DNA Barcoding in Meat Authentication: Principles, Applications, and Future Perspectives
Abstract
1. Introduction
2. DNA Barcoding Technology
2.1. The Principle of DNA Barcoding Technology
Gene Source | Gene | Characteristics | Advantages | Disadvantages | Application Scope |
---|---|---|---|---|---|
mtDNA | COI | High inter-species variation, strong discrimination; international standard barcode (iBOL recommended). | High resolution; applicable to most species; extensive database coverage. | Difficult to distinguish some closely related species; long fragment sensitive to degraded DNA. | Universal animal species identification (mammals, fish, etc.); fresh meat, conventionally processed meat products [21]. |
mtDNA | Cytb | Moderate evolutionary rate, suitable for breed-level identification; complementary to COI for improved accuracy. | Effective for distinguishing domesticated breeds; tolerant of moderately degraded DNA. | Lower resolution than COI when used alone; less comprehensive database coverage than COI. | Distinguishing closely related species (mammals, fish, etc.); mixed meat products, livestock breed identification [22]. |
mtDNA | 16S rRNA | Highly conserved; significant inter-species variation in fish; high tolerance for degraded DNA. | Suitable for aquatic product adulteration detection; stable in complex processed samples. | Low resolution in mammals; limited universality (specific taxa only). | Aquatic product identification (fish, crustaceans); fish products, canned seafood, processed crustaceans (e.g., shrimp identification) [23]. |
mtDNA | 12S rRNA | Short fragment suitable for degraded samples; highly universal. | Detects deeply processed samples (e.g., sausages, meat floss); rapid screening of low-level adulterants (<1%). | Low resolution; requires confirmation with other genes; insufficient database coverage (lacks short fragment data for some species) [24]. | Highly processed meats (severely degraded DNA); cooked foods, canned meats, meat powders, and other high-temperature-processed products [25]. |
mtDNA | D-loop | Contains multiple tandem repeats and variable number tandem repeat (VNTR) regions; high mutation rate; significant individual/group variation; regulates mtDNA replication/transcription; maternal inheritance. | Rich genetic information; distinguishes closely related individuals/groups; traces maternal lineages. | Reflects only maternal inheritance; requires combined nuclear DNA analysis; rare paternal mtDNA inheritance complicates analysis; prone to mutations from internal/external factors. | Intraspecific genetic diversity studies; maternal kinship identification; preventing inbreeding to improve animal reproductive performance and offspring quality [26]. |
Nuclear | SSR/ STR | Short tandem repeats; highly polymorphic. | High resolution for individual identification and parentage testing. | Complex allele genotyping. | Individual identification, parentage testing [27]. |
Nuclear | SNP | Single-nucleotide polymorphism; most common genomic variation. | Widely distributed; suitable for high-throughput analysis; used in association studies [27]. | Requires large marker sets; high technical demands for analysis. | Gene mapping, disease-related studies [28]. |
Nuclear | β-actin | Low intraspecific polymorphism but distinguishes hybrid offspring. | Provides complementary nuclear-level information; identifies hybrids (e.g., Bos taurus × Bos indicus). | Limited resolution when used alone; requires combination with mtDNA genes. | Auxiliary identification of mammalian breeds and hybrids; breed traceability [29] (e.g., certification of specific livestock breeds). |
2.2. Characteristics of Common DNA Barcoding Technologies
3. Application of DNA Barcoding Technology in Meat Product Authentication
Testing Content | Genes | Testing Technology | Efficacy |
---|---|---|---|
