The Fatty Acid Content, Health Lipid Indices, and Instrumental, Histological, and Sensory Quality of Hare Meat (Lepus europaeus Pallas)
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Animals
2.2. Chemical Properties of Hare Meat
2.3. The Fatty Acids Analysis
2.4. Calculation of Health Lipid Indices
2.5. The Instrumental, Histological, and Sensory Qualities of Hare Meat
2.6. Data Analysis
3. Results
3.1. Chemical Properties
3.2. The Fatty Acids Content
3.3. Health Lipid Indices of Hare Meat
3.4. The Instrumental Assessment of Hare Meat
3.4.1. The Textural Traits
3.4.2. The Color Traits
3.4.3. The Histological Traits of Hare Meat
3.4.4. The Main Categories of the Muscle Tissues in Hares
3.4.5. The Sensory Indicators of Hare Meat
4. Discussion
4.1. Chemical Composition and Health Lipid Indices of Hare Meat
4.1.1. Chemical Properties
4.1.2. The Fatty Acids Content and Health Lipid Indices of Hare Meat
4.2. The Instrumental, Histological, and Sensory Evaluation of Hare Meat
4.2.1. The Textural Indicators of Hare Meat
4.2.2. The Color Indicators of Hare Meat
- Shear force (kg/cm²) is strongly negatively correlated with % MT (−0.83), where more muscle tissue reduces cutting force; connective tissue (CT) (%) (−0.83), where more connective tissue reduces cutting force; and MT/CT (−0.81), where a high ratio of muscle to connective tissue is associated with lower cutting force. It is not significantly correlated with % Collagen (−0.19) or % Proteins (0.09).
- Collagen % has a very strong positive correlation with Proteins % (0.95), where a higher collagen content is associated with more proteins, and the number of muscle fibers (0.91), where a higher number of muscle fibers is associated with more collagen. It shares a weak negative relationship with shear force (−0.19).
- Proteins % is strongly positively correlated with the number of muscle fibers (0.78), where more muscle fibers leads to a higher protein content. It has a weak or medium correlation with other variables such as MT/CT (0.37).
- The number of muscle fibers is strongly positively correlated with % Collagen (0.91) and muscle tissue (MT) (%) (0.78), where more muscle fibers is associated with a greater proportion of muscle tissue. It is strongly negatively correlated with connective tissue (CT) (%) (−0.78), where more muscle fibers is associated with less connective tissue.
- Muscle tissue (MT) (%) is strongly negatively correlated with connective tissue (CT) (%) (−1.00), sharing a perfectly inverse relationship. It is strongly positively correlated with MT/CT (1.00), as this is the ratio of muscle to connective tissues.
- Connective tissue (CT) (%) is perfectly negatively correlated with muscle tissue (MT) (%) (−1.00), where more connective tissue indicates less muscle tissue. It is negatively correlated with MT/CT (−1.00), as a higher MT/CT ratio indicates less connective tissue.
- MT/CT has identical correlations with the variables muscle tissue (MT) (%) and connective tissue (CT) (%), having perfectly opposite relationships with them.
4.3. The Sensory Indicators of Hare Meat
- -
- The color and fibrous appearance have a very strong correlation (0.963), suggesting that as color increases, fibrous appearance also increases.
- -
- The smell and taste have a moderate to strong correlation (0.773), indicating that smell and taste are related.
- -
- The tenderness and succulence have a very strong correlation (0.872), suggesting that as tenderness increases, so does succulence.
- -
- The flavor and tenderness have a strong negative correlation (−0.788), suggesting that as flavor increases, tenderness decreases.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frunză, G.; Ciobanu, M.M.; Murariu, O.C.; Rațu, R.N.; Radu-Rusu, R.-M.; Simeanu, C.; Boișteanu, P.-C. Effect of Gender and Muscle Type on Fatty Acid Profile, Sanogenic Indices, and Instrumental and Sensory Analysis of Flemish Giant Rabbit Meat. Agriculture 2023, 13, 2265. [Google Scholar] [CrossRef]
- Boișteanu, P.B.; Flocea, E.I.; Anchidin, B.G.; Mădescu, B.M.; Matei, M.; Murariu, O.C.; Frunză, G.; Postolache, N.; Ciobanu, M.M. Essential and Toxic Elements Analysis of Wild Boar Tissues from North-Eastern Romania and Health Risk Implications. Front. Sustain. Food Syst. 2024, 8, 1406579. [Google Scholar] [CrossRef]
- Ciobanu, M.M.; Postolache, A.N.; Lipșa, F.D.; Munteanu, M.; Rațu, R.N.; Murariu, O.C.; Boișteanu, P.C. Meat Fatty Acid Composition of Wild Boars Hunted in Romania in Relationship to Gender and Age-Class. Animals 2022, 12, 810. [Google Scholar] [CrossRef] [PubMed]
- Frunză, G.; Murariu, O.C.; Ciobanu, M.-M.; Radu-Rusu, R.-M.; Simeanu, D.; Boișteanu, P.-C. Meat Quality in Rabbit (Oryctolagus cuniculus) and Hare (Lepus europaeus Pallas)—A Nutritional and Technological Perspective. Agriculture 2023, 13, 126. [Google Scholar] [CrossRef]
- Buglione, M.; de Filippo, G.; Conti, P.; Fulgione, D. Eating in an extreme environment: Diet of the European hare (Lepus europaeus) on Vesuvius. Eur. Zool. J. 2022, 89, 1201–1214. [Google Scholar] [CrossRef]
