Nutritional, Chemical, Antioxidant and Antibacterial Screening of Astragalus cicer L. and Astragalus glycyphyllos L. Different Morphological Parts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Reagents, Standards and Instrumental
2.3. Sample Preparation
2.4. Nutritional Profile
2.5. Soluble Sugars
2.6. Fatty Acids
2.7. Total Phenolic, Flavonoid, and Phenolic Acid Contents
2.8. Determination of L(+)-Ascorbic Acid
2.9. HPLC Analysis of Phenolic Compounds
2.10. Determination of Tocopherols
2.11. Mineral Profile
2.12. Antioxidant Activity
2.13. Antibacterial Activity
2.14. Data Analysis
3. Results and Discussion
3.1. Nutritional Profile
3.2. Free Sugars
3.3. Fatty Acids
3.4. Total Phenolic, Flavonoid, Phenolic Acid, and L(+)-Ascorbic Acid Contents
3.5. Quantification of Phenolic Compounds
3.6. Determination of Tocopherols
3.7. Mineral Profile
3.8. Antioxidant Activity
3.9. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Snafi, A.E. Chemical constituents and pharmacological effects of Astragalus hamosus and Astragalus tribuloides grown in Iraq. Asian J. Pharm. Sci. 2015, 5, 321–328. [Google Scholar]
- Chaudhary, L.B.; Rana, T.S.; Anand, K.K. Current status of the systematics of Astragalus L. (Fabaceae) with special reference to the Himalayan species in India. Taiwania 2008, 53, 338–355. [Google Scholar] [CrossRef]
- Liu, D.L.; Bao, H.Y.; Liu, Y. Progress on chemical constituents and pharmacological effects of Astragali Radix in recent five years. FDA 2014, 16, 68–70. [Google Scholar]
- Aslanipour, B.; Gulcemal, D.; Nalbantsoy, A.; Yusufoglu, H.; Bedir, E. Cycloartane type glycosides from Astragalus brachycalyx FISCHER and their effects on cytokine release and hemolysis. Phytochem. Lett. 2017, 21, 66–73. [Google Scholar] [CrossRef]
- Liu, Y.X.; Song, X.M.; Dan, L.W.; Tang, J.M.; Jiang, Y.; Deng, C.; Zhang, D.D.; Li, Y.Z.; Wang, W. Astragali Radix: Comprehensive review of its botany, phytochemistry, pharmacology and clinical application. Arch. Pharm. Res. 2024, 47, 165–218. [Google Scholar] [CrossRef]
- Yeh, T.S.; Lei, T.H.; Liu, J.F.; Hsu, M.C. Astragalus membranaceus enhances myotube hypertrophy through PI3K-mediated Akt/mTOR signaling phosphorylation. Nutrients 2022, 14, 1670. [Google Scholar] [CrossRef]
- Li, C.X.; Liu, Y.; Zhang, J.Z.; Li, J.C.; Lai, J. Astragalus polysaccharide: A review of its immunomodulatory effect. Arch. Pharm. Res. 2022, 45, 367–389. [Google Scholar] [CrossRef]
- Shah, A.B.; Baiseitova, A.; Zahoorc, M.; Ahmad, I.; Ikram, M.; Bakhsh, A.; Shah, M.A.; Ali, I.; Idress, M.; Ullah, R.; et al. Probiotic significance of Lactobacillus strains: A comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes 2024, 16, 2431643. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, J.; Liu, L.; Luo, J.; Peng, X. Lactobacillus acidophilus (LA) fermenting Astragalus polysaccharides (APS) improves calcium absorption and osteoporosis by altering gut microbiota. Foods 2023, 12, 275. [Google Scholar] [CrossRef]
- Xia, D.; Li, W.; Tang, C.; Jiang, J. Astragaloside IV, as a potential anticancer agent. Front. Pharmacol. 2023, 14, 1065505. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Luo, Y.; Meng, X.; Pan, G.; Zhang, H.; Li, Y.; Zhang, B. The molecular basis of the anti-inflammatory property of astragaloside IV for the treatment of diabetes and its complications. Drug Des. Dev. Ther. 2023, 17, 771–790. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Qu, R.; Li, Y.; Lv, Y.; Dai, J. Astragalus mongholicus: A review of its antifibrosis properties. Front. Pharmacol. 2022, 13, 976561. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Shi, C.; Wei, C.; Wang, C.; Du, H.; Hong, Q.; Chen, X. Fufang shenhua tablet, astragali radix and its active component astragaloside IV: Research progress on anti-inflammatory and immunomodulatory mechanisms in the kidney. Front. Pharmacol. 