Cattle, sheep | COI, 12S rRNA | PCR; agarose gel electrophoresis | Universal primer amplification and sequencing [38]. |
Cytb | Semi-universal primer quintuple PCR | The lowest detection limit is 10 fg of DNA [39]. | |
COI | PCR; agarose gel electrophoresis | Universal primer amplification and metagenomic sequencing [40]. | |
β-actin | Droplet digital PCR | Quantitative detection [41]. | |
COI | PCR; real-time quantitative PCR | Universal primer amplification and sequencing; quantitative detection [43]. | |
Pork | COI, 12S rRNA | PCR; agarose gel electrophoresis | Universal primer amplification and sequencing [38]. |
Cytb | Semi-universal primer quintuple PCR | The lowest detection limit is 10 fg of DNA [39]. | |
COI | PCR; agarose gel electrophoresis | Universal primer amplification and metagenomic sequencing [40]. | |
β-actin | Droplet digital PCR | Quantitative detection [41]. | |
COI | PCR; real-time quantitative PCR | Universal primer amplification and sequencing; quantitative detection [43]. | |
COI | Multiplex PCR | The detection limit for adulterated pork was 0.1 mg (0.05% wt/wt) [44]. | |
COI | PCR; agarose gel electrophoresis | Universal primer amplification and sequencing [45]. | |
Cytb | PCR; agarose gel electrophoresis | Distinct target bands are shown for 6.25 ng/μL DNA after amplification and electrophoresis [46]. | |
Cytb, D-loop | Duplex nanoplate-based digital PCR | The minimum detectable content in the mixture is 0.1% (w/w) [47]. | |
Duck | COI, 12S rRNA | PCR; agarose gel electrophoresis | Universal primer amplification and sequencing [38]. |
Cytb | Semi-universal primer quintuple PCR | The lowest detection limit is 10 fg of DNA [39]. | |
COI | PCR; agarose gel electrophoresis | Universal primer amplification and metagenomic sequencing [40]. | |
β-actin | Droplet digital PCR | Quantitative detection [41]. | |
COI | PCR; agarose gel electrophoresis | Universal primer amplification and sequencing [45]. | |
Cytb | PCR; agarose gel electrophoresis | Distinct target bands are shown for 6.25 ng/μL DNA after amplification and electrophoresis [46]. | |
Duck | COI, 12S rRNA | PCR; agarose gel electrophoresis | Universal primer amplification and sequencing [38]. |
Cytb | Semi-universal primer quintuple PCR | The lowest detection limit is 10 fg of DNA [39]. | |
COI | PCR; agarose gel electrophoresis | Universal primer amplification and metagenomic sequencing [40]. | |
β-actin | Droplet digital PCR | Quantitative detection [41]. | |
COI | PCR; agarose gel electrophoresis | Universal primer amplification and sequencing [45]. | |
Cytb | PCR; agarose gel electrophoresis | Distinct target bands are shown for 6.25 ng/μL DNA after amplification and electrophoresis [46]. | |
Chicken | Cytb | Semi-universal primer quintuple PCR | The lowest detection limit is 10 fg of DNA [39]. |
COI | PCR; agarose gel electrophoresis | Universal primer amplification and metagenomic sequencing [40]. | |
COI | PCR; real-time quantitative PCR | Universal primer amplification and sequencing; quantitative detection [43]. | |
COI | Multiplex PCR | The detection limit for adulterated pork was 0.1 mg (0.05% wt/wt) [44]. | |
Cytb | PCR; agarose gel electrophoresis | Distinct target bands are shown for 6.25 ng/μL DNA after amplification and electrophoresis [46]. | |
Cytb, D-loop | Duplex nanoplate-based digital PCR | The minimum detectable content in the mixture is 0.1% (w/w) [47]. | |
Goose, Anser cygnoides domesticus | COI, 12S rRNA | PCR; agarose gel electrophoresis | Universal primer amplification and sequencing [38]. |
COI | PCR; agarose gel electrophoresis | Universal primer amplification and metagenomic sequencing [40]. | |
β-actin | Droplet digital PCR | Quantitative detection [41]. | |
Gallus gallus, Larimichthys polyactis, Dosidicus gigas | COI, 12S rRNA | Agarose gel electrophoresis | Universal primer amplification and sequencing [38]. |