- Vizzarri, F.; Nardoia, M.; Palazzo, M. Effect of dietary Lippia citriodora extract on productive performance and meat quality parameters in hares (Lepus europaeus Pall.). Arch. Anim. Breed. 2014, 57, 20. [Google Scholar] [CrossRef]
- Rigo, N.; Trocino, A.; Poppi, L.; Giacomelli, M.; Grilli, G.; Piccirillo, A. Performance and mortality of farmed hares. Animal 2015, 9, 1025–1031. [Google Scholar] [CrossRef]
- Rødbotten, M.; Kubberød, E.; Lea, P.; Ueland, Ø. A sensory map of the meat universe. Sensory profile of meat from 15 species. Meat Sci. 2004, 68, 137–144. [Google Scholar] [CrossRef]
- Konjevic, D. Hare brown (Lepus europaeus Pallas) and potential in diet of people today. Prof. Work 2007, 9, 288–291. [Google Scholar]
- Valencak, T.G.; Arnold, W.; Tataruch, F.; Ruf, T. High content of polyunsaturated fatty acids in muscle phospholipids of a fast runner, the European brown hare (Lepus europaeus). J. Comp. Physiol. 2003, 173, 695–702. [Google Scholar] [CrossRef]
- Valencak, T.G.; Gamsjäger, L.; Ohrnberger, S.; Culbert, N.J.; Ruf, T. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res. Notes 2015, 8, 273. [Google Scholar] [CrossRef] [PubMed]
- Skrivanko, M.; Hadžiosmanovic, M.; Cvrtila, Z.; Zdolec, N.; Filipovic, I.; Kozacinski, L.; Florijanci´c, T.; Boškovic, I. The hygiene and quality of hare meat (Lepus europaeus Pallas) from Eastern Croatia. Arch. Lebensm. 2008, 59, 180–184. [Google Scholar]
- Mertin, D.; Slamecka, J.; Ondruška, I.; Zaujec, K.; Jurcík, R.; Gašparík, J. Comparison of meat quality between European brown hare and domestic rabbit. Slovak J. Anim. Sci. 2012, 45, 89–95. [Google Scholar]
- Strmiskova, G.; Strmiska, F. Contents of mineral substances in venison. Food/Nahrung 1992, 36, 307–308. [Google Scholar] [CrossRef]
- Trocino, A.; Birolo, M.; Dabbou, S.; Gratta, F.; Rigo, N.; Xiccato, G. Effect of age and gender on carcass traits and meat quality of farmed brown hares. Animal 2018, 9, 864–871. [Google Scholar] [CrossRef]
- Króliczewska, B.; Mista, D.; Korzeniowska, M.; Pecka-Kiełb, E.; Zachwieja, A. Comparative evaluation of the quality and fatty acid profile of meat from brown hares and domestic rabbits offered the same diet. Meat Sci. 2018, 145, 292–299. [Google Scholar] [CrossRef]
- Razmaitė, V.; Šiukščius, A. Effects of Sex and Hunting Season on Carcass and Meat Quality Characteristics of the Brown Hare (Lepus europaeus). Foods 2023, 12, 2369. [Google Scholar] [CrossRef]
- Schai-Braun, S.C.; Kowalczyk, C.; Klansek, E.; Hackländer, K. Estimating sustainable harvest rates for European hare (Lepus Europaeus) populations. Sustainability 2019, 11, 2837. [Google Scholar] [CrossRef]
- Jennings, N.; Smith, R.K.; Hackländer, K.; Harris, S.; White, P.C.L. Variation in demography, condition and dietaryquality of hares Lepus europaeus from high-density and low-density populations. Wildl. Biol. 2006, 12, 179–189. [Google Scholar] [CrossRef]
- Reichlin, T.; Klansek, E.; Hackländer, K. Diet selection by hares (Lepus europaeus) in arable land and its implications for habitat management. Eur. J. Wildl. Res. 2006, 52, 109–118. [Google Scholar] [CrossRef]
- Petrovan, S.O.; Ward, A.I.; Wheeler, P.M. Habitat selection guiding agri-environmental schemes for a farmland specialist, the brown hare. Anim. Conserv. 2013, 16, 344–352. [Google Scholar] [CrossRef]
- Gryz, J.; Krauze-Gryz, D. Why Did Brown Hare Lepus europaeus Disappear from Some Areas in Central Poland? Diversity 2022, 14, 465. [Google Scholar] [CrossRef]
- Viviano, A.; Mori, E.; Fattorini, N.; Mazza, G.; Lazzeri, L.; Panichi, A.; Strianese, L.; Mohamed, W.F. Spatiotemporal overlap between the European brown hare and its potential predators and competitors. Animals 2021, 11, 562. [Google Scholar] [CrossRef] [PubMed]
- Petelis, K.; Brazaitis, G. The European hare (Lepus europaeus Pallas) population in Lithuania: The status and causes of abundance change. Acta Biol. 2009, 9, 299–304. [Google Scholar]
- Vicenti, A.; Ragni, M.; di Summa, A.; Marsico, G.; Vonghia, G. Influence of feeds and rearing system on the productive performances and the chemical and fatty acid composition of hare meat. Food Sci. Technol. Int. 2003, 9, 279–284. [Google Scholar] [CrossRef]
- Bock, A. Lepus europaeus (Lagomorpha: Leporidae). Mamm. Species 2020, 52, 125–142. [Google Scholar] [CrossRef]
- Ruf, T.; Valencak, T.; Tataruch, F.; Arnold, W. Running Speed in Mammals Increases with Muscle n-6 Polyunsaturated Fatty Acid Content. PLoS ONE 2006, 1, e65. [Google Scholar] [CrossRef]
- García-Abad, C.S.; De La Varga, M.E.A.; Valle, C.D.; Lacasa, V.R.G. An approach to the statistics of wild lagomorph captive rearing for releasing purposes in Spain. World Rabbit Sci. 2012, 20, 49–56. [Google Scholar]
- Kelava Ugarković, N.; Bedeković, D.; Greiner, K.; Fabijanić, N.; Prpić, Z.; Konjačić, M. Carcass Characteristics and Meat Quality of Wild-Living Mallard (Anas platyrhynchos L.) Originating from Croatia. Foods 2024, 13, 1519. [Google Scholar] [CrossRef]
- Papadomichelakis, G.; Zoidis, E.; Pappas, A.C.; Hadjigeorgiou, I. Seasonal variations in the fatty acid composition of Greek wild rabbit meat. Meat Sci. 2017, 134, 158–162. [Google Scholar] [CrossRef]
- FAO Stat. Available online: https://www.fao.org/faostat/en/#home (accessed on 27 March 2024).