2023, 14, 1131635. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Leng, X.; Liang, J.; Liu, J.; Chi, L.; Deng, H.; Sun, D. Pharmacological potential of natural medicine Astragali Radix in treating intestinal diseases. Biomed. Pharmacother. 2024, 180, 117580. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Wang, T.; Chen, Q.L.; Chen, H.B.; He, Q.S.; Zhang, Y.Z. Identification of the metabolites of both formononetin in rat hepatic S9 and ononin in rat urine samples and preliminary network pharmacology evaluation of their main metabolites. Molecules 2023, 28, 7451. [Google Scholar] [CrossRef] [PubMed]
- Gnat, S.; Wojcik, M.; Wdowiak-Wrobel, S.; Kalita, M.; Ptaszynska, A.; Małek, W. Phenotypic characterization of Astragalus glycyphyllos symbionts and their phylogeny based on the 16S rDNA sequences and RFLP of 16S rRNA gene. Antonie Van Leeuwenhoek 2014, 105, 1033–1048. [Google Scholar] [CrossRef] [PubMed]
- Ionkova, I. Anticancer compounds from in vitro cultures of rare medicinal plants. Pharmacogn. Rev. 2008, 2, 206–218. [Google Scholar]
- Mattalia, G.; Quave, C.L.; Pieroni, A. Traditional uses of wild food and medicinal plants among Brigasc, Kye, and Provencal communities on the Western Italian Alps. Genet. Resour. Crop Evol. 2013, 60, 587–603. [Google Scholar] [CrossRef]
- Pistelli, L.F. Secondary metabolites of genus Astragalus: Structure and biological activity. Stud. Nat. Prod. Chem. 2002, 27, 443–545. [Google Scholar] [CrossRef]
- Stambolov, I.; Shkondrov, A.; Krasteva, I. Astragalus glycyphyllos L.: Phytochemical constituents, pharmacology, and biotechnology. Pharmacia 2023, 70, 635–664. [Google Scholar] [CrossRef]
- Krasteva, I. (Ed.) Encyclopaedia Medicinal Plants; Knigomania Publishing House: Sofia, Bulgaria, 2023. [Google Scholar]
- Lysiuk, R.; Kozachok, S.; Darmohray, R. HPLC analysis of hydroxycinnamic acids from the aerial parts of Astragalus glycyphyllos L. In Agrobiodiversity for Improving Nutrition, BioMed Research International Health and Life Quality 2016. The Scientific Proceedings of the International Network AgroBioNet; Brindza, J., Klymenko, S., Eds.; Slovak University of Agriculture: Nitra, Slovakia, 2016; pp. 250–254. [Google Scholar]
- Georgieva, A.; Popov, G.; Shkondrov, A.; Toshkova, R.; Krasteva, I.; Kondeva-Burdina, M.; Manov, V. Antiproliferative and antitumour activity of saponins from Astragalus glycyphyllos on myeloid Graffi tumour. J. Ethnopharmacol. 2021, 267, 113519. [Google Scholar] [CrossRef] [PubMed]
- Ilieva, V.; Shkondrov, A.; Aluani, D.; Valkova, I.; Kondeva-Burdina, M.; Georgieva, T.; Tzankova, V.; Krasteva, I.; Georgiev, M. Early detection of toxic cyanobacteria in Bulgarian dam water and in vitro evaluation of the effect of saponins from Astragalus glycyphyllos and A. glycyphylloides in cyanotoxin (anatoxin-α)-induced neurotoxicity. Rev. Bras. Farmacogn. 2020, 30, 202–213. [Google Scholar] [CrossRef]
- Mihaylova, R.; Shkondrov, A.; Aluani, D.; Ionkova, I.; Tzankova, V.; Krasteva, I. In vitro antitumour and immunomodulating activity of saponins from Astragalus glycyphyllos. Biotechnol. Biotechnol. Equip. 2021, 35, 1948–1955. [Google Scholar] [CrossRef]
- Shkondrov, A.; Hinkov, A.; Cvetkov, V.; Shishkova, K.; Todorov, D.; Shishkov, S.; Stambolov, I.; Yoncheva, K.; Krasteva, I. Astragalus glycyphyllos L.: Antiviral activity and tablet dosage formulation of a standardized dry extract. Biotechnol. Biotechnol. Equip. 2023, 37, 2221752. [Google Scholar] [CrossRef]
- Kondeva-Burdina, M.; Vitcheva, V.; Simeonova, R.; Tzankova, V.; Shkondrov, A.; Zdraveva, P.; Krasteva, I. Astragalus glycyphyllos and Astragalus glycyphylloides derived polysaccharides possessing in vitro antioxidant properties. Eur. J. Med. Plants 2016, 17, 1–9. [Google Scholar] [CrossRef]
