|---|
Milk and dairy products | |||
UHT Milk | 0.01 ± 0.01 (0–0.05) | 0.01 ± 0.01 (<0.01–0.05) | 0.01 ± 0.01 (<0.01–0.05) |
Children’s milk | 0.03 ± 0.05 (0–0.19) | 0.03 ± 0.05 (<0.01–0.19) | 0.03 ± 0.05 (<0.01–0.19) |
Ayran | <0.01 ± 0.00 (0–0.01) | <0.01 ± 0.00 (<0.01–0.01) | <0.01 ± 0.00 (<0.01–0.01) |
Yogurt | 0.01 ± 0.01 (0–0.02) | 0.01 ± 0.01 (<0.01–0.02) | 0.01 ± 0.01 (<0.01–0.02) |
Kefir | 0.01 ± 0.01 (0–0.04) | 0.01 ± 0.01 (<0.01–0.04) | <0.01 ± 0.01 (<0.01–0.04) |
Beverages | |||
Soft drink | 0.01 ± 0.01 (0–0.02) | 0.01 ± 0.01 (<0.01–0.04) | 0.01 ± 0.01 (<0.01–0.04) |
Lemonade | <0.01 ± 0.00 (0–0.01) | <0.01 ± 0.00 (<0.01–0.01) | <0.01 ± 0.00 (<0.01–0.01) |
Ice tea | 0.01 ± 0.01 (0–0.03) | 0.01 ± 0.01 (<0.01–0.03) | 0.01 ± 0.01 (<0.01–0.03) |
Energy drink | <0.01 ± 0.00 (0–0.01) | <0.01 ± 0.00 (<0.01–0.01) | <0.01 ± 0.00 (<0.01–0.01) |
Fruit juice | <0.01 ± 0.01 (0–0.04) | <0.01 ± 0.01 (<0.01–0.04) | 0.01 ± 0.01 (<0.01–0.04) |
Traditional turnip juice | 0.01 ± 0.01 (0–0.02) | 0.01 ± 0.01 (<0.01–0.02) | 0.01 ± 0.01 (<0.01–0.02) |
Cold coffee | 0.01 ± 0.02 (0–0.06) | 0.011 ± 0.02 (<0.01–0.061) | 0.01 ± 0.02 (<0.01–0.06) |
Bottled water | 0.01 ± 0.01 (0–0.04) | 0.01 ± 0.01 (<0.01–0.04) | 0.01 ± 0.01 (<0.01–0.04) |
Products | Low | Medium | High |
---|---|---|---|
Milk and dairy products | |||
Plastic | 0.01 ± 0.01 (0–0.04) | 0.01 ± 0.01 (<0.01–0.04) | 0.01 ± 0.01 (<0.01–0.04) |
Tetra Pak | 0.02 ± 0.04 (0–0.19) | 0.02 ± 0.04 (<0.01–0.19) | 0.03 ± 0.04 (<0.01–0.19) |
Beverages | |||
Tin | 0.01 ± 0.01 (0–0.06) | 0.01 ± 0.01 (<0.01–0.06) | 0.01 ± 0.01 (<0.01–0.06) |
Plastic | 0.01 ± 0.01 (0–0.04) | 0.01 ± 0.01 (<0.01–0.04) | 0.01 ± 0.01 (<0.01–0.04) |
Tetra Pak | <0.01 ± 0.01 (0–0.04) | <0.01 ± 0.01 (<0.01–0.04) | 0.01 ± 0.01 (<0.01–0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canlı, O.; Güzel, B.; Türk, M.; Basaran, B. Monitoring of Polychlorinated Biphenyls (Pcbs) Contamination in Milk and Dairy Products and Beverages in Türkiye: A Public Health Perspective. Foods 2025, 14, 3544. https://doi.org/10.3390/foods14203544
Canlı O, Güzel B, Türk M, Basaran B. Monitoring of Polychlorinated Biphenyls (Pcbs) Contamination in Milk and Dairy Products and Beverages in Türkiye: A Public Health Perspective. Foods. 2025; 14(20):3544. https://doi.org/10.3390/foods14203544
Chicago/Turabian StyleCanlı, Oltan, Barış Güzel, Merve Türk, and Burhan Basaran. 2025. "Monitoring of Polychlorinated Biphenyls (Pcbs) Contamination in Milk and Dairy Products and Beverages in Türkiye: A Public Health Perspective" Foods 14, no. 20: 3544. https://doi.org/10.3390/foods14203544
APA StyleCanlı, O., Güzel, B., Türk, M., & Basaran, B. (2025). Monitoring of Polychlorinated Biphenyls (Pcbs) Contamination in Milk and Dairy Products and Beverages in Türkiye: A Public Health Perspective. Foods, 14(20), 3544. https://doi.org/10.3390/foods14203544