Impact of Ultrasonic-Assisted Preparation of Water Caltrop Starch–Lipid Complex: Structural and Physicochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Starch Isolation
2.3. Preparation of Ultrasonic-Assisted Starch Lipid Complex
2.4. Polarized Light Microscopy
2.5. Scanning Electron Microscopy (SEM)
2.6. X-Ray Diffraction (XRD)
2.7. Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
2.8. Rapid Viscosity Analysis (RVA)
2.9. Thermal Properties
2.10. Complex Index (CI)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Polarized Light and Scanning Electron Microscopic Observation
3.2. Long-Range Ordered Molecular Structure by XRD Analysis
3.3. Short-Range Ordered Molecular Structure by ATR-FTIR Analysis
3.4. Rapid-Visco Analysis (RVA)
3.5. DSC
3.6. Complexation Efficiency
3.7. Mechanism of Ultrasonic-Assisted Treatment on the Formation of Starch Lipid Complexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raza, H.; Liang, Q.; Ameer, K.; Ma, H.; Ren, X. Dual-frequency power ultrasound effects on the complexing index, physicochemical properties, and digestion mechanism of arrowhead starch-lipid complexes. Ultrason. Sonochem. 2022, 84, 105978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mi, T.; Gao, W.; Wu, Z.; Yuan, C.; Cui, B.; Dai, Y.; Liu, P. Ultrasonication effects on physicochemical properties of starch–lipid complex. Food Chem. 2022, 388, 133054. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, T.J.; Tovar, J. Update of the concept of type 5 resistant starch (RS5): Self-assembled starch V-type complexes. Trends Food Sci. Technol. 2021, 109, 711–724. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Q.; Li, Z.; Chen, W.; Gu, W.; Zhang, W. Microstructure and emulsifying properties of rice starch-fatty acid complexes prepared by ultra-high pressure treatment. Food Hydrocoll. 2025, 158, 110486. [Google Scholar] [CrossRef]
- Hay, W.T.; Fanta, G.F.; Felker, F.C.; Peterson, S.C.; Skory, C.D.; Hojilla-Evangelista, M.P.; Biresaw, G.; Selling, G.W. Emulsification properties of amylose-fatty sodium salt inclusion complexes. Food Hydrocoll. 2019, 90, 490–499. [Google Scholar] [CrossRef]
- Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Buleon, A.; Delage, M.; Brisson, J.; Chanzy, H. Single crystals of V amylose complexed with isopropanol and acetone. Int. J. Biol. Macromol. 1990, 12, 25–33. [Google Scholar] [CrossRef]
- Putseys, J.; Lamberts, L.; Delcour, J.A. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J. Cereal Sci. 2010, 51, 238–247. [Google Scholar] [CrossRef]
- Le, C.-A.-K.; Choisnard, L.; Wouessidjewe, D.; Putaux, J.-L. Polymorphism of crystalline complexes of V-amylose with fatty acids. Int. J. Biol. Macromol. 2018, 119, 555–564. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Mazeau, K.; Morin, M.; Cardoso, M.B.; Chanzy, H.; Putaux, J.-L. Molecular and Crystal Structure of 7-Fold V-Amylose Complexed with 2-Propanol. Macromolecules 2010, 43, 8628–8636. [Google Scholar] [CrossRef]
- Winter, W.T.; Sarko, A. Crystal and molecular structure of the amylose–DMSO complex. Biopolymers 1974, 13, 1461–1482. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, H.R.; Choi, S.J.; Park, C.S.; Moon, T.W. Complexation of Amylosucrase-Modified Waxy Corn Starch with Fatty Acids: Determination of Their Physicochemical Properties and Digestibilities. J. Food Sci. 2019, 84, 1362–1370. [Google Scholar] [CrossRef]