- Bratkov, V.M.; Shkondrov, A.M.; Zdraveva, P.K.; Krasteva, I.N. Flavonoids from the genus Astragalus: Phytochemistry and biological activity. Pharmacogn. Rev. 2016, 10, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Shahrivari-Baviloliaei, S.; Orhan, I.E.; Abaci Kaplan, N.; Konopacka, A.; Waleron, K.; Plenis, A.; Viapiana, A. Characterization of phenolic profile and biological properties of Astragalus membranaceus Fisch. ex Bunge commercial samples. Antioxidants 2024, 13, 993. [Google Scholar] [CrossRef] [PubMed]
- Polumackanycz, M.; Petropoulos, S.A.; Añibarro-Ortega, M.; Pinela, J.; Barros, L.; Plenis, A.; Viapiana, A. Chemical composition and antioxidant properties of common and lemon verbena. Antioxidants 2022, 11, 2247. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W., Jr., Ed.; AOAC: Rockville, MD, USA, 2016; ISBN 0935584870. [Google Scholar]
- Pascoalino, L.A.; Reis, F.S.; Barros, L.; Rodrigues, M.Â.; Correia, C.M.; Vieira, A.L.; Ferreira, I.C.F.R.; Barreira, J.C.M. Effect of plant biostimulants on nutritional and chemical profiles of almond and hazelnut. Appl. Sci. 2021, 11, 7778. [Google Scholar] [CrossRef]
- Singleton, S.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- European Pharmacopoeia. Birkenblätter–Betulae Herba 4.00; Council of Europe: Strasbourg, France, 2002; p. 1308. [Google Scholar]
- Society, P.P. Polish Pharmacopoeia VI. In Polish Pharmaceutical Society; Polish Pharmaceutical Society: Warszawa, Poland, 2002; p. 150. [Google Scholar]
- Abdelmageed, O.H.; Khashaba, P.Y.; Askal, H.F.; Saleh, G.A.; Refaat, I.H. Selective spectrophotometric determination of ascorbic acid in drugs and foods. Talanta 1995, 42, 573–579. [Google Scholar] [CrossRef]
- Viapiana, A.; Struck-Lewicka, W.; Konieczynski, P.; Wesolowski, M.; Kaliszan, R. An approach based on HPLC-fingerprint and chemometrics to quality consistency evaluation of Matricaria chamomilla L. commercial samples. Front. Plant Sci. 2016, 7, 1561. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Food. 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessì, M.A. Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- Benzie, I.F.; Straint, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektasoglu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed]
- Butkute, B.; Padarauskas, A.; Ceseviciene, J.; Pavilonis, A.; Taujenis, L.; Lemeziene, N. Perennial legumes as a source of ingredients for healthy food: Proximate, mineral and phytoestrogen composition and antibacterial activity. J. Food Sci. Technol. 2017, 54, 2661–2669. [Google Scholar] [CrossRef]
- Norman, P.E.; Tongoona, P.B.; Danquah, A.; Danquah, E.Y.; Asiedu, R.; Agbona, A.; Asiedu, R.; Asfaw, A. Genetic parameter estimation and selection in advanced breeding population of white Guinea yam. J. Crop Improv. 2021, 35, 790–815. [Google Scholar] [CrossRef]
- Acharya, S.N.; Kastelic, J.P.; Beauchemin, K.A.; Messenger, D.F. A review of research progress on cicer milkvetch (Astragalus cicer L.). Can. J. Plant Sci. 2006, 86, 49–62. [Google Scholar] [CrossRef]
- Foster, A.; Biligetu, B.; Darambazar, E. Forage accumulation, nutritive value, and botanical composition of grass–cicer milkvetch mixtures under two harvest managements. Crop Sci. 2019, 59, 2876–2885. [Google Scholar] [CrossRef]
- Lardner, H.; Pearce, L.; Damiran, D. Evaluation of cicer milkvetch and alfalfa cultivars for nutritive value, anti-quality factors and animal preference. Sustain. Agric. Res. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Shang, H.; Chena, S.; Lia, W.; Zhoua, H.; Wuc, H.; Song, H. Influences of extraction methods on physicochemical characteristics and activities of Astragalus cicer L. polysaccharides. Process Biochem. 2018, 73, 220–227. [Google Scholar] [CrossRef]
