The Effect of Cumin on the Formation of β-Carboline Heterocyclic Amines in Smoked Meat and Simulated Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Instruments
2.3. Preparation of Cumin Ethanol Extract
2.4. Establishment of β-Carboline HCA-Simulated System
2.5. Determination of Total Phenolic and Total Flavonoid Contents
2.6. Determination of Antioxidant Capacity
2.7. Determination of Free Radicals in the Simulated System
2.8. Determination of β-Carboline HCAs in Smoked Meat Patties
2.8.1. Preparation of the Sample
2.8.2. Solid-Phase Extraction
2.8.3. Determination of β-Carboline HCAs
2.9. Determination of Final β-Carboline HCAs in the Simulated System
2.10. Statistical Analysis
3. Results
3.1. Analysis of Total Phenolic and Total Flavonoid Contents in Cumin Extracts
3.2. Antioxidant Capacity of Cumin Extracts
3.3. Effect of Cumin Extracts on the Formation of β-Carboline HCAs
3.4. Free Radical Scavenging Ability of Cumin Extracts
3.5. Effect of Cumin Powder on the Formation of β-Carboline HCAs in Smoked Meat Patties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanani, P.; Shukla, Y.M.; Modi, A.R.; Subhash, N.; Kumar, S. Standardization of an efficient protocol for isolation of RNA from Cuminum cyminum. J. King Saud. Univ. Sci. 2019, 31, 1202–1207. [Google Scholar] [CrossRef]
- Tannir, H.; Debs, E.; Mansour, G.; Neugart, S.; El Hage, R.; Khalil, M.I.; El Darra, N.; Louka, N. Microbial Decontamination of Cuminum cyminum Seeds Using “Intensification of Vaporization by Decompression to the Vacuum”: Effect on Color Parameters and Essential Oil Profile. Foods 2024, 13, 2264. [Google Scholar] [CrossRef] [PubMed]
- Małgorzata, K.D.; Agnieszka, C.; Iwona, C. Berry fruit juices protect lymphocytes against DNA damage and ROS formation induced with heterocyclic aromatic amine PhIP. J. Berry Res. 2020, 10, 95–113. [Google Scholar]
- Ding, X.; Zhang, D.; Liu, H.; Wang, Z.; Hui, T. Chlorogenic acid and Epicatechin: An efficient inhibitor of heterocyclic amines in charcoal roasted lamb meats. Food Chem. 2022, 368, 130865. [Google Scholar] [CrossRef]
- Jing, J.; He, Y.; Wang, Y.; Zeng, M. Inhibitory effects of Portulaca oleracea L. and selected flavonoid ingredients on heterocyclic amines in roast beef patties and Density Function Theory calculation of binding between heterocyclic amines intermediates and flavonoids. Food Chem. 2021, 336, 127551. [Google Scholar] [CrossRef]
- Dong, H.; Ye, H.; Bai, W.; Zeng, X.; Wu, Q. A comprehensive review of structure-activity relationships and effect mechanisms of polyphenols on heterocyclic aromatic amines formation in thermal-processed food. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70032. [Google Scholar] [CrossRef]
- Xie, Z.; Cao, N.; Wang, C. A review on β-carboline alkaloids and their distribution in foodstuffs: A class of potential functional components or not? Food Chem. 2021, 348, 129067. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Deng, J.; Chen, C.; Xu, B.; Li, P. Effect of quercetin and oil water separation system on formation of β-carboline heterocyclic amines during frying process of braised chicken drumsticks. Curr. Res. Food Sci. 2023, 6, 100406. [Google Scholar] [CrossRef]
- Shen, X.; Chen, Y.; Liu, X.; Qie, X.; Chai, Z.; Zeng, M. Effects and mechanisms of using “clean” smoke particles in the smoking process on the formation of β-carboline heterocyclic amines (β-CHAs) in smoked meat patties. J. Hazard. Mater. 2024, 475, 134843. [Google Scholar] [CrossRef]
- Shen, X.; Chen, Y.; Omedi, J.O.; Oz, E.; Oz, F.; Xiao, C.; Zhou, Y.; Chen, J.; Zeng, M. The Effects of Volatile Organic Compounds (VOCs) on the Formation of Heterocyclic Amines (HAs) in Meat Patties, under Different Smoking Temperatures and Durations. Foods 2022, 11, 3687. [Google Scholar] [CrossRef]