Horse, donkey meat; yak, rat, sparrow, ostrich, mink, camel, squab (young pigeon), cat, pheasant, pigeon, and raccoon dog meat; spicy beef granules, pig blood curd, steak; beef skewers and mutton skewers | COI | PCR; agarose gel electrophoresis | Universal primer amplification and metagenomic sequencing [40]. |
Coturnix coturnix meat, mink meat, fox meat, meat samples, processed foods, pork floss, beef floss, ham sausage, frozen beef meatballs with juicy filling, non-meat ingredients, wheat flour, soybean flour, corn flour | β-actin | Droplet digital PCR | Quantitative detection [41]. |
Buffalo (Bubalus bubalis) | COI, Cytb | Lateral flow dipstick; agarose gel electrophoresis; real-time quantitative PCR | Point-of-care testing can detect as little as 10 fg of DNA [42]. |
Horse | COI | Real-time quantitative PCR | Universal primer amplification and sequencing; quantitative detection [43]. |
Donkey meat, venison, mink meat | Cytb | Agarose gel electrophoresis | Distinct target bands are shown for 6.25 ng/μL DNA after amplification and electrophoresis [46]. |
4. Applications of DNA Barcoding Technology in Diverse Fields
4.1. Seafood Identification
4.2. Ecological Monitoring and Biodiversity Conservation
Application Areas | Testing Objects | Genes | Testing Technologies | References |
---|---|---|---|---|
Seafood identification | Tielle sétoise (squid vs. octopus) | COI | Gene meta-barcoding | [51] |
Fish fillet | COI | PCR; agarose gel electrophoresis | [52] | |
Complete fish specimens | COI | [53] | ||
Shark products | COI | [54] | ||
Salmonid products | COI, 16S rRNA | [55] | ||
Unagi products | COI | PCR (mini-barcode) | [56] | |
Salmon, tuna, scad, pollock, swai, and tilapia | COI | PCR (both full barcoding and mini-barcoding); agarose gel electrophoresis | [57] | |
Ecological monitoring and biodiversity conservation | Aquilaria sinensi | ITS2, ITS, psbA-trnH, matK | PCR | [59] |
Australian cereal cyst nematodes | COI, 18S rRNA, ITS, 28S rRNA | [60] | ||
Cockroaches | ITS2, 16S rRNA | [61] | ||
Cleveland Bay horse | D-loop | [62] | ||
Penaeus monodon | D-loop, 12SrRNA, 16SrRNA, COX1, Cytb, ND1 | [63] | ||
M. nipponense | D-loop | PCR; agarose gel electrophoresis | [64] |
5. Challenges Encountered in the Application of DNA Barcoding Technology
6. Conclusions and Outlooks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.T.; Liu, Y.B.; Du, P.F.; Hu, P.; Ru, Y.; Cao, H.F.; Wang, S.J. Application of COI Sequence for Non-Targeted Screening Technology of Mutton Adulteration. Mod. Food Sci. Technol. 2019, 35, 216–222. [Google Scholar] [CrossRef]
- Pointing, J.; Teinaz, Y.; Shafi, S. Illegal Labelling and Sales of Halal Meat and Food Products. J. Crim. Law 2008, 72, 206–213. [Google Scholar] [CrossRef]
- Bao, M.Q. Current Situation and Suggestions for the Conservation of Local Germplasm Resources of Jinhua Pigs. Zhejiang J. Anim. Sci. Vet. Med. 2023, 48, 15–16. [Google Scholar]
- Li, J.; Jiang, H.; Wu, Q.; Hu, M.J.; Zhao, Q.Q.; Jin, M.N.; Qiu, H.Y. Identification of 11 Kinds of Meat Adulteration in Cooked Meat Products Based on COI Sequence DNA Mini-Barcode Technology. Sci. Technol. Food Ind. 2021, 42, 99–104. [Google Scholar] [CrossRef]
- Zhu, X.M.; Wang, C.J. Application of DNA Barcoding Technology in the Identification of Beef and Its Products. J. Xingtai Univ. 2017, 32, 180–182. [Google Scholar]
- Tian, C.X.; Zhou, W.; Wang, S.; Hu, M.J.; Zhao, Q.Q.; Jin, M.N.; Qiu, H.Y. Research on Adulteration Identification Technology of Common Meats Based on DNA Barcoding Technology. Mod. Food Sci. Technol. 2016, 32, 295–301. [Google Scholar] [CrossRef]
- Dule, E.J.; Kinimi, E.; Bakari, G.G.; Max, R.A.; Lyimo, C.M.; Mushi, J.R. Species authentication in meat products sold in Kilosa District in Tanzania using HRM-enhanced DNA barcoding. J. Consum. Prot. Food Saf. 2024, 20, 41–52. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Q.; Kong, B.H. Application of DNA Barcoding Technology in Meat and Its Products. Sci. Technol. Food Ind. 2016, 37, 379–382+388. [Google Scholar] [CrossRef]
