Impact of Dietary Alginate Hydrogel Capsules with Lavender Essential Oil on Oxidative Stability, Fatty Acid Profile, and Mineral Composition of Breast Muscles in Broiler Chickens
Abstract
1. Introduction
2. Materials and Methods
2.1. Essential Oil and Alginate Hydrogels Capsules
2.2. Bird Trial
2.3. Chemical Composition Analysis
2.4. Determination of Oxidative Stress Markers
2.5. Determination of Fatty Acid Profile in Breast Muscles Using Gas Chromatography–Mass Spectrometry (GC-MS)
2.6. Determination of Mineral Content in Breast Muscles
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Lavender Essential Oil (LEO)
3.2. Determination of Basic Chemical Composition
3.3. Determination of Oxidative Stress Markers
3.4. Determination of Fatty Acid Profile
3.5. Determination of Mineral Composition in Breast Muscles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LEO | Lavender essential oil |
CAT | Catalase |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
TBARSs | Thiobarbituric acid reactive substances |
References
- Kwon, B.-Y.; Park, J.; Kim, D.-H.; Lee, K.-W. Assessment of Welfare Problems in Broilers: Focus on Musculoskeletal Problems Associated with Their Rapid Growth. Animals 2024, 14, 1116. [Google Scholar] [CrossRef]
- Rahman, M.R.T.; Fliss, I.; Biron, E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef]
- Bajagai, Y.S.; Alsemgeest, J.; Moore, R.J.; Van, T.T.H.; Stanley, D. Phytogenic products, used as alternatives to antibiotic growth promoters, modify the intestinal microbiota derived from a range of production systems: An in vitro model. Appl. Microbiol. Biotechnol. 2020, 104, 10631–10640. [Google Scholar] [CrossRef]
- Miyakawa, M.E.F.; Casanova, N.A.; Kogut, M.H. How did antibiotic growth promoters increase growth and feed efficiency in poultry? Poult. Sci. 2024, 103, 103278. [Google Scholar] [CrossRef]
- Hurtado, A.; Aljabali, A.A.A.; Mishra, V.; Tambuwala, M.M.; Serrano-Aroca, Á. Alginate: Enhancement Strategies for Advanced Applications. Int. J. Mol. Sci. 2022, 23, 4486. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Yu, Y.-H.; Konieczka, P.; Kozłowski, K.; Witkowska, D.; Dybus, A.; Hukowska-Szematowicz, B.; Jędrzejczak-Silicka, M.; Bucław, M.; Bartkowiak, A. Chemical Composition, Cytotoxicity, and Encapsulation of Lavender Essential Oil (Lavandula angustifolia) in Alginate Hydrogel—Application and Therapeutic Effect on Animal Model. Molecules 2025, 30, 2931. [Google Scholar] [CrossRef] [PubMed]
- Dobros, N.; Zawada, K.; Paradowska, K. Phytochemical Profile and Antioxidant Activity of Lavandula angustifolia and Lavandula x intermedia Cultivars Extracted with Different Methods. Antioxidants 2022, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Betlej, I.; Andres, B.; Cebulak, T.; Kapusta, I.; Balawejder, M.; Żurek, N.; Jaworski, S.; Lange, A.; Kutwin, M.; Pisulewska, E.; et al. Phytochemical Composition and Antimicrobial Properties of New Lavandula angustifolia Ecotypes. Molecules 2024, 29, 1740. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Zych, S.; Bucław, M.; Majewska, D.; Dzięcioł, M.; Szczerbińska, D. Evaluation of the Antibacterial Activity of Gentamicin in Combination with Essential Oils Isolated from Different Cultivars and Morphological Parts of Lavender (Lavandula angustifolia Mill.) against Selected Bacterial Strains. Molecules 2023, 28, 5781. [Google Scholar] [CrossRef] [PubMed]