- The Minister of Environment, Water and Forests. Available online: https://www.mmediu.ro/articol/ordinul-ministrului-mediului-apelor-si-padurilor-nr-1571-07-06-2022-privind-aprobarea-cotelor-de-recolta-pentru-unele-specii-de-fauna-de-interes-cinegetic-la-care-vanatoarea-este-permisa-pentru-perioada-iunie-2022-14-mai-2023-precum-si-a-anexelor-1-6-ale-a/5244 (accessed on 1 June 2024).
- Stroh, G. Zwei sichere Altersmerkmale beim Hasen. Berliner. Tierärztl. Wschr. 1931, 47, 180–181. [Google Scholar]
- Prevolnik, M.; Čandek Potokar, M.; Škorjanc, D. Ability of NIR spectroscopy to predict meat chemical composition and quality—A review. Czech J. Anim. Sci. 2004, 49, 500–510. [Google Scholar] [CrossRef]
- Pla, M.; Hernández, P.; Ariño, B.; Ramírez, J.A.; Díaz, I. Prediction of fatty acid content in rabbit meat and discrimination between conventional and organic production systems by NIRS methodology. Food Chem. 2007, 1, 165–170. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, Y.; Xiao, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in physicochemical and nutritional properties of breast and thigh meat from crossbred chickens, commercial broilers and spent hens. Asian-Australas. J. Anim. Sci. 2016, 29, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Timmons, J.S.; Weiss, W.P.; Palmquist, D.L.; Harper, W.J. Relationships among dietary roasted soybeans, milk components, and spontaneous oxidized flavor of milk. J. Dairy Sci. 2001, 84, 2440–2449. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandez, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; De La Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food. Chem. 2007, 9, 107–112. [Google Scholar] [CrossRef]
- Mierliță, D.; Pop, I.M.; Lup, F.; Simeanu, D.; Vicas, S.I.; Simeanu, C. The Fatty Acids Composition and Health Lipid Indices in the Sheep Raw Milk Under a Pasture-Based Dairy System. Rev. Chim. 2018, 69, 160–165. [Google Scholar] [CrossRef]
- Struți, D.I.; Mierliță, D.; Simeanu, D.; Pop, I.M.; Socol, C.T.; Papuc, T.; Macri, A.M. The effect of dehulling lupine seeds (Lupinus albus l.) from low-alkaloid varieties on the chemical composition and fatty acids content. Rev. Chim. 2020, 71, 59–70. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.; Sallam, K.I.; Zaki, H.M. Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality, and sensory attributes. Meat Sci. 2021, 181, 108612. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Cartoni Mancinelli, A.; Vaudo, G.; Cavallo, M.; Castellini, C.; Mattioli, S. Indexing of Fatty Acids in Poultry Meat for Its Characterization in Healthy Human Nutrition: A Comprehensive Application of the Scientific Literature and New Proposals. Nutrients 2022, 14, 3110. [Google Scholar] [CrossRef] [PubMed]
- Murariu, O.C.; Murariu, F.; Frunză, G.; Ciobanu, M.M.; Boișteanu, P.C. Fatty Acid Indices and the Nutritional Properties of Karakul Sheep Meat. Nutrients 2023, 15, 1061. [Google Scholar] [CrossRef] [PubMed]
- Wereńska, M.; Haraf, G.; Wołoszyn, J.; Goluch, Z.; Okruszek, A.; Teleszko, M. Fatty acid profile and health lipid indicies of goose meat in relation to various types of heat treatment. Poult. Sci. 2021, 100, 101237. [Google Scholar] [CrossRef] [PubMed]
- Ariño, B.; Hernández, P.; Pla, M.; Blasco, A. Comparison between rabbit lines for sensory meat quality. Meat Sci. 2007, 75, 494–498. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Cavallo, M.; Menchetti, L.; Angelucci, E.; Cartoni Mancinelli, A.; Vaudo, G.; Marconi, S.; Camilli, E.; Galli, F.; Castellini, C.; et al. The Healthy Fatty Index Allows for Deeper Insights into the Lipid Composition of Foods of Animal Origin When Compared with the Atherogenic and Thrombogenicity Indexes. Foods 2024, 13, 1568. [Google Scholar] [CrossRef]