- Quan, W.; Li, Y.; Jiao, Y.; Xue, C.; Liu, G.; Wang, Z.; He, Z.; Qin, F.; Zeng, M.; Chen, J. Simultaneous generation of acrylamide, β-carboline heterocyclic amines and advanced glycation ends products in an aqueous Maillard reaction model system. Food Chem. 2020, 332, 127387. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, W.K.; Ali, A. Ultrasound treatment on phenolic metabolism and antioxidant capacity of fresh-cut pineapple during cold storage. Food Chem. 2017, 216, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdicphosphothungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 147–158. [Google Scholar] [CrossRef]
- Fu, M.; Xu, Y.; Chen, Y.; Wu, J.; Yu, Y.; Zou, B.; An, K.; Xiao, G. Evaluation of bioactive flavonoids and antioxidant activity in Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’) during storage. Food Chem. 2017, 230, 649–656. [Google Scholar] [CrossRef]
- Quan, W.; Qie, X.; Chen, Y.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Effect of milk addition and processing on the antioxidant capacity and phenolic bioaccessibility of coffee by using an in vitro gastrointestinal digestion model. Food Chem. 2020, 308, 125598. [Google Scholar] [CrossRef]
- Garzón, G.A.; Narvaez-Cuenca, C.E.; Vincken, J.P. Polyphenolic composition and antioxidant activity of acai (euterpe oleracea mart.) from Colombia. Food Chem. 2017, 217, 364–372. [Google Scholar] [CrossRef]
- Qie, X.; Chen, Y.; Quan, W.; Wang, Z.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Analysis of β-lactoglobulin-epigallocatechin gallate interactions: The antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic-protein interactions. Food Funct. 2020, 11, 3867–3878. [Google Scholar] [CrossRef]
- Wang, G.; Iradukunda, Y.; Shi, G.; Sanga, P.; Niu, X.; Wu, Z. Hydroxyl, hydroperoxyl free radicals determination methods in atmosphere and troposphere. J. Environ. Sci. 2021, 99, 324–335. [Google Scholar] [CrossRef]
- Chen, J.; He, Z.; Qin, F.; Chen, J.; Zeng, M. Formation of Free and Protein-Bound Heterocyclic Amines in Roast Beef Patties Assessed by UPLC-MS/MS. J. Agric. Food Chem. 2017, 65, 4493–4499. [Google Scholar] [CrossRef]
- Sabally, K.; Sleno, L.; Jauffrit, J.-A.; Iskandar, M.M.; Kubow, S. Inhibitory effects of apple peel polyphenol extract on the formation of heterocyclic amines in pan fried beef patties. Meat Sci. 2016, 117, 57–62. [Google Scholar] [CrossRef]
- Li, Y.; He, J.; Quan, W.; He, Z.; Qin, F.; Tao, G.; Wang, Z.; Zeng, M.; Chen, J. Effects of polyphosphates and sodium chloride on heterocyclic amines in roasted beef patties as revealed by UPLC-MS/MS. Food Chem. 2020, 326, 127016. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, F.; Kamankesh, M.; Mohammadi, A. Heterocyclic aromatic amines in cooked food: A review on formation, health risk-toxicology and their analytical techniques. Food Chem. 2019, 280, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Oguri, A.; Suda, M.; Totsuka, Y.; Sugimura, T.; Wakabayashi, K. Inhibitory effects of antioxidants on formation of heterocyclic amines. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1998, 402, 237–245. [Google Scholar] [CrossRef]
- Oz, F.; Kaya, M. The inhibitory effect of red pepper on heterocyclic aromatic amines in fried beef longissimus dorsi muscle. J. Food Process. Preserv. 2011, 35, 806–812. [Google Scholar] [CrossRef]
- Rebey, I.B.; Zakhama, N.; Karoui, I.J.; Marzouk, B. Polyphenol Composition and Antioxidant Activity of Cumin (Cuminum cyminum L.) Seed Extract Under Drought. J. Food Sci. 2012, 77, C734–C739. [Google Scholar] [CrossRef]
- Hidalgo, F.J.; Zamora, R. Carbonyl Chemistry and the Formation of Heterocyclic Aromatic Amines with the Structure of Aminoimidazoazaarene. J. Agric. Food Chem. 2021, 70, 79–86. [Google Scholar] [CrossRef]
- Xu, Y.; Jiao, Y.; Luo, J.; He, Z.; Zeng, M.; Shen, Q.; Chen, J.; Quan, W. The Influence of Deep Eutectic Solvents Extract from Ginger on the Formation of Heterocyclic Amines and Advanced Glycation End Products in Roast Beef Patties. Foods 2022, 11, 3161. [Google Scholar] [CrossRef]