- Küçükyilmaz, K.; Kiyma, Z.; Çetinkaya, M.; Ateş, A.; Atalay, H.; Akdağ, A.; Bozkurt, M.; Gürsel, F. Effect of lavender (Lavandula stoechas) essential oil on growth performance, carcass characteristics, meat quality and antioxidant status of broilers. S. Afr. J. Anim. Sci. 2017, 47, 178–186. [Google Scholar] [CrossRef]
- Salajegheh, A.; Salarmoini, M.; Afsharmanesh, M.; Salajegheh, M. Growth performance, intestinal microflora, and meat quality of broiler chickens fed lavender (Lavandula angustifolia) powder. J. Livest. Sci. Technol. 2018, 6, 31–38. [Google Scholar]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D.; Zych, S. The use of lavender (Lavandula angustifolia) essential oil as an additive to drinking water for broiler chickens and its (in vitro) reaction with enrofloxacin. Animals 2021, 11, 1535. [Google Scholar] [CrossRef]
- Amer, S.A.; Abdel-Wareth, A.A.A.; Gouda, A.; Saleh, G.K.; Nassar, A.H.; Sherief, W.R.I.A.; Albogami, S.; Shalaby, S.I.; Abdelazim, A.M.; Abomughaid, M.M. Impact of Dietary Lavender Essential Oil on the Growth and Fatty Acid Profile of Breast Muscles, Antioxidant Activity, and Inflammatory Responses in Broiler Chickens. Antioxidants 2022, 11, 1798. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Dzięcioł, M.; Bucław, M.; Majewska, D.; Szczerbińska, D. Determination of Sesquiterpenic Acids with Sedative Properties in Extracts of Medicinal Lavender (Lavandula angustifolia Mill.). Appl. Sci. 2024, 14, 554. [Google Scholar] [CrossRef]
- Zych, S.; Adaszyńska-Skwirzyńska, M.; Szewczuk, M.A.; Szczerbińska, D. Interaction between Enrofloxacin and Three Essential Oils (Cinnamon Bark, Clove Bud and Lavender Flower)—A Study on Multidrug-Resistant Escherichia coli Strains Isolated from 1-Day-Old Broiler Chickens. Int. J. Mol. Sci. 2024, 25, 5220. [Google Scholar] [CrossRef]
- Blažeković, B.; Vladimir-Knežević, S.; Brantner, A.; Štefan, M.B. Evaluation of antioxidant potential of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’: A comparative study with L. angustifolia Mill. Molecules 2010, 15, 5971–5987. [Google Scholar] [CrossRef]
- Deligiannidou, G.E.; Kontogiorgis, C.; Hadjipavlou-Litina, D.; Lazari, D.; Konstantinidis, T.; Papadopoulos, A. Antioxidant contribution of lavender (Lavandula angustifolia), sage (Salvia officinalis), tilia (Tilia tomentosa) and sideritis (Sideritis perfoliata) beverages prepared at home. J. Food Sci. Technol. 2018, 3, 360–377. [Google Scholar]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef] [PubMed]
- Pooja, G.; Shweta, S.; Patel, P. Oxidative stress and free radicals in disease pathogenesis: A review. Discov. Med. 2025, 2, 104. [Google Scholar] [CrossRef]
- Kralik, G.; Kralik, Z.; Grčević, M.; Hanžek, D. Quality of chicken meat. In Animal Husbandry and Nutrition; Yucel, B., Ed.; Intechopen: London, UK, 2018; pp. 63–94. [Google Scholar]
- Adaszyńska-Skwirzyńska, M.; Konieczka, P.; Bucław, M.; Majewska, D.; Pietruszka, A.; Zych, S.; Szczerbińska, D. Analysis of the Production and Economic Indicators of Broiler Chicken Rearing in 2020–2023: A Case Study of a Polish Farm. Agriculture 2025, 15, 139. [Google Scholar] [CrossRef]