- Barendse, J.; Roel, A.; Longo, C.; Andriessen, L.; Webster, L.M.I.; Ogden, R.; Neat, F. DNA Barcoding Validates Species Labelling of Certified Seafood. Curr. Biol. 2019, 29, R198–R199. [Google Scholar] [CrossRef]
- Zhang, W. Application Analysis of DNA Barcoding Technology in Beef Adulteration Detection and Its Application; Henan Agricultural University: Zhengzhou, China, 2016. [Google Scholar] [CrossRef]
- Zeng, Y.Y.; Chen, X.Z.; Zhu, H.X.; Gong, Y.Q.; Guo, S.L.; Ye, P. Application Analysis of DNA Barcoding Technology in Species Identification of Seahorses (Hippocampus spp.). Mod. Agric. Sci. Technol. 2023, 16, 176–180+184. [Google Scholar]
- Oliveira Carvalho, C.; Pazirgiannidi, M.; Ravelomanana, T.; Andriambelomanana, F.; Schrøder-Nielsen, A.; Stuart Ready, J.; de Boer, H.; Fusari, C.-E.; Mauvisseau, Q. Multi-Method Survey Rediscovers Critically Endangered Species and Strengthens Madagascar’s Freshwater Fish Conservationy. Sci. Rep. 2024, 14, 20427. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Huang, W.W.; Peng, S.H.; Zhou, J.W.; Zhan, H.W.; Zhang, Y.Y.; Lan, Z.J.; Li, W.J.; Gui, L. Application of DNA Barcoding Based on Mitochondrial COI Gene in the Systematics of the Genus Acrossocheilus. Anhui Agric. Sci. Bull. 2023, 29, 51–55. [Google Scholar] [CrossRef]
- Li, D.M.; Liu, Y.; Liu, Y.S.; Tang, S.K.; Gu, X.K.; Yin, J.W.; Jiang, Q.C.; Zhang, T.Q. Genetic Diversity Analysis of Corbicula fluminea in Taihu Lake Based on COI and Cytb Gene Sequences. J. Biol. 2023, 40, 69–73. [Google Scholar]
- Jia, X.X.; Lu, J.X.; Tang, X.J.; Fan, Y.F.; Ma, Y.P.; Huang, S.H.; Ge, Q.L.; Gao, Y.S. Analysis of Genetic Diversity of Chinese Black-Boned Chickens Based on Mitochondrial Cytb Gene. J. Yangzhou Univ. (Agric. Life Sci. Ed.) 2023, 44, 102–107. [Google Scholar] [CrossRef]
- Galal-Khallaf, A. Multiplex PCR and 12S rRNA Gene Sequencing for Detection of Meat Adulteration: A Case Study in the Egyptian Markets. Gene 2021, 764, 145062. [Google Scholar] [CrossRef]
- Sheng, Z.W.; Fan, Y.F.; Jia, X.X.; Gao, Y.S.; Lu, J.X.; Tang, X.J. Identification Method of Goose Meat-Derived Components Based on Mitochondrial 16S rRNA Gene. China Poult. 2024, 46, 108–112. [Google Scholar] [CrossRef]
- Ropka-Molik, K.; Ayad, A.; Musiał, A.D.; Besseboua, O.; Aissanou, S.; Stefaniuk-Szmukier, M.; Piórkowska, K. Insight into the genetic diversity of Selle Français horse populations based on whole D-loop sequencing of mitochondrial DNA. Folia Biol. 2024, 72, 65–73. [Google Scholar] [CrossRef]
- Marini, M.; Pedrosa-Gerasmio, I.R.; Santos, M.D.; Shibuno, T.; Daryani, A.; Romana-Eguia, M.R.R.; Wibowo, A. Genetic diversity, population structure and demographic history of the tropical eel Anguilla bicolor pacifica in Southeast Asia using mitochondrial DNA control region sequences. Glob. Ecol. Conserv. 2021, 26, e01493. [Google Scholar] [CrossRef]
- Antil, S.; Abraham, J.S.; Sripoorna, S.; Maurya, S.; Dagar, J.; Makhija, S.; Bhagat, P.; Gupta, R.; Sood, U.; Lal, R.; et al. DNA barcoding, an effective tool for species identification: A review. Mol. Biol. Rep. 2022, 50, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, T.; Aulicky, R.; Stejskal, V.; Ren, Y.; Cao, Y.; Hawthorne, D.; Li, Z. Real-time PCR for identification of five species of Cryptolestes based on COI barcode region. J. Stored Prod. Res. 2020, 87, 101623. [Google Scholar] [CrossRef]
- Peng, Z.Z.; Zhang, X.T.; Guo, M.L.; Yuan, C.H.; Cai, Y.F.; Zhang, W. Genetic Diversity Analysis of Cytb Barcode in Some Horse and Donkey Germplasm Resources in China. Anim. Husb. Vet. Med. 2023, 55, 1–7. [Google Scholar]
- Yuan, H.Y.; Zhou, W.K.; Zheng, Z.Y.; Lin, G.X.; Xu, Y.J. Genetic Diversity Analysis and Comparison of Seven Exopalaemon carinicauda Populations along the Coast of China Based on COI and 16S rRNA Gene Sequences. J. Fish. Sci. China 2024, 31, 165–176. [Google Scholar]