- Shen, X.; Liu, X.; Wang, X.; Xue, C.; Chai, Z.; Zeng, M.; Chen, J. Effect of Angelica dahurica, Angelica dahurica polysaccharides, and imperatorin on free and bound heterocyclic amine generation in roasted beef patties and release profiles of bound heterocyclic amines during in vitro digestion. Food Res. Int. 2024, 175, 113639. [Google Scholar] [CrossRef]
- Keskekoglu, H.; Uren, A. Inhibitory effects of grape seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs cooked by different techniques. Int. J. Food Prop. 2017, 20, S722–S734. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Sobral, M.M.; Viegas, O.; Cunha, S.C.; Alarcón-Enos, J.; Pinho, O.; Ferreira, I.M. Incorporation of avocado peel extract to reduce cooking-induced hazards in beef and soy burgers: A clean label ingredient. Food Res. Int. 2021, 147, 110434. [Google Scholar] [CrossRef]
- Jamali, M.; Zhang, Y.; Teng, H.; Li, S.; Wang, F.; Peng, Z. Inhibitory Effect of Rosa rugosa Tea Extract on the Formation of Heterocyclic Amines in Meat Patties at Different Temperatures. Molecules 2016, 21, 173. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Luo, J.; Shi, H.; Zou, Y.; Khan, A.; Zhu, Z.; Xu, W.; Wang, D.; Huang, M. Mitigation of heterocyclic amines by phenolic compounds in allspice and perilla frutescens seed extract: The correlation between antioxidant capacities and mitigating activities. Food Chem. 2022, 368, 130845. [Google Scholar] [CrossRef] [PubMed]
- Oz, E. The presence of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines in barbecued meatballs formulated with different animal fats. Food Chem. 2021, 352, 129378. [Google Scholar] [CrossRef]
- Deng, P.; Xue, C.; He, Z.; Wang, Z.; Qin, F.; Oz, E.; Chen, J.; El Sheikha, A.F.; Proestos, C.; Oz, F.; et al. Synergistic Inhibitory Effects of Selected Amino Acids on the Formation of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in both Benzaldehyde- and Phenylacetaldehyde-Creatinine Model Systems. J. Agric. Food Chem. 2022, 70, 10858–10871. [Google Scholar] [CrossRef]
- Ekiz, E.; Savaş, A.; Aoudeh, E.; Elbir, Z.; Oz, E.; Proestos, C.; Ahmad, N.; Oz, F. Impact of Cumin (Cuminum cyminum) Incorporation on the Generation of Heterocyclic Aromatic Amines in Meatballs. Separations 2023, 10, 458. [Google Scholar] [CrossRef]
Reaction Precursor | Added Amount | |||
---|---|---|---|---|
Glucos (mmol/mL) | 0.02 | |||
Creatinin (mmol/mL) | 0.04 | |||
Tryptoph (mmol/mL) | 0.04 | |||
Cumin ethanol Extract (mg/mL) | 0 | 0.01 | 0.05 | 0.1 |
ESR Device Operation Parameters | Numerical Value |
---|---|
center field (G) | 3360 |
sweep width (G) | 100 |
sweep time (s) | 30 |
sweep count (times) | 3 |
microwave power (mW) | 20 |
modulation amplitude (G) | 1.0 |
Origin | Total Phenolics (mg/g) | Total Flavonoids (mg/g) |
---|---|---|
Hami | 1.49 ± 0.07 a | 5.93 ± 0.18 b |
Turpan | 1.58 ± 0.04 a | 6.25 ± 0.24 ab |
Hetian | 1.63 ± 0.07 a | 6.7 ± 0.34 a |
Origin | ABTS (μM TE/g dw) | FRAP (μM TE/g dw) |
---|---|---|
Hami | 79.32 ± 9.35 a | 17.2 ± 0.51 b |
Turpan | 78.05 ± 2.52 a | 19.76 ± 0.84 a |
Hetian | 85.12 ± 12.41 a | 21.04 ± 1.22 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, W.; Sun, M.; Lv, X.; Shen, X.; Chai, Z.; Zeng, M. The Effect of Cumin on the Formation of β-Carboline Heterocyclic Amines in Smoked Meat and Simulated Systems. Foods 2025, 14, 299. https://doi.org/10.3390/foods14020299
Liu X, Chen W, Sun M, Lv X, Shen X, Chai Z, Zeng M. The Effect of Cumin on the Formation of β-Carboline Heterocyclic Amines in Smoked Meat and Simulated Systems. Foods. 2025; 14(2):299. https://doi.org/10.3390/foods14020299
Chicago/Turabian StyleLiu, Xiuxiu, Wenyu Chen, Minghao Sun, Xufang Lv, Xing Shen, Zhongping Chai, and Maomao Zeng. 2025. "The Effect of Cumin on the Formation of β-Carboline Heterocyclic Amines in Smoked Meat and Simulated Systems" Foods 14, no. 2: 299. https://doi.org/10.3390/foods14020299
APA StyleLiu, X., Chen, W., Sun, M., Lv, X., Shen, X., Chai, Z., & Zeng, M. (2025). The Effect of Cumin on the Formation of β-Carboline Heterocyclic Amines in Smoked Meat and Simulated Systems. Foods, 14(2), 299. https://doi.org/10.3390/foods14020299