- Lu, T.; Abdalla Gibril, B.A.; Xu, J.; Xiong, X. Unraveling the Genetic Foundations of Broiler Meat Quality: Advancements in Research and Their Impact. Genes 2024, 15, 746. [Google Scholar] [CrossRef]
- Gržinić, G.; Piotrowicz-Cieślak, A.; Klimkowicz-Pawlas, A.; Górny, R.L.; Ławniczek-Wałczyk, A.; Piechowicz, L.; Olkowska, E.; Potrykus, M.; Tankiewicz, M.; Krupka, M.; et al. Intensive poultry farming: A review of the impact on the environment and human health. Sci. Total Environ. 2023, 858, 160014. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.-Y.; Lee, H.-G.; Jeon, Y.-S.; Song, J.-Y.; Kim, S.-H.; Kim, D.-W.; Kim, C.-H.; Lee, K.-W. Research Note: Welfare and stress responses of broiler chickens raised in conventional and animal welfare-certified broiler farms. Poult. Sci. 2024, 103, 103402. [Google Scholar] [CrossRef] [PubMed]
- Altan, O.; Pabuçcuoglu, A.; Altan, A.; Konyalioglu, S.; Bayraktar, H. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br. Poult. Sci. 2003, 44, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Oke, O.E.; Akosile, O.A.; Oni, A.I.; Opowoye, I.O.; Ishola, C.A.; Adebiyi, J.O.; Odeyemi, A.J.; Adjei-Mensah, B.; Uyanga, V.A.; Abioja, M.O. Oxidative stress in poultry production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef]
- Estevez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef]
- Kumar, P.; Abubakar, A.; Verma, A.K.; Umaraw, P.; Adewale Ahmed, M.; Mehta, N.; Sazili, A.Q. New insights in improving sustainability in meat production: Opportunities and challenges. Crit. Rev. Food Sci. Nutr. 2022, 63, 11830–11858. [Google Scholar] [CrossRef]
- Morrissey, P.A.; Sheehy, P.J.; Galvin, K.; Kerry, J.P.; Buckley, D.J. Lipid stability in meat and meat products. Meat Sci. 1998, 49 (Suppl. S1), S73–S86. [Google Scholar] [CrossRef]
- Fellenberg, M.A.; Speisky, H. Antioxidants: Their effects on broiler oxidative stress and its meat oxidative stability. World’s Poult. Sci. J. 2006, 62, 53–70. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Saracila, M.; Panaite, T.D.; Mironeasa, S.; Untea, A.E. Dietary Supplementation of Some Antioxidants as Attenuators of Heat Stress on Chicken Meat Characteristics. Agriculture 2021, 11, 638. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, D.; Zeng, X.; Zeng, Q. Effects of Complex Antioxidants Added to Chicken Diet on Growth Performance, Serum Biochemical Indices, Meat Quality, and Antioxidant Capacity. Animals 2024, 14, 360. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Aviagen, R. Ross Broiler Management Handbook; Aviagen Group: Huntsville, AL, USA, 2019. [Google Scholar]
- Chodkowska, K.A.; Abramowicz-Pindor, P.A.; Tuśnio, A.; Gawin, K.; Taciak, M.; Barszcz, M. Effect of phytobiotic composition on production parameters, oxidative stress markers and myokine levels in blood and pectoral muscle of broiler chickens. Animals 2022, 12, 2625. [Google Scholar] [CrossRef] [PubMed]
- Wypych, A.; Ożgo, M.; Bernaciak, M.; Herosimczyk, A.; Barszcz, M.; Gawin, K.; Ciechanowicz, A.K.; Kucia, M.; Pierzchała, M.; Poławska, E.; et al. Effect of feeding high fat diets differing in fatty acid composition on oxidative stress markers and protein expression profiles in mouse kidneys. J. Anim. Feed Sci. 2024, 33, 170–184. [Google Scholar] [CrossRef]