- Gabrielsen, B.C.; Smith, D.H.; Townsend, C.E. Cicer milkvetch and alfalfa as influenced by two cutting schedules 1. Agron. J. 1985, 77, 416–422. [Google Scholar] [CrossRef]
- Adiguzel, A.; Agar, G.; Baris, O.; Gulluce, M.; Sahin, F.; Sengul, M. RAPD and FAME analyses of Astragalus species growing in eastern Anatolia region of Turkey. Biochem. Syst. Ecol. 2006, 34, 424–432. [Google Scholar] [CrossRef]
- Ağar, G.; Bozari, S.; Adiguzel, A.; Baris, Ö.; Gulluce, M.; Şengul, M.; Şahin, F. Phenotypic and genetic variation among Astragalus species from Turkey. Rom. Biotechnol. Lett. 2009, 14, 4267–4274. [Google Scholar]
- Haşimi, N.; Ertaş, A.; Yılmaz, M.; Boğa, M.; Temel, H.; Demirci, S.; Yılmaz-Özden, T.; Yener, I.; Kolak, U. LC-MS/MS and GC-MS analyses of three endemic Astragalus species from Anatolia towards their total phenolic-flavonoid contents and biological activities. Biol. Divers. Conserv. 2017, 10, 18–30. [Google Scholar]
- Klichkhanov, N.K.; Suleimanova, M.N. Chemical composition and therapeutic effects of several Astragalus species (Fabaceae). Dokl. Biol. Sci. 2024, 518, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Salih, A.M.; Al-Qurainy, F.; Nadeem, M.; Tarroum, M.; Khan, S.; Shaikhaldein, H.O.; Al-Hashimi, A.; Alfagham, A.; Alkahtani, J. Optimization method for phenolic compounds extraction from medicinal plant (Juniperus procera) and phytochemicals screening. Molecules 2021, 26, 7454. [Google Scholar] [CrossRef] [PubMed]
- Mitrović, J.; Nikolić, N.; Karabegović, i.; Savić, S.; Petrović, S.; Pešić, M.; Šimurina, O. Evaluation of the solvent effect on the extraction and antioxidant activity of phenolic compounds from the nettle (Urtica dioica L.) seeds: Application of PCA and regression analyses. J. Food Meas. Charact. 2024, 18, 6618–6626. [Google Scholar] [CrossRef]
- Lee, J.E.; Jayakody, J.T.M.; Kim, J.L.; Jeong, J.W.; Choi, K.M.; Kim, T.S.; Seo, C.; Azimi, I.; Hyun, J.; Ryu, B. The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods 2024, 13, 3151. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, B.; Ahmad, M.; Iqbal, Z.; Nisar, M.; Ahmad, M. In vitro inhibition of acetylcholinesterase, butyrylcholinesterase and lipoxygenase by crude extract of Myricaria elegans Royle. J. Biol. Sci. 2003, 11, 1046–1049. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Tang, G.H.; Lou, L.L.; Li, W.; Zhang, B.; Liu, B.; Yin, S. Prenylated flavonoids as potent phosphodiesterase-4 inhibitors from Morus alba: Isolation, modification, and structure-activity relationship study. Eur. J. Med. Chem. 2018, 144, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S.; Varghese, G.K. Extractability of rutin in herbal tea preparations of Moringa stenopetala leaves. Beverages 2015, 1, 169–182. [Google Scholar] [CrossRef]
- Myrtsi, E.D.; Evergetis, E.; Koulocheri, S.D.; Haroutounian, S.A.; Haroutounian, S.A. Bioactivity of wild and cultivated legumes: Phytochemical content and antioxidant properties. Antioxidants 2023, 12, 852. [Google Scholar] [CrossRef]
- Butkute, B.; Dagilyt, A.; Benetis, R.; Padarauskas, A.; CeseviIien, J.; Olšauskait, V.; LemeDien, N. Mineral and phytochemical profiles and antioxidant activity of herbal material from two temperate Astragalus species. BioMed Res. Int. 2018, 2018, 6318630. [Google Scholar] [CrossRef] [PubMed]
- Lekmine, S.; Boussekine, S.; Kadi, K.; Martín-García, A.I.; Kheddouma, A.; Nagaz, K.; Bensouici, C. A comparative study on chemical profile and biological activities of aerial parts (stems, flowers, leaves, pods and seeds) of Astragalus gombiformis. Biocatal. Agric. Biotechnol. 2020, 27, 101668. [Google Scholar] [CrossRef]