- Cai, C.; Tian, Y.; Sun, C.; Jin, Z. Resistant structure of extruded starch: Effects of fatty acids with different chain lengths and degree of unsaturation. Food Chem. 2022, 374, 131510. [Google Scholar] [CrossRef]
- Kang, X.; Jia, S.; Gao, W.; Wang, B.; Zhang, X.; Tian, Y.; Sun, Q.; Atef, M.; Cui, B.; Abd El-Aty, A. The formation of starch-lipid complexes by microwave heating. Food Chem. 2022, 382, 132319. [Google Scholar] [CrossRef]
- Luo, S.; Xiong, S.; Li, X.; Hu, X.; Ye, J.; Liu, C. Impact of starch–lipid complexes on oil absorption of starch and its mechanism. J. Sci. Food Agric. 2023, 103, 83–91. [Google Scholar] [CrossRef]
- Liu, S.; Sun, S.; Chen, W.; Jia, R.; Zheng, B.; Guo, Z. Structural, physicochemical properties, and digestibility of lotus seed starch-conjugated linoleic acid complexes. Int. J. Biol. Macromol. 2022, 214, 601–609. [Google Scholar] [CrossRef]
- Wang, R.; Liu, P.; Cui, B.; Kang, X.; Yu, B.; Qiu, L.; Sun, C. Effects of pullulanase debranching on the properties of potato starch-lauric acid complex and potato starch-based film. Int. J. Biol. Macromol. 2020, 156, 1330–1336. [Google Scholar] [CrossRef]
- Hao, Z.; Xu, H.; Yu, Y.; Han, S.; Gu, Z.; Wang, Y.; Li, C.; Zhang, Q.; Deng, C.; Xiao, Y. Preparation of the starch-lipid complexes by ultrasound treatment: Exploring the interactions using molecular docking. Int. J. Biol. Macromol. 2023, 237, 124187. [Google Scholar] [CrossRef]
- Dash, D.R.; Pathak, S.S.; Pradhan, R.C. Improvement in novel ultrasound-assisted extraction technology of high value-added components from fruit and vegetable peels. J. Food Process Eng. 2021, 44, e13658. [Google Scholar] [CrossRef]
- Liu, H.; Yao, Y.; Zhang, Y.; Zheng, B.; Zeng, H. Ultrasonication-mediated formation of V-type lotus seed starch for subsequent complexation with butyric acid. Int. J. Biol. Macromol. 2023, 236, 124000. [Google Scholar] [CrossRef]
- Oya-Hasegawa, M.; Kusashio, K.; Yasutomi, J.; Matsumoto, M.; Suzuki, T.; Iida, A.; Fushimi, K.; Furukawa, A.; Ashizawa, Y.; Imamura, N. Ultrasonic Cleaning for Irrigating Purulent Substances during Laparoscopic Gastrointestinal Surgery. J. Oleo Sci. 2023, 72, 409–419. [Google Scholar] [CrossRef]
- Raza, H.; Ameer, K.; Ren, X.; Liang, Q.; Chen, X.; Chen, H.; Ma, H. Physicochemical properties and digestion mechanism of starch-linoleic acid complex induced by multi-frequency power ultrasound. Food Chem. 2021, 364, 130392. [Google Scholar] [CrossRef] [PubMed]
- Chumsri, P.; Panpipat, W.; Cheong, L.-Z.; Chaijan, M. Formation of intermediate amylose rice starch–lipid complex assisted by ultrasonication. Foods 2022, 11, 2430. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, R.; Kang, X.; Cui, B.; Yu, B. Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films. Ultrason. Sonochem. 2018, 44, 215–222. [Google Scholar] [CrossRef]
- Tang, J.; Liang, Q.; Ren, X.; Raza, H.; Ma, H. Insights into ultrasound-induced starch-lipid complexes to understand physicochemical and nutritional interventions. Int. J. Biol. Macromol. 2022, 222, 950–960. [Google Scholar] [CrossRef]