- Carpenè, E.; Andreani, G.; Ferlizza, E.; Menotta, S.; Fedrizzi, G.; Isani, G. Trace Elements in Home-Processed Food Obtained from Unconventional Animals. Life 2020, 10, 75. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Szendro, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Alves dos Santos, J.J.; Fonseca Pascoal, L.A.; Brandão Grisi, C.V.; Costa Santos, V.; Santana Neto, D.C.; Filho, J.J.; Ferreira Herminio, M.P.; Fabricio Dantas, A. Soybean oil and selenium yeast levels in the diet of rabbits on performance, fatty acid profile, enzyme activity and oxidative stability of meat. Livest. Sci. 2022, 263, 105021. [Google Scholar] [CrossRef]
- Bouzaida, M.D.; Resconi, V.C.; Gimeno, D.; Romero, J.V.; Calanche, J.B.; Barahona, M.; Olleta, J.L.; María, G.A. Effect of Dietary Grape Pomace on Fattening Rabbit Performance, Fatty Acid Composition, and Shelf Life of Meat. Antioxidants 2021, 10, 795. [Google Scholar] [CrossRef]
- Guedes, C.M.; Almeida, M.; Closson, M.; Garcia-Santos, S.; Lorenzo, J.M.; Domínguez, R.; Ferreira, L.; Trindade, H.; Silva, S.; Pinheiro, V. Effect of Total Replacement of Soya Bean Meal by Whole Lupine Seeds and of Gender on the Meat Quality and Fatty Acids Profile of Growing Rabbits. Foods 2022, 11, 2411. [Google Scholar] [CrossRef]
- Hernandez, P.; Cesari, V.; Blasco, A. Effect of genetic rabbit lines on lipid content, lipolytic activities and fatty acid composition of hind leg meat and perirenal fat. Meat Sci. 2008, 78, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Needham, T.; Bureš, D.; Černý, J.; Hoffman, L.C. Overview of game meat utilisation challenges and opportunities: A European perspective. Meat Sci. 2023, 204, 109284. [Google Scholar] [CrossRef] [PubMed]
- European Federation of Associations for Hunting (FACE). FACE Annual Report 2021. 2021. Available online: https://www.face.eu/about-face/ (accessed on 1 June 2024).
- Rikimaru, K.; Takahashi, H. Evaluation of the meat from Hinaijidori chickens and broilers: Analysis of general biochemical components, free amino acids, inosine 5′-monophosphate, and fatty acids. J. Appl. Poult. Res. 2010, 19, 327–333. [Google Scholar] [CrossRef]
- Banskalieva, V.; Sahlu, T.; Goetsch, A. Fatty acid composition of goat muscles and fat depots: A review. Small Rumin. Res. 2000, 37, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.E.; Vasconcelos, M.A.D.S.; De Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B.D.M. Nutritional and Lipid Profiles in Marine Fish Species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Kumar, S.A.; Kim, H.J.; Jayasena, D.D.; Jo, C. On-Farm and Processing Factors Affecting Rabbit Carcass and Meat Quality Attributes. Food Sci. Anim. Res. 2023, 43, 197–219. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mugnai, C.; Roscini, V.; Mattioli, S.; Ruggeri, S.; Castellini, C. Effect of Dietary Alfalfa on the Fatty Acid Composition and Indexes of Lipid Metabolism of Rabbit Meat. Meat Sci. 2014, 96, 606–609. [Google Scholar] [CrossRef]
- Dabbou, S.; Gai, F.; Renna, M.; Rotolo, L.; Dabbou, S.; Lussiana, C.; Kovitvadhi, A.; Brugiapaglia, A.; De Marco, M.; Helal, A.N.; et al. Inclusion of bilberry pomace in rabbit diets: Effects on carcass characteristics and meat quality. Meat Sci. 2017, 124, 77–83. [Google Scholar] [CrossRef]
- D’Agata, M.; Preziuso, G.; Russo, C.; Dalle Zotte, A.; Mourvaki, E.; Paci, G. Effect of an outdoor rearing system on the welfare, growth performance, carcass and meat quality of a slow-growing rabbit population. Meat Sci. 2009, 83, 691–696. [Google Scholar] [CrossRef]
- Rasinska, E.; Czarniecka-Skubina, E.; Rutkowska, J. Fatty acid and lipid contents differentiation in cuts of rabbit meat. CyTA J. Food 2018, 16, 807–813. [Google Scholar] [CrossRef]