- Brás, T.; Guerreiro, O.; Duarte, M.F.; Neves, L.A. Impact of extraction parameters and concentration by nanofiltration on the recovery of phenolic compounds from Cynara cardunculus var. altilis: Assessment of antioxidant activity. Ind. Crop Prod. 2015, 67, 137–142. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauro, R.; Mauromicale, G. Variation of phenolic content in globe artichoke in relation to biological, technical and environmental factors. Ital. J. Agron. 2009, 4, 181–189. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Res. Int. 2016, 82, 59–70. [Google Scholar] [CrossRef]
- Bahsi, M.; Kursat, M.; Enre, I.; Yilmaz, O. The lipide-soluble vitamin contents of some Astragalus taxa by using HPLC. BEU J. Sci. 2019, 8, 84–89. [Google Scholar] [CrossRef]
- Adusei-Mensah, F.; Essumang, D.K.; Agjei, R.O.; Kauhanen, J.; Tikkanen-Kaukanen, C.; Ekor, M. Heavy metal content and health risk assessment of commonly patronized herbal medicinal preparations from the Kumasi metropolis of Ghana. J. Environ. Health Sci. Eng 2019, 17, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Karahan, F. Evaluation of trace element and heavy metal levels of some ethnobotanically important medicinal plants used as remedies in southern Turkey in terms of human health risk. Biol. Trace Elem. Res. 2023, 201, 493–513. [Google Scholar] [CrossRef]
- Demir, D.C.; Demir, H.; Bozan, N.; Belli, S.; Demir, C. Determination of some trace elements and heavy metal levels (Cu, Mn, Mg, Fe, Zn, Co, Pb, and Cd) in blood serum of patients with lip and oral cavity cancers. J. Elem. 2023, 28, 89–106. [Google Scholar] [CrossRef]
- Meng, C.; Wang, P.; Hao, Z.; Gao, Z.; Li, Q.; Gao, H.; Liu, Y.; Li, Q.; Wang, Q.; Feng, F.; et al. Ecological and health risk assessment of heavy metals in soil and Chinese herbal medicines. Environ. Geochem. Health 2022, 44, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wang, Z.; Huang, L.; Zheng, S.; Wang, D.; Chen, S.; Zhang, H.; Yang, S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. 2014, 28, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-L.; Liang, Z.-S.; Tan, Y.; Duan, O.-M. Determination of mineral elements in different part of Astragalus membranaceus (Fisch.) by FAAS. Guang Pu Xue Yu Guang Pu Fen Xi 2008, 28, 1168–1171. [Google Scholar]
- Meng, Y.; Kong, D.; Wang, R.; Kong, W.; Fan, Z.; Huang, Y.; Yang, M. Electrochemical co-detection of heavy metals in Astragalus membranaceus by anodic stripping voltammetry. Int. J. Electrochem. Sci. 2017, 12, 8106–8119. [Google Scholar] [CrossRef]
- Çaçan, E.; Kiliç, Ö.; Kökten, K. Determination of macro, micro element and heavy metal contents of Astragalus taxa collected from nature. J. Tekirdag Agric. Fac. 2023, 20, 334–344. [Google Scholar] [CrossRef]
- Rahimi, E.; Asgarpanah, J.; Ziarati, P. Nutritive value and mineral elements open access of wild Astragalus meridioalis sensu auct. seeds in South of Iran. J. Pharm. Health Sci. 2017, 5, 121–129. [Google Scholar]
- Zengin, G.; Uba, A.I.; Ocal, M.; Sharifi-Rad, M.; Caprioli, G.; Angeloni, S.; Altunoglu, Y.C.; Baloglu, M.C.; Yıldıztugay, E. Integration of in vitro and in silico approaches to assess three Astragalus species from Turkey flora: A novel spotlight from lab bench to functional applications. Food Biosci. 2022, 49, 101858. [Google Scholar] [CrossRef]
- Tomás-Menor, L.; Morales-Soto, A.; Barrajón-Catalán, E.; Roldán-Segura, C.; Segura-Carrero, A.; Micol, V. Correlation between the antibacterial activity and the composition of extracts derived from Spanish Cistus species. Food Chem. Toxicol. 2013, 55, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Borrás-Linares, I.; Fernández-Arroyo, S.; Arráez-Roman, D.; Palmeros-Suárez, P.A.; Del Val-Diaz, R.; Andrade-Gonzáles, I.; Fernández-Gutiérrez, A.; Gómez-Leyva, J.F.; Segura-Carretero, A. Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican roselle (Hibiscus sabdariffa). Ind. Crop Prod. 2015, 69, 385–394. [Google Scholar] [CrossRef]
