Foodborne Helminths in Imported Fish: Molecular Evidence from Fish Products in the Kazakhstan Market
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Data Collection
2.2. Macroscopic Examination
2.3. Examination of Fish Muscle Using the Compression Technique
2.4. DNA Extraction
2.5. PCR and Sequencing
2.6. Bioinformatic Analysis
2.7. Statistical Analysis
3. Results
3.1. Import of Fish Products to Kazakhstan
3.2. Fish Infestation: Parasitological Analysis
3.3. Molecular Phylogenetic Analysis of Fish Parasites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
N | number |
bp | base pairs |
CI | confidence interval |
cox1 | cytochrome c oxidase subunit 1 |
DNA | deoxyribonucleic acid |
F | Forward |
ML | Maximum Likelihood |
nad1 | NADH dehydrogenase subunit 1 |
OR | Odds Ratio |
R | Revers |
SD | standard deviation |
TBE | Tris-borate-EDTA buffer |
USA | United States of America |
UV | ultraviolet |
References
- Food and Agriculture Organization of the United Nations (FAO). FAO Report: Global Fisheries and Aquaculture Production Reaches a New Record High. 2024. Available online: https://www.fao.org/americas/news/news-detail/fao-report--global-fisheries-and-aquaculture-production-reaches-a-new-record-high/en (accessed on 22 July 2025).
- Food and Agriculture Organization of the United Nations (FAO). Capture Fisheries Production. The State of World Fisheries and Aquaculture (SOFIA) 2024. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/66538eba-9c85-4504-8438-c1cf0a0a3903/content/sofia/2024/capture-fisheries-production.html (accessed on 22 July 2025).
- Sayyaf Dezfuli, B.; Scholz, T. Fish parasites (special issue). Parasitology 2022, 149, 1811–1814. [Google Scholar] [CrossRef]
- Perdiguero-Alonso, D.; Montero, F.E.; Raga, J.A.; Kostadinova, A. Composition and structure of the parasite faunas of cod, Gadus morhua L. (Teleostei: Gadidae), in the North East Atlantic. Parasites Vectors 2008, 1, 23. [Google Scholar] [CrossRef]
- Levsen, A.; Cipriani, P.; Palomba, M.; Giulietti, L.; Storesund, J.E.; Bao, M. Anisakid parasites (Nematoda: Anisakidae) in three commercially important gadid fish species from the southern Barents Sea, with emphasis on key infection drivers and spatial distribution within the hosts. Parasitology 2022, 149, 1942–1957. [Google Scholar] [CrossRef]
- Bao, M.; Levsen, A.; Giulietti, L.; Wiech, M.; Ferter, K.; Karlsbakk, E.; Cipriani, P. Anisakis simplex (sensu lato) and Hysterothylacium cornutum (Nematoda: Ascaridoidea) in adult Atlantic bluefin tuna (Thunnus thynnus) caught in Norway. Food Waterborne Parasitol. 2025, 39, e00261. [Google Scholar] [CrossRef]
- Sterud, E. Parasites of wild sea bass Dicentrarchus labrax from Norway. Dis. Aquat. Org. 2002, 48, 209–212. [Google Scholar] [CrossRef]
- Sundnes, G.A. Cestodes in Atlantic Salmon (Salmo salar L.) at a W Norwegian Hatchery: Infection Dynamics, Aspects of Development and Pathology. Master’s Thesis, University of Bergen, Bergen, Norway, 2003. [Google Scholar]
- Slåteng, S. Molecular Study of Digenean Diversity in Aquatic Organisms in Northern Norway, with a Focus on the Seasonality of Crepidostomum (Braun, 1900). Master’s Thesis, UiT The Arctic University of Norway, Tromsø, Norway, 2022. [Google Scholar]
- Väinölä, R.; Valtonen, E.T.; Gibson, D.I. Molecular systematics in the acanthocephalan genus Echinorhynchus (sensu lato) in northern Europe. Parasitology 1994, 108 Pt 1, 105–114. [Google Scholar] [CrossRef]
- Karlsbakk, E.; Nystøyl, C.F.; Plarre, H.; Nilsen, H.; Nylund, A. A novel protist parasite, Salmoxcellia vastator n. gen., n. sp. (Xcelliidae, Perkinsozoa), infecting farmed salmonids in Norway. Parasites Vectors 2021, 14, 431. [Google Scholar] [CrossRef]