- Zhang, B.; Xiao, Y.; Wu, X.; Luo, F.; Lin, Q.; Ding, Y. Changes in structural, digestive, and rheological properties of corn, potato, and pea starches as influenced by different ultrasonic treatments. Int. J. Biol. Macromol. 2021, 185, 206–218. [Google Scholar] [CrossRef]
- Hu, A.; Li, L.; Zheng, J.; Lu, J.; Meng, X.; Liu, Y.; Rehman, R.U. Different-frequency ultrasonic effects on properties and structure of corn starch. J. Sci. Food Agric. 2014, 94, 2929–2934. [Google Scholar] [CrossRef]
- Zhu, F. Chemical composition, health effects, and uses of water caltrop. Trends Food Sci. Technol. 2016, 49, 136–145. [Google Scholar] [CrossRef]
- Chung, J.-C.; Lai, L.-S. Effects of Continuous and Cycled Annealing on the Physicochemical Properties and Digestibility of Water Caltrop Starch. Foods 2023, 12, 3551. [Google Scholar] [CrossRef]
- Tsai, P.-C.; Lai, L.-S. In vitro starch digestibility, rheological, and physicochemical properties of water caltrop starch modified with cycled heat-moisture treatment. Foods 2021, 10, 1687. [Google Scholar] [CrossRef]
- Liu, J.L.; Tsai, P.C.; Lai, L.S. Impacts of Hydrothermal Treatments on the Morphology, Structural Characteristics, and In Vitro Digestibility of Water Caltrop Starch. Molecules 2021, 26, 4974. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chi, B.; Xu, R.; Liao, H.; Xu, X.; Tan, X. Changes in structures and digestibility of amylose-oleic acid complexes following microwave heat-moisture treatment. Int. J. Biol. Macromol. 2022, 214, 439–445. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N. Starches: Molecular and Granular Structures and Properties. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; Elsevier in Cooperation with AACC International: Cambridge, MA, USA, 2018; pp. 159–189. [Google Scholar]
- Jia, X.; Sun, S.; Chen, B.; Zheng, B.; Guo, Z. Understanding the crystal structure of lotus seed amylose–long-chain fatty acid complexes prepared by high hydrostatic pressure. Food Res. Int. 2018, 111, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, H.; Shi, M. Effect of ethanol–water solution on the crystallization of short chain amylose from potato starch. Starch Stärke 2016, 68, 683–690. [Google Scholar] [CrossRef]
- Wang, R.; Liu, P.; Cui, B.; Kang, X.; Yu, B. Effects of different treatment methods on properties of potato starch-lauric acid complex and potato starch-based films. Int. J. Biol. Macromol. 2019, 124, 34–40. [Google Scholar] [CrossRef]
- Li, Y.H.; Wang, Y.S.; Li, X.; Chen, H.H. Effect of freezing-assisted treatment on the formation of stable VII-type complex of fried sweet potato starch and its mechanism. J. Food Sci. 2022, 87, 543–553. [Google Scholar] [CrossRef]
- Oriani, V.B.; Alvim, I.D.; Consoli, L.; Molina, G.; Pastore, G.M.; Hubinger, M.D. Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Res. Int. 2016, 80, 41–49. [Google Scholar] [CrossRef]
- Godet, M.; Tran, V.; Colonna, P.; Buleon, A.; Pezolet, M. Inclusion/exclusion of fatty acids in amylose complexes as a function of the fatty acid chain length. Int. J. Biol. Macromol. 1995, 17, 405–408. [Google Scholar] [CrossRef]
- No, J.; Shin, M. Structures and digestibility of B-type high-amylose rice starches compared with A-type high-amylose rice starches. J. Cereal Sci. 2023, 112, 103713. [Google Scholar] [CrossRef]