- Wang, Y.; Song, N.; Liu, S.; Chen, Z.; Xu, A.; Gao, T. DNA barcoding of fishes from Zhoushan coastal waters using mitochondrial COI and 12S rRNA genes. J. Oceanol. Limnol. 2023, 41, 1997–2009. [Google Scholar] [CrossRef]
- Naue, J.; Hansmann, T.; Schmidt, U. High-Resolution Melting of 12S rRNA and Cytochrome b DNA Sequences for Discrimination of Species within Distinct European Animal Families. PLoS ONE 2014, 9, e115575. [Google Scholar] [CrossRef]
- Sumana, S.L.; Wang, P.; Zhang, C.; Jing, X.; Zhu, J.; Tang, Y.; Liu, W.; Su, S.; Liao, Y. Genetic diversity of the common carp black strain population based on mtDNA (D-loop and cytb). Heliyon 2024, 10, e30307. [Google Scholar] [CrossRef] [PubMed]
- Gettings, K.B.; Borsuk, L.A.; Steffen, C.R.; Kiesler, K.M.; Vallone, P.M. Sequence-based U.S. population data for 27 autosomal STR loci. Forensic Sci. Int. Genet. 2018, 37, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Volkova, N.A.; Romanov, M.N.; Abdelmanova, A.S.; Larionova, P.V.; German, N.Y.; Vetokh, A.N.; Shakhin, A.V.; Volkova, L.A.; Sermyagin, A.A.; Anshakov, D.V.; et al. Genome-Wide Association Study Revealed Putative SNPs and Candidate Genes Associated with Growth and Meat Traits in Japanese Quail. Genes 2024, 15, 294. [Google Scholar] [CrossRef]
- Scholtens, I.M.J.; Prins, T.W.; van Raamsdonk, L.W.D. Specificity of a novel TaqMan PCR method for detection of poultry DNA. Food Control 2017, 73, 532–539. [Google Scholar] [CrossRef]
- Cao, T.T.; Yuan, Y.; Wang, J.; Liu, H.B. Rapid Detection of Chicken-, Duck-, and Pork-Derived Components in Beef by Duplex Tailed Recombinase Polymerase Isothermal Amplification Combined with Nucleic Acid Hybridization Lateral Flow Strip. J. Food Saf. Qual. 2023, 14, 119–128. [Google Scholar] [CrossRef]
- Alvarado, P.E.; Barrios, R.M.M.; Xóchihua, J.A.M.; Hernández, J.F.C. Fast and reliable DNA extraction protocol for identification of species in raw and processed meat products sold on the commercial market. Open Agric. 2017, 2, 469–472. [Google Scholar] [CrossRef]
- Ji, C.; He, Y.; Xu, X.; Liu, J.; Liu, W.; Wang, X.; Zhao, L.; Zheng, W.; Lu, X. Development of reference material for the detection of rat ingredient in meat by quantitative real-time PCR. Food Biosci. 2023, 53, 102800. [Google Scholar] [CrossRef]
- Li, P.; Li, D.; Hong, Y.; Chen, M.; Zhang, X.; Hu, L.; Liu, C. Combining DNA Mini-Barcoding and Species-Specific Primers PCR Technology for Identification of Heosemys Grandis. Front. Ecol. Evol. 2022, 10, 822871. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, C.; Yang, J.; Jin, L.; Yang, Z.; Yang, J.-B. Ultra-Barcoding Discovers a Cryptic Species in Paris yunnanensis (Melanthiaceae), a Medicinally Important Plant. Front. Plant Sci. 2020, 11, 411. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, L.; Zhang, W.; Deng, C.; Li, Q.; Meng, Y.; Chen, Y. Performance of metagenomic Next-Generation Sequencing and metagenomic Nanopore Sequencing for the diagnosis of tuberculosis in HIV-positive patients. Front. Cell. Infect. Microbiol. 2024, 14, 1423541. [Google Scholar] [CrossRef]
- Boonmee, W.; Pham, T.-H.; Yahaya, Z.S.; Chiu, C.-I.; Yeh, W.-B. Application of DNA microarray technology for the simultaneous identification of agricultural Frankliniella thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 2025, 118, 1889–1900. [Google Scholar] [CrossRef]
- Sarlak, Z.; Rezvani, N.; Parandi, E.; Karami, N.; Azizi-Lalabadi, M.; Rouhi, M. Species identification in meat products using quantitative and qualitative PCR techniques, with emphasis on chicken detection. Food Biosci. 2025, 68, 106568. [Google Scholar] [CrossRef]
- Wang, L.J.; Ren, R.R.; Zhu, A.Q.; Li, B.X.; Zhu, Z.W.; Gong, L. Application of DNA Barcoding Technology in Authenticity Identification of Common Barbecue Meats. J. South. Agric. 2025, 56, 1305–1314. [Google Scholar]