Analytes | Regression Equation | Linearity (μg/mL) | R2 | LODs (μg/mL) | LOQs (μg/mL) | Recovery (%) |
---|---|---|---|---|---|---|
GA | y = 20182x − 18778 | 25–211 | 0.983 | 3.33 | 11.03 | 97.54 |
PAT | y = 37934x + 19373 | 23–223 | 0.994 | 3.65 | 9.87 | 95.34 |
CNA | y = 37373x + 13828 | 21–205 | 0.988 | 3.77 | 10.21 | 97.47 |
VA | y = 40738x + 49372 | 24–210 | 0.975 | 2.82 | 8.54 | 98.11 |
FA | y = 20389x + 15225 | 22–200 | 0.991 | 4.02 | 13.55 | 90.72 |
pCA | y = 96929x − 16977 | 23–215 | 0.985 | 4.11 | 14.01 | 93.29 |
API | y = 32888x + 14652 | 28–243 | 0.993 | 3.75 | 10.01 | 94.88 |
NAR | y = 45976x + 38223 | 26–233 | 0.986 | 3.66 | 9.88 | 92.91 |
RUT | y = 18779x + 26855 | 23–210 | 0.989 | 4.22 | 13.23 | 95.89 |
Q | y = 15978x + 56221 | 30–250 | 0.995 | 4.87 | 12.76 | 95.99 |
Sample | Total Protein | Ash | Crude Fats | Carbohydrate Content | Total Energy |
---|---|---|---|---|---|
A. glycyphyllos L. leaves | 18.00 ± 1.00 e | 12.00 ± 1.00 a | 7.00 ± 1.00 c | 62.00 ± 1.01 c | 386.00 ± 7.01 d |
A. glycyphyllos L. roots | 13.02 ± 0.10 b | 3.50 ± 0.20 e | 26.00 ± 2.03 a | 58.00 ± 2.00 d | 516.03 ± 11.02 a |
A. glycyphyllos L. fruits | 19.21 ± 0.10 d | 5.50 ± 0.30 c | 1.84 ± 0.03 e | 73.50 ± 0.32 a | 387.01 ± 1.00 d |
A. cicer L. leaves | 20.90 ± 0.11 b | 13.00 ± 0.10 a | 3.95 ± 0.21 d | 62.20 ± 0.21 c | 367.20 ± 0.40 e |
A. cicer L. roots | 16.61 ± 0.20 f | 4.60 ± 0.20 d | 15.03 ± 1.00 b | 63.12 ± 1.05 c | 459.00 ± 8.01 b |
A. cicer L. fruits | 26.10 ± 0.40 a | 5.01 ± 0.10 c | 4.21 ± 0.01 d | 64.71 ± 0.50 c | 401.10 ± 0.30 c |
Sample | Fructose | Glucose | Sucrose | Total Sugars |
---|---|---|---|---|
A. glycyphyllos L. leaves | 3.80 ± 0.40 c | nd | 0.29 ± 0.02 e | 4.10 ± 0.40 d |
A. glycyphyllos L. roots | 2.10 ± 0.20 d | 0.56 ± 0.02 c | 9.03 ± 1.00 b | 11.00 ± 1.00 c |
A. glycyphyllos L. fruits | 0.42 ± 0.03 f | nd | 0.20 ± 0.01 f | 0.62 ± 0.04 f |
A. cicer L. leaves | 6.40 ± 0.30 a | 2.30 ± 0.10 a | 0.90 ± 0.20 d | 9.70 ± 0.40 c |
A. cicer L. roots | 3.00 ± 1.01 c | 0.30 ± 0.02 d | 10.48 ± 0.03 a | 14.10 ± 0.10 a |
A. cicer L. fruits | 0.48 ± 0.01 e | nd | 0.92 ± 0.01 d | 1.40 ± 0.02 e |
A. glycyphyllos | A. cicer | |||||
---|---|---|---|---|---|---|
Fatty Acid | Leaves | Roots | Fruits | Leaves | Roots | Fruits |
C8:0 | 0.44 ± 0.02 a | ND | ND | ND | ND | 0.12 ± 0.01 b |
C12:0 | 1.17 ± 0.01 a | ND | ND | ND | ND | 0.09 ± 0.10 b |
C14:0 | ND | 0.60 ± 0.03 d | 0.70 ± 0.10 c | 0.83 ± 0.02 b | 0.76 ± 0.00 c | 0.29 ± 0.02 e |
C15:0 | ND | 1.37 ± 0.05 a | 1.20 ± 0.01 b | 0.11 ± 0.01 e | 0.86 ± 0.03 c | 0.37 ± 0.01 d |
C16:0 | 14.03 ± 0.01 e | 26.30 ± 0.20 b | 34.70 ± 0.40 a | 9.60 ± 0.20 f | 25.00 ± 2.00 b | 12.60 ± 0.10 cf |
C16:1 | 1.34 ± 0.01 b | ND | 0.66 ± 0.01 d | 0.80 ± 0.04 c | 3.49 ± 0.03 a | 0.26 ± 0.01 f |
C17:0 | 0.49 ± 0.01 c | 1.27 ± 0.03 a | ND | 0.22 ± 0.02 d | ND | 0.25 ± 0.01 d |
C17:1 | ND | ND | ND | ND | ND | 0.10 ± 0.03 d |
C18:0 | 7.20 ± 0.02 c | 5.10 ± 0.10 d | 8.00 ± 0.20 b | ND | 4.30 ± 0.10 e | ND |
C18:1 n9t | ND | ND | ND | 3.56 ± 0.010 b | ND | 4.95 ± 0.02 a |
C18:1 n9c | 5.20 ± 0.10 f | 8.70 ± 0.50 e | 31.60 ± 0.30 b | 28.50 ± 0.40 c | 10.00 ± 1.00 d | 44.98 ± 0.02 a |
C18:2 n6c | 14.30 ± 0.10 f | 36.90 ± 0.40 a | 12.00 ± 1.00 g | 28.70 ± 0.01 c | 30.00 ± 1.00 b | 21.1 ± 0.1 d |
C18:3 n3 | 32.22 ± 0.02 a | 19.80 ± 0.20 e | 4.70 ± 0.30 h | 24.80 ± 0.10 c | 20.00 ± 1.00 d | 8.8 ± 0.1 g |
C20:0 | 19.94 ± 0.02 a | ND | 3.41 ± 0.04 c | 1.1 ± 0.1 f | ND | 1.6 ± 0.1 e |
C20:1 | ND | ND | ND | ND | ND | 0.95 ± 0.05 b |
C20:3 n6 | ND | ND | ND | ND | ND | 0.16 ± 0.01 d |
C22:1 n9 | 3.60 ± 0.10 b | ND | 3.09 ± 0.04 c | 1.83 ± 0.04 e | 5.80 ± 0.10 a | 2.80 ± 0.10 d |
C23:0 | ND | ND | ND | ND | ND | 0.59 ± 0.04 b |
C24:1 | ND | ND | ND | ND | ND | ND |
SFA | 43.27 ± 0.01 c | 34.60 ± 0.30 d | 51.00 ± 1.00 a | 11.80 ± 0.40 g | 31.00 ± 2.00 e | 15.95 ± 0.01 f |