- Safonova, A.E.; Voronova, A.N.; Vainutis, K.S. First report on molecular identification of Anisakis simplex in Oncorhynchus nerka from the fish market, with taxonomical issues within Anisakidae. J. Nematol. 2021, 53, e2021-23. [Google Scholar] [CrossRef]
- Vitomskova, E.; Kuzmin, A.; Zhuleva, V. Pathogens of anisakidosis and their localization in saltwater fish of the populations in the northern region of the Sea of Okhotsk. Int. Res. J. 2021, 9, 85–89. (In Russian) [Google Scholar] [CrossRef]
- Mikulich, E.L. Features of localization of anisakid larvae in some species of marine fish. Anim. Husb. Vet. Med. 2022, 3, 56–60. (In Russian) [Google Scholar]
- Gordeev, I.I.; Bakay, Y.I.; Kalashnikova, M.Y.; Logvinenko, A.D.; Emelianova, O.R.; Sokolov, S.G. Genetic structure of juvenile stages of Phocanema bulbosum (Nematoda, Chromadorea: Anisakidae) parasitizing commercial fish, Atlantic cod Gadus morhua, and American plaice Hippoglossoides platessoides in the Barents Sea. Diversity 2023, 15, 1036. [Google Scholar] [CrossRef]
- Logvinenko, A.D.; Gordeev, I.I.; Ekimova, I.A.; Sokolov, S.G. Helminths of three species of White Sea fishes. Parasitol. Res. 2023, 123, 39. [Google Scholar] [CrossRef]
- Atopkin, D.M.; Besprozvannykh, V.V.; Ha, D.N.; Nguyen, V.H.; Nguyen, V.T. New species of Parasaccocoelium (Haploporidae) and new genus Pseudohaplosplanchnus (Haplosplanchnidae) from mullet fish in the Far East of Russia and Vietnam: Morphological and molecular data. J. Helminthol. 2020, 94, e154. [Google Scholar] [CrossRef]
- Plaksina, M.P.; Kuklina, M.M. Helminth fauna of gammarids Gammarus oceanicum and Gammarus duebeni of the Murmansk coast of the Barents Sea. Trans. Kola Sci. Cent. Russ. Acad. Sci. 2022, 4, 78–86. (In Russian) [Google Scholar] [CrossRef]
- Vyalova, G.P.; Frolov, E.V. Parasites and their population dynamics in smelts Osmerus mordax dentex and Hypomesus nipponensis of Sakhalin. Izv. TINRO 2005, 142, 270–281. (In Russian) [Google Scholar]
- Truong, V.T.; Ngo, H.T.T.; Bui, T.Q.; Palm, H.W.; Bray, R.A. Marine fish parasites of Vietnam: A comprehensive review and updated list of species, hosts, and zoogeographical distribution. Parasite 2022, 29, 36. [Google Scholar] [CrossRef]
- Mladineo, I.; Hrabar, J. Seventy years of coexistence: Parasites and Mediterranean fish aquaculture. Fish Shellfish Immunol. 2025, 162, 110355. [Google Scholar] [CrossRef] [PubMed]
- Salas-Villalobos, S.S.; Violante-Gonzalez, J.; Mendoza-Franco, E.F.; Gallegos-Navarro, Y.; Rodriguez-Ibarra, E.; Valencia-Cayetano, C.; Carbajal-Violante, J.; Garcia-Ibanez, S. Species richness and similarity of parasite communities in ten species of carangid fish (Carangiformes) from the Mexican Southern Pacific. Folia Parasitol. 2025, 72, 2025.017. [Google Scholar] [CrossRef]
- Dykman, L.N.; Tepolt, C.K.; Blend, C.K.; Mullineaux, L.S. Discovery of indirect parasite life cycles at deep-sea hydrothermal vents. Mar. Ecol. Prog. Ser. 2025, 755, 1–14. [Google Scholar] [CrossRef]
- Krupenko, D.; Gonchar, A.; Krapivin, V.; Kremnev, G.; Skobkina, O.; Efeykin, B. Complex species structure of Lecithaster salmonis (Digenea: Lecithasteridae), a fish parasite in the Arctic and Pacific Northwest. J. Helminthol. 2025, 99, e4. [Google Scholar] [CrossRef]
- Leiva, N.V.; Muñoz, G.; González, M.T. Geographic and ontogenetic variations in parasite communities of intertidal fish species from the south-eastern Pacific coast. J. Helminthol. 2020, 94, e124. [Google Scholar] [CrossRef]
- Bennett, J.; Presswell, B.; Poulin, R. Tracking life cycles of parasites across a broad taxonomic scale in a marine ecosystem. Int. J. Parasitol. 2023, 53, 285–303. [Google Scholar] [CrossRef]