- Ma, H.J.; Xu, H.; Zhang, W.X.; Niu, P.F.; Huang, T. Study on PCR Detection Method of Animal-Derived Ingredients in Food. China Food Ind. 2021, 19, 98–102. [Google Scholar]
- Ding, Q.L.; Yang, D.T.; Xie, A.H.; Wei, Y.; Chen, X.F.; Zhou, L. Detection of Animal-Derived Components in Meat Food by Non-Targeted Screening Method Based on Metagenomic Sequencing Technology. China Food Saf. Mag. 2023, 33, 58–62+67. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, X.P.; Chen, J.; Li, K.; Wang, Y.J.; Bai, J. Quantitative Analysis of Bovine- and Porcine-Derived Components in Meat Products by Droplet Digital PCR. Food Sci. 2016, 37, 187–191. [Google Scholar]
- Jawla, J.; Kumar, R.R.; Mendiratta, S.K.; Agarwal, R.K.; Singh, P.; Saxena, V.; Kumari, S.; Kumar, D.A. A novel paper based loop mediated isothermal amplification and lateral flow assay (LAMP-LFA) for point-of-care detection of buffalo tissue origin in diverse foods. J. Food Saf. 2023, 43, e13038. [Google Scholar] [CrossRef]
- Kane, D.E.; Hellberg, R.S. Identification of species in ground meat products sold on the US commercial market using DNA-based methods. Food Control 2016, 59, 158–163. [Google Scholar] [CrossRef]
- Dai, Z.; Qiao, J.; Yang, S.; Hu, S.; Zuo, J.; Zhu, W.; Huang, C. Species Authentication of Common Meat Based on PCR Analysis of the Mitochondrial COI Gene. Appl. Biochem. Biotechnol. 2015, 176, 1770–1780. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.B.; Ma, C.F.; Zhang, W.; Tian, C.X.; Zhou, W.; Zhang, Y. Application of DNA Barcode COI Sequence in Identification of Common Meats. Mod. Food Sci. Technol. 2016, 32, 188–193. [Google Scholar]
- Ai, J.X.; Zhou, T.; Li, M.C.; Sun, L.Y.; Gao, L.J.; Xia, W.; Yuan, G.X.; Zhang, L.H. Extraction of Mitochondrial DNA from 8 Kinds of Meat and Establishment of PCR Detection Method for Mink-Derived Components. J. Beihua Univ. (Nat. Sci.) 2022, 23, 789–793. [Google Scholar]
- Gwak, Y.-S.; Park, S.-B.; Suh, S.-M.; Kim, H.-Y.; Kim, M.-J.l. Duplex nanoplate-based digital PCR assay for simultaneous detection of pork and chicken in processed meat products. J. Food Compos. Anal. 2025, 140, 107246. [Google Scholar] [CrossRef]
- Du, H.Z.; Zhao, X.X.; Chen, Q.; Kong, B.H. Research Progress on Identification Technology and Specific Substances for Adulteration of Pork and Beef. Food Res. Dev. 2017, 38, 199–204. [Google Scholar]
- Li, J.; Feng, Y.-W.; Huang, L.-J.; Jiang, R.; Shen, X.-F. Strand-displacement DNA polymerase induced isothermal circular amplification fluorescence sensor for identification of pork component. Food Biosci. 2021, 42, 101189. [Google Scholar] [CrossRef]
- Hellberg, R.S.; Hernandez, B.C.; Hernandez, E.L. Identification of meat and poultry species in food products using DNA barcoding. Food Control 2017, 80, 23–28. [Google Scholar] [CrossRef]
- Günther, B.; Bierne, N.; Borsa, P.; Perrin, C.; Ripoll, O.; Darbois, F.; Arnaud-Haond, S. Citizen science approach for genetic species identification in a local French seafood speciality. Int. J. Gastron. Food Sci. 2024, 35, 100823. [Google Scholar] [CrossRef]
- Panprommin, D.; Manosri, R. DNA barcoding as an approach for species traceability and labeling accuracy of fish fillet products in Thailand. Food Control 2022, 136, 108895. [Google Scholar] [CrossRef]
- Jiang, C.; Qin, J.; Liu, F.; Luo, Z.; He, X.; Yan, Y. DNA barcoding reveals low-level species substitution, threatened species and cross-border sales in South China seafood products. J. Food Compos. Anal. 2025, 139, 107157. [Google Scholar] [CrossRef]
- Hellberg, R.S.; Isaacs, R.B.; Hernandez, E.L. Identification of shark species in commercial products using DNA barcoding. Fish. Res. 2019, 210, 81–88. [Google Scholar] [CrossRef]
- Wang, N.; Xing, R.R.; Ma, C.C.; Qiao, X.G.; Chen, Y. Application of DNA Barcoding Technology in Authenticity Identification of Salmonid Fishes. J. Chin. Inst. Food Sci. Technol. 2020, 20, 232–240. [Google Scholar] [CrossRef]