- Hoffman, L.C.; van Schalkwyk, D.L.; Muller, M.; Needham, T.; McMillin, K.W. Carcass Yields and Physical-Chemical Meat Quality Characteristics of Namibian Red Hartebeest (Alcelaphus buselaphus) as Influenced by Sex and Muscle. Foods 2021, 10, 2347. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, M.M.; Munteanu, M.; Postolache, A.N.; Boișteanu, P.C. Toxic heavy metals content in wild boar and venison meat: A brief review. Sci. Pap. Ser. D Anim. Sci. 2020, LXIII, 435–441. [Google Scholar]
- Hernández, P.; Zotte, A.D. Influence of diet on rabbit meat quality. In Nutrition of the Rabbit; de Blas, C., Wiseman, J., Eds.; CABI: Wallingford, UK, 2010; pp. 163–178. [Google Scholar]
- Dalle Zotte, A. Perception of Rabbit Meat Quality and Major Factors Influencing the Rabbit Carcass and Meat Quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Willett, W.C. Dietary fats and coronary heart disease. J. Intern. Med. 2012, 272, 13–24. [Google Scholar] [CrossRef]
- Brukało, K.M.; Nowak, J.; Pietrzykowska, A.; Fras, N.; Ožbolt, P.; Kowalski, O.; Blenkuš, M.G. Public food procurement as a tool of sustainable food and nutrition policy—Fat products. Front. Sustain. Food Syst. 2024, 8, 1265745. [Google Scholar] [CrossRef]
- Lescinsky, H.; Afshin, A.; Ashbaugh, C.; Bisignano, C.; Brauer, M.; Ferrara, G.; Hay, S.I.; He, J.; Iannucci, V.; Marczak, L.B. Health effects associated with consumption of unprocessed red meat: A Burden of Proof study. Nat. Med. 2022, 28, 2075–2082. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Grosso, G. Role of food processing on human health and current limitations. Int. J. Food Sci. Nutr. 2023, 74, 1–2. [Google Scholar] [CrossRef]
- Liu, H.W.; Gai, F.; Gasco, L.; Brugiapaglia, A.; Lussiana, C.; Guo, K.J.; Tong, J.M.; Zaccarato, I. Effects of chestnut tannins on carcass characteristics, meat quality, lipid oxidation and fatty acid composition of rabbits. Meat Sci. 2009, 83, 678–683. [Google Scholar] [CrossRef]
- Capra, G.; Martínez, R.; Fradiletti, F.; Cozzano, S.; Repiso, L.; Márquez, R.; Ibáñez, F. Meat quality of rabbits reared with two different feeding strategies: With or without fresh alfalfa ad libitum. World Rabbit. Sci. 2013, 21, 23–32. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Gerencsér, Z.; Szendrő, Z.; Mugnai, C.; Cullere, M.; Kovàcs, M.; Ruggeri, S.; Mattioli, S.; Castellini, C.; Dalle Zotte, A. Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on rabbit meat appearance, oxidative stability and fatty acid profile during retail display. Meat Sci. 2014, 96, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Dal Bosco, A.; Castellini, C.; Martino, M.; Mattioli, S.; Marconi, O.; Sileoni, V.; Ruggeri, S.; Tei, F.; Benincasa, P. The effect of dietary alfalfa and flax sprouts on rabbit meat antioxidant content, lipid oxidation and fatty acid composition. Meat Sci. 2015, 106, 31–37. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Vale, M.I.; Cruz, M.; Bolsoni-Lopes, A.; Sa Paula de Andrade, R. Palmitoleic Acid (C16:1n7) Treatment Enhances Fatty Acid Oxidation and Oxygen Consumption in White Adipocytes. Biochem. Mol. Biol. 2015, 29, 884.25. [Google Scholar] [CrossRef]
- Betz, I.R.; Qaiyumi, S.J.; Goeritzer, M.; Thiele, A.; Brix, S.; Beyhoff, N.; Grune, J.; Klopfleisch, R.; Greulich, F.; Uhlenhaut, N.H.; et al. Cardioprotective Effects of Palmitoleic Acid (C16:1n7) in a Mouse Model of Catecholamine-Induced Cardiac Damage Are Mediated by PPAR Activation. Int. J. Mol. Sci. 2021, 22, 12695. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Trocchi, V.; Riga, F. I Lagomorfi in Italia. Linee guida per la conservazione e la gestione. Min. Politiche Agric. For.–Ist. Naz. Fauna Selvatica Doc. Tec. 2005, 25, 1–128. [Google Scholar]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Werenska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef]