- Sayyaf Dezfuli, B.; Lorenzoni, M.; Carosi, A.; Giari, L.; Bosi, G. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: Who wins, who loses. Front. Immunol. 2023, 14, 1250835. [Google Scholar] [CrossRef]
- Bosi, G.; Maynard, B.J.; Pironi, F.; Sayyaf Dezfuli, B. Parasites and the neuroendocrine control of fish intestinal function: An ancient struggle between pathogens and host. Parasitology 2022, 149, 1842–1861. [Google Scholar] [CrossRef]
- Hoai, T.D. Reproductive strategies of parasitic flatworms (Platyhelminthes, Monogenea): The impact on parasite management in aquaculture. Aquac. Int. 2020, 28, 421–447. [Google Scholar] [CrossRef]
- Jerônimo, G.T.; Pádua, S.B.; Bampi, D.; Gonçalves, E.L.; Garcia, P.; Ishikawa, M.M.; Martins, M.L. Haematological and histopathological analysis in South American fish Piaractus mesopotamicus parasitized by monogenean (Dactylogyridae). Braz. J. Biol. 2014, 74, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Hauck, A.K.; May, E.B. Histopathologic alterations associated with Anisakis larvae in Pacific herring from Oregon. J. Wildl. Dis. 1977, 13, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Sprengel, G.; Lüchtenberg, H. Infection by endoparasites reduces swimming speed of European smelt Osmerus eperlanus and European eel Anguilla anguilla. Dis. Aquat. Org. 1991, 11, 31–35. [Google Scholar] [CrossRef]
- Rohlwing, T.; Palm, H.W.; Rosenthal, H. Parasitation with Pseudoterranova decipiens (Nematoda) influences the survival rate of the European smelt Osmerus eperlanus retained by a screen wall of a nuclear power plant. Dis. Aquat. Org. 1998, 32, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, K.; Mehrdana, F. Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer health. Food Waterborne Parasitol. 2016, 4, 13–22. [Google Scholar] [CrossRef]
- Kennedy, C.R. Establishment, survival and site selection of the cestode Eubothrium crassum in brown trout, Salmo trutta. Parasitology 1996, 112, 347–355. [Google Scholar] [CrossRef]
- Bosi, G.; Shinn, A.P.; Giari, L.; Simoni, E.; Pironi, F.; Dezfuli, B.S. Changes in the neuromodulators of the diffuse endocrine system of the alimentary canal of farmed rainbow trout, Oncorhynchus mykiss (Walbaum), naturally infected with Eubothrium crassum (Cestoda). J. Fish Dis. 2005, 28, 703–711. [Google Scholar] [CrossRef]
- Federal Agency for Fisheries of Russia. Russia and Kazakhstan Are Developing Mutual Trade in Fish Products: Mutual Deliveries Grew by 8% in Six Months. 2023. Available online: https://fish.gov.ru/news/2023/11/09/rossiya-i-kazahstan-razvivayut-tovarooborot-rybnoj-produkczii-za-polgoda-obem-vzaimnyh-postavok-vyros-na-8/ (accessed on 22 July 2025).
- Inbusiness.kz. Most of all, Kazakhs Eat Norwegian Fish. 2023. Available online: https://inbusiness.kz/ru/last/bolshe-vsego-kazahstancy-edyat-norvezhskuyu-rybu (accessed on 22 July 2025). (In Russian).
- Timi, J.T.; Poulin, R. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 2020, 50, 755–761. [Google Scholar] [CrossRef]
- Saad, S.M.; Salem, A.M.; Mahdy, O.A.; Ibrahim, E.S. Prevalence of metacercarial infection in some marketed fish in Giza Governorate, Egypt. J. Egypt Soc. Parasitol. 2019, 49, 129–134. [Google Scholar] [CrossRef]
- El-Shahawy, I.; El-Seify, M.; Metwally, A.; Fwaz, M. Survey on endoparasitic fauna of some commercially important fishes of the River Nile, southern of Egypt (Egypt). Rev. Med. Vet. 2017, 168, 126–134. [Google Scholar]
- Aly, S.; Eissa, I.; Badran, A.; Elamie, M.; Hussain, B. Pathological studies on encysted metacercariae infections among some freshwater fish in Egyptian aquaculture. Proc. Duetscher Trop. Hohenh. Univ. Stuttg. Ger. 2005, 11–13. Available online: https://hdl.handle.net/20.500.12348/4293 (accessed on 3 September 2025).