- Goymer, A.; Steele, K.; Jenkins, F.; Burgess, G.; Andrews, L.; Baumgartner, N.; Gubili, C.; Griffiths, A.M. For R-Eel?! Investigating International Sales of Critically Endangered Species in Freshwater Eel Products with DNA Barcoding. Food Control 2023, 150, 109752. [Google Scholar] [CrossRef]
- Pollack, S.J.; Kawalek, M.D.; Williams-Hill, D.M.; Hellberg, R.S. Evaluation of DNA barcoding methodologies for the identification of fish species in cooked products. Food Control 2018, 84, 297–304. [Google Scholar] [CrossRef]
- Nagalakshmi, K.; Annam, P.-K.; Venkateshwarlu, G.; Pathakota, G.-B.; Lakra, W.S. Mislabeling in Indian seafood: An investigation using DNA barcoding. Food Control 2016, 59, 196–200. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, M.; Guan, W.; Ding, X.; Liao, B.; Su, H.; Huang, J.; Bai, J.; Qiu, X.; Huang, Z.; et al. Conservation Strategies for Aquilaria sinensis: Insights from DNA Barcoding and ISSR Markers. In Plant Foods for Human Nutrition; Springer Science and Business Media LLC.: Berlin, Germany, 2024; Volume 79, pp. 425–431. [Google Scholar] [CrossRef]
- Huston, D.C.; Khudhir, M.; Lewis, J.; Collins, S.; Jain, A.; Hodda, M. DNA barcoding of Australian cereal cyst nematode populations with comments on likely origin and taxonomy (Tylenchoidea: Heterodera). In Phytoparasitica; Springer Science and Business Media LLC.: Berlin, Germany, 2024; p. 52. [Google Scholar] [CrossRef]
- Li, H.; Shangqing, Z.; Yae, Z.; Fan, Y.; Xinyue, Z.; Shirui, L.; Tianyi, Z.; Dongling, N. Classification, identification, and DNA barcoding study for common cockroach species (Dictyoptera: Blattaria) from China. Gene 2024, 933, 137291. [Google Scholar] [CrossRef]
- Dell, A.C.; Curry, M.C.; Yarnell, K.M.; Starbuck, G.R.; Wilson, P.B. Mitochondrial D-loop sequence variation and maternal lineage in the endangered Cleveland Bay horse. PLoS ONE 2020, 15, e0243247. [Google Scholar] [CrossRef]
- Mondal, D.; Dutta, S.; Mallik, A.; Mandal, N. Mitochondrial DNA diversity: Insight into population diversity, structure and demographic history of Penaeus monodon along the entire coastal region of India. Aquac. Res. 2020, 51, 4649–4680. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, S.; Salumy, K.R.; Xuan, Z.; Xiong, Y.; Jin, S.; Gong, Y.; Wu, Y.; Qiao, H.; Fu, H. Comparison of genetic diversity and population structure of eight Macrobrachium nipponense populations in China based on D-loop sequences. Aquac. Rep. 2022, 23, 101086. [Google Scholar] [CrossRef]
- Piredda, R.; Mottola, A.; Cipriano, G.; Carlucci, R.; Ciccarese, G.; Di Pinto, A. Next Generation Sequencing (NGS) approach applied to species identification in mixed processed seafood products. Food Control 2022, 133, 108590. [Google Scholar] [CrossRef]
- Smaoui, S.; Tarapoulouzi, M.; Agriopoulou, S.; D’Amore, T.; Varzakas, T. Current State of Milk, Dairy Products, Meat and Meat Products, Eggs, Fish and Fishery Products Authentication and Chemometrics. Foods 2023, 12, 4254. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, T.; Cahyadi, M.; Pramono, A.; Volkandari, S.D. Evaluation of commercial meat product food label conformity using multiplex PCR assay. Food Control 2023, 149, 109712. [Google Scholar] [CrossRef]
- Gostel, M.R.; Zúñiga, J.D.; Kress, W.J.; Funk, V.A.; Puente-Lelievre, C. Microfluidic Enrichment Barcoding (MEBarcoding): A new method for high throughput plant DNA barcoding. Sci. Rep. 2020, 10, 8701. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Xing, S.; Yao, G.; Yao, M.; Wen, X.; Ling, Y.; Guo, W. Application of next generation semiconductor based sequencing for species identification and meat derived products authentication. Food Control 2024, 165, 110639. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, Y.; Folk, R.A.; Zhao, J.; Fu, C.; Fang, L.; Peng, H.; Yang, J.; Yang, S. Species discrimination in Schima (Theaceae): Next-generation super-barcodes meet evolutionary complexity. Mol. Ecol. Resour. 2022, 22, 3161–3175. [Google Scholar] [CrossRef]