- Marinopoulou, A.; Papastergiadis, E.; Raphaelides, S.N.; Kontominas, M.G. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes. Carbohydr. Polym. 2016, 141, 106–115. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, Z.; Zheng, B.; Zeng, S.; Zeng, H. Insight into the formation mechanism of lotus seed starch-lecithin complexes by dynamic high-pressure homogenization. Food Chem. 2020, 315, 126245. [Google Scholar] [CrossRef] [PubMed]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a tool for measuring starch-related physiochemical properties in cereals: A review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Chao, C.; Huang, S.; Yu, J.; Copeland, L.; Yang, Y.; Wang, S. The influence of short-range molecular order in gelatinized starch on the formation of starch-lauric acid complexes. Int. J. Biol. Macromol. 2024, 260, 129526. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Perez-Santos, D.M.; Ziegler, G.R. Effect of guest structure on amylose-guest inclusion complexation. Food Hydrocoll. 2019, 97, 105188. [Google Scholar] [CrossRef]
- Shogren, R.L.; Fanta, G.F.; Felker, F.C. X-ray diffraction study of crystal transformations in spherulitic amylose/lipid complexes from jet-cooked starch. Carbohydr. Polym. 2006, 64, 444–451. [Google Scholar] [CrossRef]
- Liu, Q.; Guan, H.; Guo, Y.; Wang, D.; Yang, Y.; Ji, H.; Jiao, A.; Jin, Z. Structure and in vitro digestibility of amylose–lipid complexes formed by an extrusion-debranching-complexing strategy. Food Chem. 2024, 437, 137950. [Google Scholar] [CrossRef]
Sample Code 1 | Relative Crystallinity (%) | Crystalline Type |
---|---|---|
Native | 46.7 ± 0.6 a | A type |
Gelatinized Starch | 3.2 ± 0.4 f | - 2 |
US-0-0 | 20.9 ± 0.6 e | V-type |
US-30-5 | 24.6 ± 0.4 d | V-type |
US-30-10 | 26.1 ± 0.5 c | V-type |
US-30-20 | 28.7 ± 0.2 b | V-type |
US-50-5 | 26.1 ± 0.6 c | V-type |
US-50-10 | 26.7 ± 0.2 c | V-type |
US-50-20 | 27.9 ± 0.3 b | V-type |
Sample Code 1 | R1047 cm−1/1022 cm−1 | R1022 cm−1/995 cm−1 |
---|---|---|
Native | 0.725 ± 0.009 a | 0.783 ± 0.001 e |
Gelatinized Starch | 0.696 ± 0.008 b | 0.890 ± 0.003 d |
US-0-0 | 0.674 ± 0.014 c | 0.919 ± 0.000 a |
US-30-5 | 0.674 ± 0.006 c | 0.917 ± 0.005 ab |
US-30-10 | 0.680 ± 0.002 bc | 0.910 ± 0.009 abc |
US-30-20 | 0.682 ± 0.008 bc | 0.898 ± 0.007 cd |
US-50-5 | 0.673 ± 0.008 c | 0.906 ± 0.003 bc |
US-50-10 | 0.683 ± 0.011 bc | 0.906 ± 0.002 bc |
US-50-20 | 0.6659 ± 0.011 c | 0.904 ± 0.005 c |
Sample Code 1 | Pasting Temperature (°C) | Peak Viscosity (cP) | Holding Viscosity (cP) | Breakdown Viscosity (cP) | Final Viscosity (cP) | Setback Viscosity (cP) |
---|---|---|---|---|---|---|
Native | 83.0 ± 0.5 a | 900.0 ± 13.5 a | 850.7 ± 22.1 a | 49.3 ± 10.3 b | 1203.3 ± 32.7 a | 352.7 ± 10.7 a |
Gelatinized Starch | 63.9 ± 0.7 d | 108.0 ± 11.3 d | 104.7 ± 11.9 c | 3.3 ± 2.1 e | 156.7 ± 6.8 d | 52.0 ± 5.2 d |
US-0-0 | 66.1 ± 0.7 b | 425.7 ± 1.5 b | 420.7 ± 2.5 b | 1.7 ± 2.3 e | 390.0 ± 7.9 b | −30.7 ± 5.5 f |
US-30-5 | 64.8 ± 0.7 cd | 154.0 ± 13.5 c | 90.0 ± 3.6 c | 64.0 ± 1.1 a | 201.0 ± 0.0 c | 111.0 ± 3.6 b |
US-30-10 | 64.3 ± 0.6 cd | 84.7 ± 4.2 e | 60.0 ± 4.4 d | 24.7 ± 0.6 c | 115.7 ± 6.8 e | 55.7 ± 2.5 d |
US-30-20 | 66.1 ± 0.3 b | 50.3 ± 2.3 fg | 41.3 ± 2.9 e | 9.0 ± 5.2 e | 73.7 ± 5.0 f | 32.3 ± 7.8 e |