- ISO 12966-2:2017-05; Oleje i Tłuszcze Roślinne Oraz Zwierzęce. Chromatografia Gazowa Estrów Metylowych Kwasów Tłuszczowych. Część 2: Przygotowanie Estrów Metylowych Kwasów Tłuszczowych. Polska Norma PN-EN: Warszawa, Poland, 2017. (In Polish)
- Goluch, Z.; Słupczyńska, M.; Okruszek, A.; Haraf, G.; Wereńska, M.; Wołoszyn, J. The Energy and Nutritional Value of Meat of Broiler Chickens Fed with Various Addition of Wheat Germ Expeller. Animals 2023, 13, 499. [Google Scholar] [CrossRef]
- Ismail, I.; Joo, S.-T. Poultry Meat Quality in Relation to Muscle Growth and Muscle Fiber Characteristics. Korean J. Food Sci. Anim. Resour. 2017, 37, 873–883. [Google Scholar]
- Suchý, P.; Jelínek, P.; Strakova, E.; Hucl, J. Chemical Composition of Muscles of Hybrid Broiler Chickens during Prolonged Feeding. Czech J. Anim. Sci. 2002, 47, 511–518. [Google Scholar]
- Felter, S.P.; Zhang, X.; Thompson, C. Butylated hydroxyanisole: Carcinogenic food additive to be avoided or harmless antioxidant important to protect food supply? Regul. Toxicol. Pharmacol. 2021, 121, 104887. [Google Scholar] [CrossRef]
- Cavanagh, H.M.A.; Wilkinson, J.M. Biological activities of lavender essential oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Lipid oxidation: Measurement methods, mechanisms, and some future considerations. J. Am. Oil Chem. Soc. 2010, 87, 1–15. [Google Scholar]
- Alagawany, M.; Farag, M.R.; Al-Sagheer, A.A.; El-Hack, M.E.A.; El-Ramady, H.R. The use of essential oils in poultry nutrition: A review. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1205–1222. [Google Scholar]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. The effect of lavender (Lavandula angustifolia) essential oil as a drinking water supplement on the production performance, blood biochemical parameters, and ileal microflora in broiler chickens. Poult. Sci. 2019, 98, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Lanzetti, M.; da Costa, C.A.; Nesi, R.T.; Barroso, M.V.; Martins, V.; Victoni, T.; Lagente, V.; Pires, K.M.P.; e Silva, P.M.R.; Resende, A.C.; et al. Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema. Free Radic. Biol. Med. 2012, 53, 1993–2001. [Google Scholar] [CrossRef]
- Zhang, Z.-W.; Wang, Q.-H.; Zhang, J.-L.; Li, S.; Wang, X.-L.; Xu, S.-W. Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol. Trace Element Res. 2012, 149, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Yang, K.; An, Y.; Teng, X.; Teng, X. Alleviation of lead-induced oxidative stress and immune damage by selenium in chicken bursa of Fabricius. Environ. Sci. Pollut. Res. 2017, 24, 7555–7564. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xing, T.; Li, J.; Zhang, L.; Jiang, Y.; Gao, F. Hydrogen peroxide-induced oxidative stress impairs redox status and damages aerobic metabolism of breast muscle in broilers. Poult. Sci. 2021, 100, 918–925. [Google Scholar] [CrossRef]
- Al-Yasiry, A.R.M.; Kiczorowska, B.; Samolińska, W. Nutritional value and content of mineral elements in the meat of broiler chickens fed Boswellia serrata supplemented diets. J. Elem. 2017, 22, 1027–1037. [Google Scholar] [CrossRef]
- Da Silva, G.L.; Luft, C.; Lunardelli, A.; Amaral, R.H.; Da Silva Melo, D.A.; Donadio, M.V.F.; Nunes, F.B.; De Azambuja, M.S.; Santana, J.C.; Moraes, C.M.B.; et al. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. Ann. Braz. Aca Sci. 2015, 87 (Suppl. S2), 1397–1408. [Google Scholar] [CrossRef]