- Koblmüller, S.; Resl, P.; Klar, N.; Bauer, H.; Zangl, L.; Hahn, C. DNA Barcoding for Species Identification of Moss-Dwelling Invertebrates: Performance of Nanopore Sequencing and Coverage in Reference Database. Diversity 2024, 16, 196. [Google Scholar] [CrossRef]
- He, J.C. Development of a CRISPR-Based Nucleic Acid Sensor Method for Detecting Pork-Derived Components in Food; Nanchang University: Nanchang, China, 2023. [Google Scholar]
- Nesvadbova, M.; Dziedzinska, R.; Hulankova, R.; Babak, V.; Kralik, P. Quantification of the percentage proportion of individual animal species in meat products by multiplex qPCR and digital PCR. Food Control 2023, 154, 110024. [Google Scholar] [CrossRef]
- Scales, Z.M.; Narbay, E.; Hellberg, R.S. Use of DNA Barcoding Combined with PCR-SFLP to Authenticate Species in Bison Meat Products. Foods 2021, 10, 347. [Google Scholar] [CrossRef]
- Diwedi, J.; Singh, A.W.; Ahlawat, S.; Sharma, R.; Arora, R.; Sharma, H.; Raja, K.N.; Verma, N.K.; Tantia, M.S. Comprehensive analysis of mitochondrial DNA based genetic diversity in Indian goats. Gene 2020, 756, 144910. [Google Scholar] [CrossRef] [PubMed]
Category | Method | Characteristics | Application Scenarios |
---|---|---|---|
Traditional PCR Sequencing [31] | PCR amplification of COI/Cytb gene fragments, Sanger sequencing and comparison | High universality, well-established databases, simple operation, low cost | Fresh/intact samples (species-level) |
qRT-PCR/ddPCR [32] | Real-time quantitative PCR/droplet digital PCR for quantitative detection of species-specific DNA | Rapid, sensitive, accurate quantification | Degraded samples, complex genomes (multi-species) |
Mini-barcode [33] | Amplification and sequencing of short fragments (100–200 bp) | High amplification success rate, strong resistance to inhibitors | Processed or decomposed meat detection (species/subspecies-level) |
Ultra-barcode [34] | Sequencing of complete chloroplast or mitochondrial genomes | Distinguishes closely related species and hybrids; extremely high resolution | Closely related species, cryptic species, complex taxonomic groups (population/multi-species) |
Amplicon Meta-barcoding (AMB) | High-throughput sequencing (NGS) of amplified specific regions to analyze multi-species composition in mixed samples | High-throughput, simultaneous detection of multiple species | Environmental samples (water, soil, air), complex mixed samples (community-level, multi-species) |
Metagenomic Sequencing [35] | Direct whole-genome sequencing of environmental DNA without PCR amplification | PCR-bias-free, detects unknown species, rich functional gene information | Complex mixed samples (multi-species/functional genes) |
DNA Microarray/Chip [36] | Species identification via probe hybridization to specific barcode sequences | Rapid, simultaneous detection of multiple species | Commercial screening applications (multi-species) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Wei, H.; Jiang, Y.; Xue, Q.; Wang, F. DNA Barcoding in Meat Authentication: Principles, Applications, and Future Perspectives. Foods 2025, 14, 3522. https://doi.org/10.3390/foods14203522
Hu J, Wei H, Jiang Y, Xue Q, Wang F. DNA Barcoding in Meat Authentication: Principles, Applications, and Future Perspectives. Foods. 2025; 14(20):3522. https://doi.org/10.3390/foods14203522
Chicago/Turabian StyleHu, Jiangyao, Hewen Wei, Yanjie Jiang, Qingyu Xue, and Feijuan Wang. 2025. "DNA Barcoding in Meat Authentication: Principles, Applications, and Future Perspectives" Foods 14, no. 20: 3522. https://doi.org/10.3390/foods14203522
APA StyleHu, J., Wei, H., Jiang, Y., Xue, Q., & Wang, F. (2025). DNA Barcoding in Meat Authentication: Principles, Applications, and Future Perspectives. Foods, 14(20), 3522. https://doi.org/10.3390/foods14203522