- Sharma, R.; Sharad, S.; Minhas, G.; Sharma, D.R.; Bhatia, K.; Sharma, N.K. Chapter 12 in Modern Tools in Forensic Science. In DNA, RNA Isolation, Primer Designing, Sequence Submission, and Phylogenetic Analysis; Bhatt, A.K., Bhatia, R.K., Bhalla, T.C., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 197–206. [Google Scholar] [CrossRef]
- Jacobs, D.E.; Zhu, X.; Gasser, R.B.; Chilton, N.B. PCR-based methods for identification of potentially zoonotic ascaridoid parasites of the dog, fox and cat. Acta Trop. 1997, 68, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Gasser, R.B.; Podolska, M.; Chilton, N.B. Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. Int. J. Parasitol. 1998, 28, 1911–1921. [Google Scholar] [CrossRef]
- Macheriotou, L.; Guilini, K.; Bezerra, T.N.; Tytgat, B.; Nguyen, D.T.; Phuong Nguyen, T.X.; Noppe, F.; Armenteros, M.; Boufahja, F.; Rigaux, A.; et al. Metabarcoding free-living marine nematodes using curated 18S and CO1 reference sequence databases for species-level taxonomic assignments. Ecol. Evol. 2019, 9, 1211–1226. [Google Scholar] [CrossRef] [PubMed]
- Reier, S.; Sattmann, H.; Schwaha, T.; Harl, J.; Konecny, R.; Haring, E. An integrative taxonomic approach to reveal the status of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) in Austria. Int. J. Parasitol. Parasites Wildl. 2019, 8, 145–155. [Google Scholar] [CrossRef]
- Bowles, J.; Blair, D.; McManus, D.P. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol. Biochem. Parasitol. 1992, 54, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Bryan, D.R.; Jacobson, K.C.; Buchanan, J.C. Recent increase in Nybelinia surmenicola prevalence and intensity in Pacific hake (Merluccius productus) off the United States West Coast. J. Parasitol. 2012, 98, 85–92. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Bush, A.O.; Lafferty, K.D.; Lotz, J.M.; Shostak, A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997, 83, 575–583. [Google Scholar] [CrossRef]
- Shamsi, S.; Chen, Y.; Poupa, A.; Ghadam, M.; Justine, J.L. Occurrence of anisakid parasites in marine fishes and whales off New Caledonia. Parasitol. Res. 2018, 117, 3195–3204. [Google Scholar] [CrossRef]
- Mostafa, N.A.; Abdel-Ghaffar, F.; Fayed, H.O.; Hassan, A.A. Correction to: Morphological and molecular identification of third stage larvae of Anisakis typica (Nematoda: Anisakidae) from Red Sea coral trout, Plectropomus areolatus. Parasitol. Res. 2023, 122, 1051. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, C.P.; Johnson, M.W. Could new records of parasitic cestode Nybelinia surmenicola in Dolly Varden (Salvelinus malma) from the Beaufort Sea indicate increased presence of salmon shark (Lamna ditropis) in the Arctic? Arctic Sci. 2025, 11, 1–10. [Google Scholar] [CrossRef]
- Al Quraishy, S.; Dkhil, M.A.M.; Abdel-Gaber, R.; Al-Shaebi, E.; Jaffal, A.A.; Morsy, K. Morphological and molecular insights of a new species of trypanorhynchid cestode parasite, Nybelinia exostigmi, in the Narrowstripe cardinal fish Apogon exostigma. Rev. Bras. Parasitol. Vet. 2019, 28, 266–282. [Google Scholar] [CrossRef]
- Tiralongo, F.; Messina, G.; Poidomani, S.; Salvaggio, A.; Lombardo, B.M. Morphological analysis reveals the presence of Hepatoxylon trichiuri (Holten, 1802) Bosc, 1811 (Cestoda: Sphyriocephalidae) in Lepidopus caudatus (Euphrasen, 1788) (Pisces: Trichiuridae) from the Mediterranean Sea. Microsc. Res. Tech. 2020, 83, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.L. The Distribution of Eubothrium crassum (Cestoda: Pseudophyllidea) in Brown Trout, Salmo trutta, in Allopatric and Sympatric Populations. Master’s Thesis, UiT The Arctic University of Norway, Tromsø, Norway, 2021. [Google Scholar]
- Kuchta, R.; Shinn, A.P.; Hanzelová, V.; Scholz, T. A comparative study of the egg morphology in four species of Eubothrium (Cestoda: Pseudophyllidea) with comments on their early development. Invertebr. Biol. 2006, 125, 1–8. [Google Scholar] [CrossRef]
- Hanzelová, V.; Scholz, T.; Gerdeaux, D. A comparative study of Eubothrium salvelini and E. crassum (Cestoda: Pseudophyllidea) parasites of Arctic charr and brown trout in alpine lakes. Environ. Biol. Fishes 2002, 64, 245–256. [Google Scholar] [CrossRef]
- Amin, O.M.; Heckmann, R.A.; Dallarés, S.; Constenla, M.; Kuzmina, T. Morphological and molecular description of a distinct population of Echinorhynchus gadi Zoega in Müller, 1776 (Paleacanthocephala: Echinorhynchidae) from the Pacific halibut Hippoglossus stenolepis Schmidt in Alaska. Acta Parasitol. 2021, 66, 881–898. [Google Scholar] [CrossRef]
- Prime Minister of the Republic of Kazakhstan. Reorientation to Fish Farming, Improvement of Legislation and State Support Measures: How the Fish Industry Is Developing in Kazakhstan. 2020. Available online: https://primeminister.kz/ru/news/reviews/pereorientaciya-na-rybovodstvo-sovershenstvovanie-zakonodatelstva-i-mery-gospodderzhki-kak-v-kazahstane-razvivayut-rybnuyu-otrasl-2482944 (accessed on 20 July 2025).
- Agrosektor.kz. Kazakhstan Annually Imports 43.5 Thousand Tons of Fish Products, of Which 95% Are Marine and Oceanic Fish Species. Available online: https://agrosektor.kz/agriculture-news/kazahstan-ezhegodno-importiruet-43-5-tys.-tonn.-rybnoj-produkcii-iz-kotoroj-95-sostavlyayut-morskie-i-okeanicheskie-vidy-ryb.html (accessed on 20 July 2025).