- Dal Bosco, A.D.; Castellini, C.; Bernardini, M. Nutritional quality of rabbit meat as affected by cooking procedure and dietary vitamin. Eur. J. Food Sci. 2001, 66, 1047–1051. [Google Scholar] [CrossRef]
- Puerto, M.; Cabrera, M.C.; Saadoun, A. A note of fatty acids profile of meat from broiler chickens supplemented with inorganic or organic selenium. Int. J. Food Sci. 2017, 2017, 7613069. [Google Scholar] [CrossRef]
- Skiepko, N.; Chwastowska-Siwecka, I.; Kondratowicz, J.; Mikulski, D. Fatty acid profile, total cholesterol, vitamin content TBARS value of Turkey breast muscle cured with the addition lycopene. Poult. Sci. 2016, 95, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Hugo, A.; Strydom, P.E.; Muchenje, V. Fatty acid composition of beef from Nguni Steers supplemented with Acacia karroo leaf-meal. J. Food Compos. Anal. 2011, 24, 523–528. [Google Scholar] [CrossRef]
- Kasprzyk, A.; Tyra, M.; Babicz, M. Fatty acid profile of pork from a local and a commercial breed. Arch. Anim. Breed. 2015, 58, 379–385. [Google Scholar] [CrossRef]
- Margetín, M.; Apolen, D.; Oravcová, M.; Vavrišínová, K.L.A.; Peškovičová, D.; Luptáková, L.; Krupová, Z.; Bučko, O.; Blaško, J. Fatty acids profile of intramuscular fat in light lambs traditionally and artificially reared. J. Cent. Eur. Agric. 2014, 15, 117–129. [Google Scholar] [CrossRef]
Sensory Traits | Granted Scoring (Points) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Color | Extremely Pale | Pale | Pale red | Red | Intense red |
Fibrous appearance | Weakly highlighted | Lightly highlighted | Medium highlighted | Distinctly highlighted | Strongly highlighted |
Smell/rabbit odor | Imperceptible | Weakly perceptible | Medium perceptible | Distinct perceptible | Very Perceptible |
Taste | Slightly unpleasant | No taste | Tasty enough | Tasty | Very tasty |
Flavor | Slightly unpleasant | No flavor | Pleasant | Very pleasant | Extremely pleasant |
Intensity of the flavor | Undetectable | Not enough flavor | Sufficiently pleasant | Pleasant and strong | Intense pleasant |
Succulence | Dry | Insufficiently juicy | Sufficiently juicy | Juicy | Very juicy |
Tenderness | Very stiff | Slightly stiff | Sufficiently soft | Soft | Very soft |
Overall assessment | Unacceptable | Acceptable | Good | Very good | Exceptional |
Chemical Components | Muscles | Gender | Mean ± SEM | V% | p Value | |
---|---|---|---|---|---|---|
Lipids | LD | M | 1.52 | 0.13 | 10.69 | 0.1923 n.s. |
F | 1.78 | 0.34 | 13.56 | |||
SM | M | 1.81 | 0.13 | 11.12 | 0.9117 n.s. | |
F | 2.03 | 0.09 | 6.08 | |||
Proteins | LD | M | 21.67 | 0.05 | 0.71 | 0.0863 ns |
F | 21.56 | 0.09 | 0.79 | |||
SM | M | 21.64 | 0.06 | 0.43 | 0.0651 ns | |
F | 21.62 | 0.04 | 0.39 | |||
Collagen | LD | M | 4.26 | 0.12 | 1.51 | 0.1771 ns |
F | 4.16 | 0.06 | 0.76 | |||
SM | M | 4.32 | 0.08 | 0.64 | 0.3154 ns | |
F | 4.28 | 0.07 | 0.89 |
Fatty Acids | M/F * | LD | SM | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SEM | V% | p-Value | Mean ± SEM | V% | p-Value | |||||
SFA | C14:0 | M | 3.09 | 0.09 | 11.71 | 0.088 ns | 1.13 | 0.04 | 15.4 | 0.239 ns |
F | 1.22 | 0.04 | 14.15 | 1.21 | 0.04 | 14.22 | ||||
C15:0 | M | 8.93 | 0.15 | 6.57 | 0.098 ns | 7.97 | 0.19 | 9.47 | 0.003 ** | |
F | 8.04 | 0.16 | 8.33 | 7.03 | 0.20 | 12.28 | ||||
C16:0 | M | 322.87 | 10.75 | 12.9 | 0.588 ns | 314.46 | 6.47 | 7.97 | 0.018 * | |
F | 338.98 | 5.74 | 7.18 | 280.13 | 8.03 | 12.16 | ||||
C17:0 | M | 21.23 | 0.78 | 14.15 | 0.078 ns | 18.89 | 0.74 | 15.13 | 3 × 10−4 *** | |
F | 16.91 | 0.33 | 8.29 | 14.06 | 0.39 | 11.63 | ||||
C18:0 | M | 118.13 | 3.39 | 11.13 | 0.028 * | 107.06 | 2.69 | 9.72 | 0.002 ** | |
F | 100.04 | 1.57 | 6.67 | 92.11 | 2.40 | 11.04 | ||||
MUFA | C16:1n-7 | M | 1.05 | 0.02 | 8.45 | 0.092 ns | 2.66 | 0.08 | 12.11 | 0.148 ns |
F | 0.96 | 0.02 | 9.06 | 2.48 | 0.08 | 13.21 | ||||