MUFA | 10.20 ± 0.10 e | 8.71 ± 0.50 f | 32.20 ± 0.30 c | 34.70 ± 0.30 b | 19.00 ± 1.00 d | 54.00 ± 0.20 a |
PUFA | 46.60 ± 0.10 d | 56.71 ± 0.20 a | 17.00 ± 1.00 g | 53.50 ± 0.10 b | 50.00 ± 1.00 c | 30.00 ± 0.20 f |
Sample | TPC (μg GAE/g DW) | TPAC (μg CAE/g DW) | TFC (μg QE/g DW) | AA (μg AA/g DW) |
---|---|---|---|---|
Hydromethanolic extracts | ||||
A. glycyphyllos leaves | 6.41 ± 1.42 c | 4.35 ± 0.20 b | 2.43 ± 0.22 c | 2.08 ± 0.44 a |
A. glycyphyllos roots | 0.88 ± 0.67 a | 0.54 ± 0.08 a | 0.12 ± 0.02 a | 2.27 ± 0.51 a |
A. glycyphyllos fruits | 1.60 ± 0.44 a | 0.34 ± 0.02 a | 0.76 ± 0.08 a | 1.77 ± 0.15 a |
A. cicer leaves | 8.30 ± 0.24 d | 5.62 ± 0.25 c | 3.27 ± 0.65 b | 4.14 ± 0.16 b |
A. cicer roots | 3.67 ± 0.91 b | 0.52 ± 0.07 a | 0.21 ± 0.05 a | 1.93 ± 0.05 a |
A. cicer fruits | 1.64 ± 0.50 a | 6.93 ± 0.78 d | 3.26 ± 0.37 b | 2.22 ± 0.27 a |
Water extracts | ||||
A. glycyphyllos leaves | 70.83 ± 1.82 c | 355.42 ± 4.54 b | 1172.62 ± 18.49 a | 13.56 ± 4.85 a |
A. glycyphyllos roots | 15.33 ± 0.24 a | 1280.82 ± 14.33 e | 1183.14 ± 16.43 a | 9.54 ± 0.06 b |
A. glycyphyllos fruits | 27.31 ± 0.23 b | 637.22 ± 2.29 f | 788.19 ± 6.10 b | 9.25 ± 0.16 b |
A. cicer leaves | 78.29 ± 2.03 d | 285.07 ± 8.81 a | 1104.65 ± 13.12 d | 12.81 ± 2.03 a |
A. cicer roots | 13.42 ± 0.48 a | 878.33 ± 9.19 d | 953.95 ± 12.94 c | 23.39 ± 1.41 c |
A. cicer fruits | 24.53 ± 0.41 b | 1702.16 ± 17.79 c | 1140.87 ± 14.64 e | 12.13 ± 0.92 a |
Sample | GA | PAT | VA | pCA | FA | CNA | API | NAR | RUT | Q |
---|---|---|---|---|---|---|---|---|---|---|
Hydromethanolic extracts | ||||||||||
A. glycyphyllos leaves | 89.93 ± 0.84 a | ND | ND | ND | 13.83 ± 1.64 | ND | ND | ND | 2.79 ± 2.64 a | 336.27 ± 6.24 d |
A. glycyphyllos roots | 75.82 ± 1.33 a | ND | ND | ND | ND | ND | ND | ND | ND | 35.62 ± 1.76 a |
A. glycyphyllos fruits | 98.22 ± 1.69 a | ND | ND | ND | ND | 2.34 ± 1.83 | ND | ND | 72.17 ± 1.37 b | 48.00 ± 2.40 b |
A. cicer leaves | 49.84 ± 6.55 a | ND | ND | ND | ND | ND | ND | ND | 4.53 ± 1.56 a | 82.78 ± 2.11 c |
A. cicer roots | ND | ND | ND | ND | ND | ND | ND | ND | ND | 37.27 ± 3.46 a |
A. cicer fruits | ND | ND | ND | ND | ND | ND | ND | ND | ND | 51.15 ± 5.18 b |
Water extracts | ||||||||||
A. glycyphyllos leaves | 355.43 ±8.76 c | ND | ND | 82.65 ± 5.54 | ND | ND | ND | 308.93 ± 6.81 | 45.99 ± 0.52 a | |
A. glycyphyllos roots | 302.15 ±7.37 a | ND | ND | ND | ND | ND | ND | ND | ND | 43.71 ± 0.12 a |
A. glycyphyllos fruits | 674.50 ± 12.22 e | ND | ND | ND | ND | 6.17 ± 2.82 | ND | ND | ND | 264.15 ± 10.82 d |
A. cicer leaves | 435.49 ± 13.75 d | ND | ND | ND | ND | ND | ND | ND | ND | 45.80 ± 0.30 a |
A. cicer roots | 307.79 ± 7.31 a | ND | ND | ND | ND | ND | ND | ND | ND | 61.78 ± 1.41 b |
A. cicer fruits | 347.40 ± 1.18 b | ND | ND | ND | ND | ND | ND | ND | ND | 75.60 ± 1.02 c |
Sample | α-Tocopherol | β-Tocopherol | γ-Tocopherol | Total |
---|---|---|---|---|
A. glycyphyllos leaves | 88 ± 4 a | 2.7 ± 0.5 a | 1.0 ± 0.1 | 92 ± 4 a |
A. glycyphyllos roots | 0.20 ± 0.04 e | ND | ND | 0.20 ± 0.04 e |
A. glycyphyllos fruits | 2.7 ± 0.5 d | ND | ND | 2.7 ± 0.5 d |
A. cicer leaves | 40 ± 6 b | 0.6943 ± 0.0002 b | ND | 40 ± 6 b |
A. cicer roots | 0.173 ± 0.001 e | ND | ND | 0.173 ± 0.001 e |
A. cicer fruits | 9 ± 1 c | ND | ND | 9 ± 1 c |
Sample | Pb | Fe | Cd | Cu | Zn | Mn |
---|---|---|---|---|---|---|
Hydromethanolic extracts | ||||||
A. glycyphyllos leaves | ND | 2.66 ± 0.23 b | ND | 0.73 ± 0.09 c | 1.77 ± 0.23 a | 0.65 ± 0.09 b |
A. glycyphyllos roots | ND | 2.87 ± 0.64 c | ND | 0.52 ± 0.09 ab | 3.22 ± 0.04 c | 1.28 ± 0.45 cd |
A. glycyphyllos fruits | ND | 3.44 ± 0.88 d | ND | 0.49 ± 0.07 a | 2.19 ± 0.17 b | 0.95 ± 0.23 c |
A. cicer leaves | ND | 2.01 ± 0.56 b | ND | 0.43 ± 0.10 a | 3.43 ± 0.48 c | 0.93 ± 0.76 c |