- On Approval of Veterinary (Veterinary and Sanitary) Rules. 2015. Available online: https://adilet.zan.kz/rus/docs/V1500011940 (accessed on 28 August 2025).
- On approval of the Sanitary Rules “Sanitary and Epidemiological Requirements for Food Production Facilities”. 2023. Available online: https://adilet.zan.kz/rus/docs/V2100022673?utm_source (accessed on 28 August 2025).
- Shamsi, S. Seafood-borne parasitic diseases: A “One-Health” approach is needed. Fishes 2019, 4, 9. [Google Scholar] [CrossRef]
- Williams, M.; Hernandez-Jover, M.; Shamsi, S. A critical appraisal of global testing protocols for zoonotic parasites in imported seafood applied to seafood safety in Australia. Foods 2020, 9, 448. [Google Scholar] [CrossRef]
- Pramardika, D.D.; Siregar, A.M.; Sulistiono, S.; Tiuria, R.; Nugraha, A.B. Invasion dynamics and ecological impacts of Anisakis typica in commercial fish from the Western Pacific Ocean. Vet. World 2025, 18, 1365–1376. [Google Scholar] [CrossRef]
- Mattiucci, S.; Cipriani, P.; Levsen, A.; Paoletti, M.; Nascetti, G. Molecular epidemiology of Anisakis and anisakiasis: An ecological and evolutionary road map. Adv. Parasitol. 2018, 99, 93–263. [Google Scholar] [CrossRef]
- Suthar, J.; Shamsi, S. The occurrence and abundance of infective stages of zoonotic nematodes in selected edible fish sold in Australian fish markets. Microb. Pathog. 2021, 154, 104833. [Google Scholar] [CrossRef]
- Bennett, J.; Poulin, R.; Presswell, B. Annotated checklist and genetic data for parasitic helminths infecting New Zealand marine invertebrates. Invertebr. Biol. 2022, 141, e12380. [Google Scholar] [CrossRef]
- Kita, Y.; Kajihara, H. Morphological and molecular characterization of a new species of the genus Echinorhynchus Zoega in Müller, 1776 (Acanthocephala: Echinorhynchidae) parasitizing the rock greenling Hexagrammos lagocephalus (Pallas) (Scorpaeniformes: Hexagrammidae) from eastern Hokkaido, Japan. Syst. Parasitol. 2023, 100, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.T.; Cai, J.Z.; Li, C.H.; Fu, Y.; Sun, J.; Ma, D.D.; Li, Y.P.; Zhang, Y.M. Prevalence and genetic diversity of Echinorhynchus gymnocyprii (Acanthocephala: Echinorhynchidae) in schizothoracine fishes (Cyprinidae: Schizothoracinae) in Qinghai-Tibetan Plateau, China. Parasites Vectors 2020, 13, 357. [Google Scholar] [CrossRef] [PubMed]
- Wayland, M.T.; Vainio, J.K.; Gibson, D.I.; Herniou, E.A.; Littlewood, D.T.J.; Väinölä, R. The systematics of Echinorhynchus Zoega in Müller, 1776 (Acanthocephala, Echinorhynchidae) elucidated by nuclear and mitochondrial sequence data from eight European taxa. Zookeys 2015, 484, 25–52. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, A.; Shiroyama, H.; Yamamoto, I.; Ishikawa, T.; Morishima, Y. Anisakiasis Annual Incidence and Causative Species, Japan, 2018–2019. Emerg. Infect. Dis. 2022, 28, 2105–2108. [Google Scholar] [CrossRef]
- Herrador, Z.; Daschner, Á.; Perteguer, M.J.; Benito, A. Epidemiological Scenario of Anisakidosis in Spain Based on Associated Hospitalizations: The Tip of the Iceberg. Clin. Infect. Dis. 2019, 69, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Aibinu, I.E.; Smooker, P.M.; Lopata, A.L. Anisakis Nematodes in Fish and Shellfish- from infection to allergies. Int. J. parasitology. Parasites Wildl. 2019, 9, 384–393. [Google Scholar] [CrossRef]
- D’Amelio, S.; Bellini, I.; Chiovoloni, C.; Magliocco, C.; Pronio, A.; Di Rocco, A.; Pentassuglio, I.; Rosati, M.; Russo, G.; Cavallero, S. A Case of Gastroallergic and Intestinal Anisakiasis in Italy: Diagnosis Based on Double Endoscopy and Molecular Identification. Pathogens 2023, 12, 1172. [Google Scholar] [CrossRef] [PubMed]