C18:1n-7 | M | 26.95 | 0.50 | 7.16 | 0.087 * | 26.87 | 0.79 | 11.36 | 0.076 ns | |
F | 23.76 | 0.49 | 8.69 | 21.96 | 0.63 | 12.24 | ||||
C18:1n-9 | M | 353.12 | 10.54 | 11.56 | 0.074 ns | 308.08 | 7.29 | 9.16 | 0.003 ** | |
F | 279.26 | 5.98 | 9.09 | 240.97 | 6.83 | 12.02 | ||||
PUFA | C18:2n-6 | M | 592.93 | 21.63 | 14.13 | 0.072 ns | 557.02 | 24.08 | 16.74 | 3 × 10−5 *** |
F | 502.04 | 9.51 | 8.04 | 414.16 | 8.52 | 8.73 | ||||
C18:3n-3 | M | 53.16 | 2.51 | 18.31 | 0.252 ns | 50.24 | 1.21 | 9.32 | 2 × 10−5 *** | |
F | 44.79 | 0.95 | 9.02 | 35.67 | 1.05 | 12.46 | ||||
C20:2n-6 | M | 10.14 | 0.25 | 9.66 | 0.228 n.s | 8.86 | 0.17 | 7.63 | 0.003 ** | |
F | 9.06 | 0.18 | 8.41 | 8.14 | 0.27 | 14.16 | ||||
C20:3n-6 | M | 1.87 | 0.09 | 19.62 | 5 × 10−3 *** | 1.77 | 0.05 | 11.87 | 0.004 ** | |
F | 1.98 | 0.10 | 21.18 | 1.13 | 0.03 | 12.75 | ||||
C20:4n-6 | M | 63.28 | 3.23 | 19.78 | 0.005 ** | 61.27 | 2.24 | 14.18 | 0.217 ns | |
F | 67.35 | 2.21 | 13.94 | 63.54 | 1.79 | 11.95 | ||||
C20:5n-3 | M | 4.12 | 0.16 | 15.22 | 0.008 ** | 3.12 | 0.15 | 18.35 | 0.875 ns | |
F | 2.89 | 0.12 | 17.58 | 3.18 | 0.14 | 18.09 | ||||
C22:4n-6 | M | 17.76 | 0.92 | 20.03 | 0.375 ns | 17.96 | 0.62 | 13.32 | 0.236 ns | |
F | 17.63 | 0.87 | 20.86 | 17.72 | 0.54 | 12.82 | ||||
C22:5n-3 | M | 22.14 | 1.25 | 21.85 | 3 × 10−6 *** | 21.22 | 0.89 | 16.24 | 0.778 ns | |
F | 25.02 | 1.29 | 21.82 | 21.46 | 0.85 | 16.81 | ||||
C22:6n-3 | M | 42.63 | 2.15 | 19.53 | 0.214 ns | 38.44 | 1.35 | 13.65 | 0.094 ns | |
F | 46.55 | 2.39 | 21.76 | 40.39 | 1.19 | 12.54 |
Health Lipid Parameters | Gender | Mean LD | p Value | Mean SM | p Value | Mean/Gender | Mean/Meat |
---|---|---|---|---|---|---|---|
Total SFAs | M | 474.25 | 0.201 ns | 449.51 | 0.01 ** | 461.88 | 445.87 |
F | 465.19 | 394.54 | 429.87 | ||||
Total MUFAs | M | 381.12 | <0.001 *** | 337.61 | 0.005 ** | 359.37 | 322.03 |
F | 303.98 | 265.41 | 284.70 | ||||
Total PUFAs | M | 808.03 | * 0.05 | 759.90 | 0.001 *** | 783.97 | 722.66 |
F | 717.31 | 605.39 | 661.35 | ||||
ΣPUFA n-6 | M | 685.98 | 0.30 ns | 646.88 | 0.005 ** | 666.43 | 608.90 |
F | 598.06 | 504.69 | 551.38 | ||||
Σ PUFA n-3 | M | 122.05 | 0.65 ns | 113.02 | 0.30 ns | 117.54 | 113.76 |
F | 119.25 | 100.70 | 109.98 | ||||
ΣPUFAn6/n3 | M | 5.62 | 0.80 ns | 5.72 | 0.25 ns | 5.67 | 5.34 |
F | 5.02 | 5.01 | 5.01 | ||||
ΣPUFA/ΣSFA | M | 1.70 | 0.85 ns | 1.69 | 0.08 ns | 1.70 | 1.62 |
F | 1.54 | 1.53 | 1.54 | ||||
PI | M | 6.99 | 0.07 ns | 6.58 | 0.01 ** | 6.78 | 6.09 |
F | 5.92 | 4.95 | 5.39 | ||||
DFAs | M | 1307.28 | 0.05 * | 1204.57 | *** <001 | 1255.93 | 1149.02 |
F | 1121.33 | 962.91 | 1042.12 | ||||
%DFA | M | 78.59 | 0.70 ns | 77.86 | 0.33 ns | 78.23 | 77.00 |
F | 75.44 | 76.10 | 75.77 | ||||
AI | M | 0.81 | 0.01 ** | 0.76 | <0.001 ** | 0.79 | 0.72 |
F | 0.72 | 0.61 | 0.66 | ||||
TI | M | 0.77 | 0.17 ns | 0.72 | 0.26 ns | 0.75 | 0.71 |
F | 0.72 | 0.61 | 0.66 | ||||
h/H | M | 3.64 | 0.54 ns | 3.47 | 0.19 ns | 3.56 | 3.30 |
F | 3.00 | 3.09 | 3.04 | ||||
NVI | M | 1.54 | 0.37 ns | 1.41 | 0.31 ns | 1.47 | 1.35 |
F | 1.19 | 1.27 | 1.23 | ||||
Total fatty acids | M | 1663.40 | 0.02 ** | 1547.02 | 0.001 *** | 1605.21 | 1490.56 |
F | 1486.48 | 1265.34 | 1375.91 | ||||
EFAs | M | 709.37 | 0.25 ns | 668.53 | 0.005 ns | 688.95 | 626.36 |
F | 614.18 | 513.37 | 563.775 | ||||
%EFA | M | 42.65 | 0.85 ns | 43.21 | 0.30 ** | 42.93 | 41.94 |
F | 41.32 | 40.57 | 40.94 |
Muscles | Texture Indicators | Gender | Mean ± SEM | V% | p Value | |
---|---|---|---|---|---|---|
LD | Shear force (kg/cm2) | F | 2.01 | 0.06 | 13.59 | 0.000119 *** |
M | 2.72 | 0.09 | 12.54 | |||
Firmness (kg/s × cm2) | F | 0.92 | 0.02 | 11.46 | 0.02998231 * | |
M | 1.17 | 0.05 | 16.88 | |||
Area (kg × s/cm2) | F | 3.95 | 0.13 | 14.48 | 0.125237 ns | |
M | 4.69 | 0.16 | 13.54 | |||