A. cicer roots | ND | 2.42 ± 0.87 b | ND | 0.62 ± 0.04 b | 1.81 ± 0.09 a | 0.54 ± 0.08 a |
A. cicer fruits | ND | 1.83 ± 0.76 a | ND | 0.75 ± 0.08 c | 2.35 ± 0.10 b | 0.66 ± 0.05 b |
Water extracts | ||||||
A. glycyphyllos leaves | ND | 4.1 ± 0.13 c | ND | 2.91 ± 0.22 d | 3.1 ± 0.23 d | 1.93 ± 0.16 d |
A. glycyphyllos roots | ND | 2.5 ± 0.13 b | ND | 0.38 ± 0.56 a | 1.5 ± 0.35 a | 0.63± 0.06 bc |
A. glycyphyllos fruits | ND | 4.0 ± 0.29 c | ND | 0.42 ± 0.32 ab | 2.4 ± 0.11 c | 0.54 ± 0.02 b |
A. cicer leaves | ND | 2.32 ± 0.10 b | ND | 0.48 ± 0.34 ab | 2.5 ± 0.21 c | 0.65 ± 0.09 bc |
A. cicer roots | ND | 1.72 ± 0.29 a | ND | 0.65 ± 0.21 b | 1.7 ± 0.15 ab | 0.71 ± 0.05 c |
A. cicer fruits | ND | 1.85 ± 0.16 a | ND | 1.33 ± 0.33 c | 1.9 ± 0.13 b | 0.34 ± 0.02 a |
Sample | DPPH (mg TE/g DW) | FRAP (mg Fe2+/g DW) | CUPRAC (mg AA/g DW) |
---|---|---|---|
Hydromethanolic extracts | |||
A. glycyphyllos leaves | 4.54 ± 0.18 a | 130.60 ± 8.38 e | 34.77 ± 1.99 d |
A. glycyphyllos roots | 1.99 ± 0.72 b | 47.77 ± 5.51 d | 3.43 ± 0.62 a |
A. glycyphyllos fruits | 5.02 ± 0.25 a | 34.15 ± 1.25 b | 19.17 ± 1.72 b |
A. cicer leaves | 4.54 ± 0.34 a | 290.21 ± 12.25 f | 160.60 ± 7.59 e |
A. cicer roots | 2.17 ± 1.07 b | 26.56 ± 3.78 a | 2.92 ± 0.28 a |
A. cicer fruits | 4.76 ± 0.22 a | 42.38 ± 2.94 c | 23.20 ± 1.67 c |
Water extracts | |||
A. glycyphyllos leaves | 123.58 ± 5.11 d | 44.39 ± 1.38 c | 12.48 ± 1.02 c |
A. glycyphyllos roots | 52.15 ± 7.61 b | 10.36 ± 0.56 b | 1.65 ± 0.21 a |
A. glycyphyllos fruits | 111.73 ± 3.03 c | 5.49 ± 0.80 a | 2.08 ± 0.70 a |
A. cicer leaves | 0.184 ± 0.02 a | 52.66 ± 0.91 d | 45.12 ± 1.11 d |
A. cicer roots | 0.047 ± 0.00 a | 5.68 ± 0.17 a | 2.11 ± 0.8 a |
A. cicer fruits | 0.115 ± 0.01 a | 8.96 ± 0.46 b | 6.56 ± 1.35 b |
Samples | S. aureus ATCC6538 | E. coli ATCC8739 |
---|---|---|
300 mg/L, 300 μL | ||
A. glycyphyllos leaves | 16 | 12 |
A. glycyphyllos roots | 12 | 17 |
A. glycyphyllos fruits | 13 | 17/12 |
A. cicer leaves | 16 | 15 |
A. cicer roots | 12/13 | 16 |
A. cicer fruits | 15/15 | 12 |
Ampicillin—control/reference | ||
2 mg | 44 | 31 |
0.2 mg | 35 | 24 |
0.02 mg | 27 | 15 |
0.002 mg | 18 | nz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahrivari-Baviloliaei, S.; Konopacka, A.; Pascoalino, L.A.; Reis, F.; Kunkowski, D.; Petropoulos, S.A.; Konieczynski, P.; Orhan, I.E.; Plenis, A.; Viapiana, A. Nutritional, Chemical, Antioxidant and Antibacterial Screening of Astragalus cicer L. and Astragalus glycyphyllos L. Different Morphological Parts. Foods 2025, 14, 250. https://doi.org/10.3390/foods14020250
Shahrivari-Baviloliaei S, Konopacka A, Pascoalino LA, Reis F, Kunkowski D, Petropoulos SA, Konieczynski P, Orhan IE, Plenis A, Viapiana A. Nutritional, Chemical, Antioxidant and Antibacterial Screening of Astragalus cicer L. and Astragalus glycyphyllos L. Different Morphological Parts. Foods. 2025; 14(2):250. https://doi.org/10.3390/foods14020250
Chicago/Turabian StyleShahrivari-Baviloliaei, Saba, Agnieszka Konopacka, Liege Aguiar Pascoalino, Filipa Reis, Dawid Kunkowski, Spyridon A. Petropoulos, Pawel Konieczynski, Ilkay Erdogan Orhan, Alina Plenis, and Agnieszka Viapiana. 2025. "Nutritional, Chemical, Antioxidant and Antibacterial Screening of Astragalus cicer L. and Astragalus glycyphyllos L. Different Morphological Parts" Foods 14, no. 2: 250. https://doi.org/10.3390/foods14020250
APA StyleShahrivari-Baviloliaei, S., Konopacka, A., Pascoalino, L. A., Reis, F., Kunkowski, D., Petropoulos, S. A., Konieczynski, P., Orhan, I. E., Plenis, A., & Viapiana, A. (2025). Nutritional, Chemical, Antioxidant and Antibacterial Screening of Astragalus cicer L. and Astragalus glycyphyllos L. Different Morphological Parts. Foods, 14(2), 250. https://doi.org/10.3390/foods14020250