- Sohn, W.M.; Na, B.K.; Kim, T.H.; Park, T.J. Anisakiasis: Report of 15 Gastric Cases Caused by Anisakis Type I Larvae and a Brief Review of Korean Anisakiasis Cases. Korean J. Parasitol. 2015, 53, 465–470. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, J.C.; Kim, M.J.; Hur, G.Y.; Shin, S.Y.; Park, H.S. The Clinical Characteristics of Anisakis Allergy in Korea. Korean J. Intern. Med. 2009, 24, 160–163. [Google Scholar] [CrossRef]
- Bartra Balcells, È.; Domènech Calvet, J.; Del Castillo Déjardin, D. Intestinal obstruction caused by Anisakis. Rev. Esp. De Enfermedades Dig. 2021, 113, 547. [Google Scholar] [CrossRef]
- Bellini, I.; Scribano, D.; Ambrosi, C.; Chiovoloni, C.; Rondón, S.; Pronio, A.; Palamara, A.T.; Pietrantoni, A.; Kashkanova, A.; Sandoghdar, V.; et al. Anisakis extracellular vesicles elicit immunomodulatory and potentially tumorigenic outcomes on human intestinal organoids. Parasites Vectors 2024, 17, 393. [Google Scholar] [CrossRef]
- Sonoda, H.; Yamamoto, K.; Ozeki, K.; Inoye, H.; Toda, S.; Maehara, Y. An anisakis larva attached to early gastric cancer: Report of a case. Surg. Today 2015, 45, 1321–1325. [Google Scholar] [CrossRef]
- Morozińska-Gogol, J. Anisakis spp. as etiological agent of zoonotic disease and allergy in European region—An overview. Ann. Parasitol. 2019, 65, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Fæste, C.K.; Jonscher, K.R.; Dooper, M.M.; Egge-Jacobsen, W.; Moen, A.; Daschner, A.; Egaas, E.; Christians, U. Characterisation of potential novel allergens in the fish parasite Anisakis simplex. EuPA Open Proteom. 2014, 4, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Lester, R.J.; McVinish, R. Does Moving Up a Food Chain Increase Aggregation in Parasites? J. R. Soc. Interface 2016, 13, 20160102. [Google Scholar] [CrossRef] [PubMed]
- Cresson, P.; Bourgau, O.; Cordier, R.; Couvreur, C.; Rouquette, M.; Gay, M. Fish Length, Diet, and Depth Drive Anisakis Levels in a Zooplankton-Feeding Fish. Can. J. Fish. Aquat. Sci. 2023, 80, 1495–1508. [Google Scholar] [CrossRef]
- Diez, G.; Chust, G.; Andonegi, E.; Santurtún, M.; Abaroa, C.; Bilbao, E.; Maceira, A.; Mendibil, I. Analysis of Potential Drivers of Spatial and Temporal Changes in Anisakid Larvae Infection Levels in European Hake, Merluccius merluccius (L.), from the North-East Atlantic Fishing Grounds. Parasitol. Res. 2022, 121, 1903–1920. [Google Scholar] [CrossRef]
- World Bank—WITS. Uzbekistan: Imports of Frozen Fish Fillets (HS 030420). 2023. Available online: https://wits.worldbank.org/trade/comtrade/en/country/UZB/year/2023/tradeflow/Imports/partner/ALL/product/030420 (accessed on 25 August 2025).
- World Bank—WITS. Kyrgyzstan: Imports of Frozen Fish (HS 030379). 2023. Available online: https://wits.worldbank.org/trade/comtrade/en/country/KGZ/year/2023/tradeflow/Imports/partner/ALL/product/030379 (accessed on 25 August 2025).
- World Bank—WITS. Tajikistan: IMPORTS of Frozen Fish (HS 030379). 2023. Available online: https://wits.worldbank.org/trade/comtrade/en/country/TJK/year/2023/tradeflow/Imports/partner/ALL/product/030379 (accessed on 25 August 2025).
- World Bank—WITS. Tajikistan: Imports of Dried or Salted Fish Fillets (HS 030530). 2023. Available online: https://wits.worldbank.org/trade/comtrade/en/country/TJK/year/2023/tradeflow/Imports/partner/ALL/product/030530 (accessed on 25 August 2025).