SM | Shear force (kg/cm2) | F | 4.32 | 0.15 | 14.53 | 9.07919 × 10−5 *** |
M | 3.29 | 0.11 | 12.85 | |||
Firmness (kg/s × cm2) | F | 1.54 | 0.04 | 11.87 | 0.036043 * | |
M | 1.16 | 0.05 | 16.43 | |||
Area (kg × s/cm2) | F | 8.82 | 0.32 | 15.31 | 0.012539 * | |
M | 5.45 | 0.19 | 13.48 |
Muscles | Color Traits | Gender | Mean ± SEM | V% | p Value | |
---|---|---|---|---|---|---|
LD | L* | F | 28.55 | 0.86 | 12.72 | 0.232500 ns |
M | 28.94 | 0.94 | 12.59 | |||
a* | F | 13.58 | 0.40 | 12.65 | 0.000111 *** | |
M | 12.71 | 0.47 | 14.19 | |||
b* | F | 12.77 | 0.51 | 16.86 | 0.109003 ns | |
M | 13.28 | 0.50 | 14.53 | |||
SM | L* | F | 32.11 | 1.24 | 16.38 | 0.089606 ns |
M | 31.38 | 1.22 | 15.07 | |||
a* | F | 6.84 | 0.30 | 18.83 | 0.382903 ns | |
M | 6.41 | 0.22 | 13.46 | |||
b* | F | 10.02 | 0.28 | 12.03 | 0.506321 ns | |
M | 9.75 | 0.38 | 15.24 |
Muscles | Histological Indicators | Gender | Mean | SEM | V% | p Value |
---|---|---|---|---|---|---|
LD | Large diameter (μ) | F | 55.90 | 8.90 | 9.20 | 0.4235 ns |
M | 57.33 | 12.89 | 11.15 | |||
Small diameter (μ) | F | 20.28 | 3.50 | 10.10 | 0.8903 ns | |
M | 21.16 | 1.98 | 15.91 | |||
Mean diameter (μ) | F | 46.69 | 4.31 | 8.30 | 0.8819 ns | |
M | 49.25 | 7.44 | 22.52 | |||
Ratio BD/sD (μ) | F | 1.97 | 4.30 | 7.90 | 0.8038 ns | |
M | 2.71 | 6.52 | 0.74 | |||
Muscular fibers area (µ2) | F | 1425.29 | 2.70 | 17.41 | 0.2357 ns | |
M | 1547.10 | 9.40 | 9.12 | |||
Cross-sectional area (µ2) | F | 1,276,314.00 | 21.12 | 10.26 | 0.0613 ns | |
M | 2,321,564.00 | 27.12 | 14.33 | |||
SM | Large diameter (μ) | F | 69.7 | 13.5 | 7.5 | 0.0546 ns |
M | 71.34 | 13.56 | 9.21 | |||
Small diameter (μ) | F | 32.18 | 1.3 | 7.42 | 0.3758 ns | |
M | 34.28 | 2.2 | 14.62 | |||
Mean diameter (μ) | F | 40.39 | 2.4 | 5.19 | 0.8038 ns | |
M | 40.81 | 7.88 | 11.91 | |||
Ratio BD/sD (μ) | F | 3.92 | 2.3 | 1.31 | 0.0131 ns | |
M | 4.3 | 6.15 | 0.27 | |||
Muscular fibers area (µ2) | F | 945.56 | 3.51 | 2.38 | 0.7726 ns | |
M | 989.42 | 2.74 | 3.12 | |||
Cross-sectional area (µ2) | F | 756,432 | 1.14 | 3.75 | 0.5298 ns | |
M | 805,306 | 16.01 | 4.16 |
Muscles/ Gender | Muscle Fiber Number | p | Density | p | Muscle Tissue (MT) (%) | p | Connective Tissue (CT) (%) | p | MT/CT | p |
---|---|---|---|---|---|---|---|---|---|---|
LD/F | 105.00 | 0.4235 ns | 256.00 | 0.001 *** | 69.40 | 0.6543 ns | 30.61 | 0.6543 ns | 2.27 | 0.8765ns |
LD/M | 115.00 | 257.00 | 71.01 | 28.99 | 2.45 | |||||
SM/F | 99.00 | 0.5123 ns | 289.00 | 0.8765 ns | 63.82 | 0.7542 ns | 36.18 | 0.7542 ns | 1.76 | 0.9123ns |
SM/M | 107.00 | 263.00 | 64.92 | 35.08 | 1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frunză, G.; Ciobanu, M.-M.; Murariu, O.C.; Radu-Rusu, R.-M.; Boișteanu, P.-C. The Fatty Acid Content, Health Lipid Indices, and Instrumental, Histological, and Sensory Quality of Hare Meat (Lepus europaeus Pallas). Foods 2025, 14, 310. https://doi.org/10.3390/foods14020310
Frunză G, Ciobanu M-M, Murariu OC, Radu-Rusu R-M, Boișteanu P-C. The Fatty Acid Content, Health Lipid Indices, and Instrumental, Histological, and Sensory Quality of Hare Meat (Lepus europaeus Pallas). Foods. 2025; 14(2):310. https://doi.org/10.3390/foods14020310
Chicago/Turabian StyleFrunză, Gabriela, Marius-Mihai Ciobanu, Otilia Cristina Murariu, Răzvan-Mihail Radu-Rusu, and Paul-Corneliu Boișteanu. 2025. "The Fatty Acid Content, Health Lipid Indices, and Instrumental, Histological, and Sensory Quality of Hare Meat (Lepus europaeus Pallas)" Foods 14, no. 2: 310. https://doi.org/10.3390/foods14020310
APA StyleFrunză, G., Ciobanu, M.-M., Murariu, O. C., Radu-Rusu, R.-M., & Boișteanu, P.-C. (2025). The Fatty Acid Content, Health Lipid Indices, and Instrumental, Histological, and Sensory Quality of Hare Meat (Lepus europaeus Pallas). Foods, 14(2), 310. https://doi.org/10.3390/foods14020310