US-50-5 | 65.4 ± 0.9 bc | 111.7 ± 0.6 d | 67.3 ± 3.1 d | 44.3 ± 2.5 b | 152.7 ± 0.6 d | 85.3 ± 2.5 c |
US-50-10 | 65.3 ± 0.5 bc | 57.7 ± 3.5 f | 37.0 ± 1.0 e | 20.7 ± 4.5 c | 90.0 ± 7.2 f | 51.0 ± 4.6 d |
US-50-20 | 66.0 ± 0.3 b | 39.7 ± 1.2 g | 32.0 ± 1.2 e | 7.3 ± 1.2 e | 70.0 ± 1.7 f | 37.7 ± 0.6 e |
Sample Code 1 | Native | Gelatinized Starch | US-0-0 | US-30-5 | US-30-10 | US-30-20 | US-50-5 | US-50-10 | US-50-20 |
---|---|---|---|---|---|---|---|---|---|
To (°C) | 76.98 ± 0.06 a | - | 61.06 ± 0.33 b | 60.98 ± 0.48 b | 60.52 ± 0.12 b | 60.91 ± 0.54 b | 60.62 ± 0.18 b | 61.27 ± 0.02 b | 61.17 ± 0.38 b |
Tp (°C) | 79.95 ± 0.12 a | - | 62.23 ± 0.23 b | 62.23 ± 0.21 b | 61.97 ± 0.12 b | 62.22 ± 0.46 b | 62.07 ± 0.23 b | 62.46 ± 0.13 b | 62.36 ± 0.23 b |
Te (°C) | 84.51 ± 0.04 a | - | 64.05 ± 0.39 b | 64.15 ± 0.30 b | 63.73 ± 0.16 b | 63.98 ± 0.51 b | 63.97 ± 0.28 b | 64.37 ± 0.11 b | 64.25 ± 0.36 b |
Te-To (°C) | 7.54 ± 0.11 a | - | 2.99 ± 0.06 c | 3.17 ± 0.18 bc | 3.21 ± 0.04 bc | 3.08 ± 0.03 c | 3.34 ± 0.10 b | 3.10 ± 0.14 c | 3.09 ± 0.02 c |
∆H (J/g) | 23.88 ± 0.56 a | - | 10.15 ± 0.10 c | 10.87 ± 2.62 bc | 11.19 ± 0.59 bc | 10.96 ± 1.97 bc | 9.02 ± 0.28 c | 11.67 ± 1.65 bc | 13.74 ± 0.13 b |
Sample Code 1 | Native | Gelatinized Starch | US-0-0 | US-30-5 | US-30-10 | US-30-20 | US-50-5 | US-50-10 | US-50-20 |
---|---|---|---|---|---|---|---|---|---|
Peak I | |||||||||
To (°C) | - | - | 93.07 ± 0.41 c | 96.24 ± 0.15 a | 95.56 ± 0.91 ab | 96.24 ± 0.29 a | 96.02 ± 1.42 a | 95.76 ± 0.83 ab | 93.92 ± 0.49 bc |
Tp (°C) | - | - | 98.75 ± 0.01 c | 101.07 ± 0.25 ab | 100.81 ± 0.58 ab | 101.56 ± 0.47 a | 101.06 ± 0.70 ab | 100.14 ± 0.58 b | 100.40 ± 0.47 ab |
Te (°C) | - | - | 103.97 ± 0.79 b | 104.88 ± 0.25 ab | 105.69 ± 0.33 a | 105.00 ± 0.00 ab | 104.49 ± 0.74 ab | 104.45 ± 0.47 ab | 105.27 ± 0.52 ab |
Te-To (°C) | - | - | 10.90 ± 1.20 a | 8.64 ± 0.40 b | 10.13 ± 0.57 ab | 8.77 ± 0.29 b | 8.47 ± 0.68 b | 8.69 ± 1.30 b | 11.35 ± 1.01 a |
∆H (J/g) | - | - | 1.43 ± 0.35 c | 1.83 ± 0.21 c | 1.51 ± 0.88 c | 3.73 ± 0.21 b | 2.32 ± 0.05 c | 3.46 ± 0.65 b | 5.08 ± 0.01 a |
Peak II | |||||||||
To (°C) | - | - | 112.56 ± 0.06 | - | - | - | - | - | - |
Tp (°C) | - | - | 116.37 ± 0.47 | - | - | - | - | - | - |
Te (°C) | - | - | 122.00 ± 1.32 | - | - | - | - | - | - |
Te-To (°C) | - | - | 9.45 ± 1.38 | - | - | - | - | - | - |
∆H (J/g) | - | - | 1.95 ± 0.24 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.-W.; Lai, L.-S. Impact of Ultrasonic-Assisted Preparation of Water Caltrop Starch–Lipid Complex: Structural and Physicochemical Properties. Foods 2025, 14, 240. https://doi.org/10.3390/foods14020240
Huang K-W, Lai L-S. Impact of Ultrasonic-Assisted Preparation of Water Caltrop Starch–Lipid Complex: Structural and Physicochemical Properties. Foods. 2025; 14(2):240. https://doi.org/10.3390/foods14020240
Chicago/Turabian StyleHuang, Kuan-Wei, and Lih-Shiuh Lai. 2025. "Impact of Ultrasonic-Assisted Preparation of Water Caltrop Starch–Lipid Complex: Structural and Physicochemical Properties" Foods 14, no. 2: 240. https://doi.org/10.3390/foods14020240
APA StyleHuang, K.-W., & Lai, L.-S. (2025). Impact of Ultrasonic-Assisted Preparation of Water Caltrop Starch–Lipid Complex: Structural and Physicochemical Properties. Foods, 14(2), 240. https://doi.org/10.3390/foods14020240