№ | Fish Species | Length, cm | Weight, g | Importing Countries | Origin |
---|---|---|---|---|---|
1 | mackerel (S. scombrus) | 31.7 ± 7 | 349.2 ± 50 | Norway, Iceland, UK, EU Atlantic coasts. | Wild capture. |
2 | capelin (M. villosus) | 17.1 ± 3 | 34.2 ± 12 | Iceland, Norway, Barents Sea (Russia). | Wild capture. |
3 | herring (C. harengus) | 36.9 ± 4 | 376.7 ± 70 | Norway, Iceland, North Sea, Baltic. | Wild capture. |
4 | pollock (T. chalcogramma) | 37.9 ± 9 | 352.0 ± 100 | Russia (Far East). | Wild capture. |
5 | flounder (P. flesus) | 32.6 ± 4 | 833.4 ± 120 | Baltic Sea, North Sea (Norway, Denmark, Poland). | Wild capture. |
6 | char (S. alpinus) | 46.5 ± 6 | 1255.3 ± 200 | Iceland, Norway. | Both wild capture and aquaculture. |
7 | cod (G. morhua) | 60.5 ± 10 | 3088.86 ± 250 | Norway, Iceland, Russia, Canada. | Wild capture. |
8 | blue whiting (M. poutassou) | 27.8 ± 5 | 162.4 ± 40 | Norway, Iceland, EU Atlantic. | Wild capture. |
9 | smelt (O. eperlanus) | 15.7 ± 3 | 39.8 ± 15 | Baltic Sea (Estonia, Latvia, Russia). | Wild capture. |
10 | haddock (M. aeglefinus) | 58.6 ± 4 | 1583.6 ± 200 | Norway, Iceland, Barents Sea, North Sea. | Wild capture. |
11 | amberjack (S. quinqueradiata) | 72.4 ± 10 | 5358.6 ± 500 | Japan. | Aquaculture. |
12 | greenling (H. stelleri) | 44.5 ± 9 | 1327.1 ± 200 | Russia (Far East, Sea of Japan), Japan. | Wild capture. |
13 | sprat (C. cultriventris) | 11.3 ± 2 | 12.5 ± 7 | Caspian Sea (Russia, Azerbaijan). | Wild capture. |
14 | sea bass (D. labrax) | 40.2 ± 7 | 862.7 ± 150 | Greece and Turkey | Aquaculture. |
15 | dorado (S. aurata) | 31.5 ± 8 | 799.7 ± 200 | Greece, Turkey, Egypt. | Aquaculture. |
16 | sole (S. solea) | 34.6 ± 10 | 745.1 ± 179 | North Sea (Netherlands, UK). | Wild capture. |
17 | grouper (S. babcocki) | 37.67 ± 8 | 954 ± 200 | Turkey, China. | Both wild capture and aquaculture |
18 | pink salmon (O. gorbuscha) | 47.8 ± 5 | 1421.6 ± 250 | Russia (Far East) | Wild capture. |
19 | salmon * (S. salar) | - | - | Norway, Chile. | Aquaculture |
Primer Name | Type of Helminths | Target Gene | Sequence | Parameters | References |
---|---|---|---|---|---|
NC13/NC2 | Nematoda | 5.8S | F: 5′-ATCGATGAAGAACGCAGC-3′ R: 5′-TTAGTTTCTTTTCCTCCGCT-3′ | 95 °C 4 min, (94 °C 30 s, 60 °C 30 s, 72 °C 45 s) 40×, 72 °C 7 min | [44] |
NC5/NC2 | Nematoda | ITS-2 | F:5′-GTAGGTGAACCTGCGGAAGGATCATT-3′ R:5′-TTAGTTTCTTTTCCTCCGCT-3′ | 95 °C 4 min, (94 °C 30 s, 60 °C 30 s, 72 °C 45 s) 40×, 72 °C 7 min | [45] |
SSU_F_04/SSU_22_R | Nematoda | 18S | F: 3′-GCTTGTCTCAAAGATTAAGCC-5′ R:5′-ATGTGGAGCCGTTTATCAGG-3′ | 95 °C 2 min, (95 °C 1 min, 57 °C 45 s, 72 °C 1 min) 30×, 72 °C 10 min | [46] |
AcanCoI_F/ AcanCoI_R | Acanthocephala | COI | F: 3′-TTCTACAAATCATAARGATATYGG-5′ R:5′-AAAATATAMACTTCAGGATGACCAAA-3′ | 94 °C 7 min, (94 °C 30 s, 48 °C 1 min and 75 °C 1 min) 40×, 75 °C 10 min | [47] |
JB3/JB4,5 | Cestoda | CO1 | F:5′-TTTTTTGGGCATCCTGAGGTTTAT-3′ R:5′-TAAAGAAAGAACATAATGAAAATG-3′ | 95 °C 5 min, (95 °C 50 s, 50 °C 50 s, 72 °C 50 s) 35×, 72 °C 5 min | [48] |
Nyb-28S-F/ Nyb-28S-R | Cestoda | 28S | F: 5′-TAGGTCGACCCGCTGAACTTA-3′ R: 5′-GCATAGTTCACCATCTTTCGG-3′ | 94 °C 2 min, (94 °C 30 s, 55 °C 45 s, 72 °C 2 min) 32×, 72 °C 10 min | [49] |
№ | Species of the Studied Fish | N Examined/ N Infected | % Prevalence (95% CI) | N Helminths Found | Range of Intensity | Mean (SD) Intensity | Helminth Species Identified |
---|---|---|---|---|---|---|---|
1 | mackerel (S. scombrus) | 50/46 | 92.0 (80.7–97.8) | 969 | 1–190 | 46.1 (41.2) | A. simplex, A. pegreffii |
2 | capelin (M. villosus) | 71/27 | 38.0 (26.7–50.3) | 44 | 1–4 | 1.6 (0.8) | Anisakis, Contracaecum osculatum, A. pegreffii |
3 | herring (C. harengus) | 50/48 | 96.0 (86.3–99.5) | 565 | 1–34 | 11.8 (8.2) | A. simplex, A. pegreffii |
3 | pollock (T. chalcogramma) | 50/31 | 62.0 (47.1–75.3) | 123 | 1–50 | 4.0 (8.3) | A. simplex, A. pegreffii, C. osculatum |
50/17 | 34.0 (21.1–48.8) | 111 | 1–15 | 6.5 (4.4) | Echinorhynchus gadi | ||
4 | hake (M. merluccius) | 50/29 | 58.0 (43.2–71.8) | 191 | 1–28 | 6.6 (6.9) | Hepatoxylon trichiuri |
50/3 | 6.0 (1.2–16.6) | 5 | 1–3 | 1.7 (1.2) | A. simplex, A. pegreffii, A. ziphidarum | ||
5 | flounder (P. flesus) | 50/8 | 16.0 (7.2–29.1) | 7 | 1–3 | 0.9 (0.7) | Anisakis spp. |
6 | char (S. alpinus) | 50/21 | 42.0 (28.2–56.8) | 74 | 1–14 | 3.5 (3.5) | Eubothrium crassum |
50/11 | 22.0 (11.5–36.0) | 47 | 1–15 | 4.3 (4.7) | A. simplex, A. pegreffii, Hysterothylacium aduncum | ||
7 | cod (G. morhua) | 10/2 | 20.0 (2.5–55.6) | 7 | 1–5 | 3.5 (2.1) | Nybelinia surmenicola |
10/4 | 40.0 (12.1–73.8) | 50 | 1–19 | 12.5 (7.4) | A. simplex, A. pegreffii | ||
10/1 | 10.0 (0.2–44.5) | 240 | 240 | - | Echinorhynchus gadi | ||
8 | blue whiting (M. poutassou) | 59/52 | 88.1 (77.1–95.1) | 1178 | 3–151 | 22.7 (27.4) | A. simplex, A. pegreffii, H. aduncum |
9 | smelt (O. eperlanus) | 44/3 | 6.8 (1.4–18.7) | 3 | 1–1 | 1.0 (0.0) | Pseudoterranova decipiens |
10 | haddock (M. aeglefinus) | 20/3 | 15.0 (3.2–37.9) | 6 | 1–3 | 2.0 (1.0) | H. aduncum, A. simplex |
11 | amberjack (S. quinqueradiata) | 32/4 | 12.5 (3.5–29.0) | 7 | 1–2 | 1.8 (0.5) | A. simplex |
12 | greenling (H. stelleri) | 35/34 | 97.1 (85.1–99.9) | 2819 | 24–232 | 82.9 (58.1) | A. simplex, A. pegreffii |
35/12 | 34.3 (19.1–52.2) | 320 | 4–86 | 26.7 (23.3) | Nybelinia surmenicola | ||
13 | sprat (C. cultriventris) | 76/- | - | - | - | - | - |
14 | sea bass (D. labrax) | 20/- | - | - | - | - | - |
15 | dorado (S. aurata) | 22/- | - | - | - | - | - |
16 | sole (S. solea) | 10/- | - | - | - | - | - |
17 | grouper (S. babcocki) | 15/5 | 33.3 (11.8–61.6) | 38 | 3–16 | 7.6 (5.3) | Anisakis simplex |
18 | pink salmon (O. gorbuscha) | 4/3 | 75.0 (19.4–99.4) | 32 | 2–26 | 10.7 (11.4) | Anisakis simplex |
19 | salmon (S. salar) | 7/- | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smagulova, A.; Bulashev, A.; Jazina, K.; Uakhit, R.; Lider, L.; Bekenova, A.; Valeeva, D.; Kiyan, V. Foodborne Helminths in Imported Fish: Molecular Evidence from Fish Products in the Kazakhstan Market. Foods 2025, 14, 3466. https://doi.org/10.3390/foods14203466
Smagulova A, Bulashev A, Jazina K, Uakhit R, Lider L, Bekenova A, Valeeva D, Kiyan V. Foodborne Helminths in Imported Fish: Molecular Evidence from Fish Products in the Kazakhstan Market. Foods. 2025; 14(20):3466. https://doi.org/10.3390/foods14203466
Chicago/Turabian StyleSmagulova, Ainura, Aitbay Bulashev, Karina Jazina, Rabiga Uakhit, Lyudmila Lider, Aiganym Bekenova, Dana Valeeva, and Vladimir Kiyan. 2025. "Foodborne Helminths in Imported Fish: Molecular Evidence from Fish Products in the Kazakhstan Market" Foods 14, no. 20: 3466. https://doi.org/10.3390/foods14203466
APA StyleSmagulova, A., Bulashev, A., Jazina, K., Uakhit, R., Lider, L., Bekenova, A., Valeeva, D., & Kiyan, V. (2025). Foodborne Helminths in Imported Fish: Molecular Evidence from Fish Products in the Kazakhstan Market. Foods, 14(20), 3466. https://doi.org/10.3390/foods14203466