- Hedayati, S.; Tarahi, M.; Iraji, A.; Hashempur, M.H. Recent developments in the encapsulation of lavender essential oil. Adv. Colloid Interface Sci. 2024, 331, 103229. [Google Scholar] [CrossRef] [PubMed]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef]
- He, P.; Lei, Y.; Zhang, K.; Zhang, R.; Bai, Y.; Li, Z.; Shi, J. Dietary oregano essential oil supplementation alters meat quality, oxidative stability, and fatty acid profiles of beef cattle. Meat Sci. 2023, 195, 109013. [Google Scholar] [CrossRef] [PubMed]
- Das, J.K.; Chatterjee, N.; Pal, S.; Nanda, P.K.; Das, A.; Das, L.; Dhar, P.; Das, A.K. Effect of Bamboo Essential Oil on the Oxidative Stability, Microbial Attributes and Sensory Quality of Chicken Meatballs. Foods 2023, 12, 218. [Google Scholar] [CrossRef]
- Saracila, M. Oxidative stress in poultry: A review. J. Anim. Sci. Biotechnol. 2021, 12, 1–10. [Google Scholar]
- Özbilgin, A.; Mogulkoç, M.; Kara, K.; Gelen, S.U.; Yakan, A. Effects of lavender (Lavandula angustifolia) essential oil on fattening performance, meat quality, serum antioxidant enzymes, gut microbiota and intestinal histomorphology in Japanese quails. Rev. Bras. Ciênc. Avíc. 2023, 25, eRBCA-2023. [Google Scholar] [CrossRef]
- Kitessa, S.M.; Young, P. Echium oil is better than rapeseed oil in enriching poultry meat with n-3 polyunsaturated fatty acids, including eicosapentaenoic acid and docosapentaenoic acid. Br. J. Nutr. 2009, 101, 709–715. [Google Scholar] [CrossRef]
- Thoss, V.; Murphy, P.J.; Marriott, R.; Wilson, T. Triacylglycerol composition of British bluebell (Hyacinthoides non-scripta) seed oil. RSC Adv. 2012, 2, 5314. [Google Scholar] [CrossRef]
- Usman, A.; Thoss, V.; Darko, G.; Itodo, A.U. Determination of Triacylglycerol Composition of Trichilia emetica Seed Oil Using GC-MS and 1H-NMR Spectroscopy. Adv. Anal. Chem. 2016, 6, 10–16. [Google Scholar]
- Vasta, V.; Luciano, G. The use of essential oils in ruminant nutrition. Recent Pat. Food Nutr. Agric. 2011, 3, 119–128. [Google Scholar]
- Sierżant, K.; Korzeniowska, M.; Krόl, B.; Orda, J.; Wojdyło, A. Oxidative stability of the meat of broilers fed diets supplemented with various levels of Blackcurrant extract (Ribes nigrum L.) during different time period. J. Chem. 2018, 2018, 3403975. [Google Scholar] [CrossRef]
- Draget, K.I.; Taylor, C. Chemical, physical and biological properties of alginates and their biomedical implications. Prog. Polym. Sci. 2011, 36, 1203–1221. [Google Scholar] [CrossRef]
- Giannenas, I.; Tzora, A.; Bonos, E.; Sarakatsianos, I.; Karamoutsios, A.; Anastasiou, I.; Skoufos, I. Effects of dietary oregano essential oil, laurel essential oil and attapulgite on chemical composition, oxidative stability, fatty acid profile and mineral content of chicken breast and thigh meat. Eur. Poult. Sci. 2016, 80, 1–18. [Google Scholar] [CrossRef]
Item | Group 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|
C | H | HE | SEM | C vs. H | H vs. HE | HE vs. C | |
Dry matter | 23.7 | 23.5 | 22.8 | 0.14 | 0.172 | 0.001 | 0.007 |
Water | 76.3 | 76.5 | 77.2 | 0.14 | 0.172 | 0.001 | 0.007 |
Protein | 24.1 | 23.9 | 23.8 | 0.45 | 0.437 | 0.480 | 0.322 |
Fat | 1.18 | 1.28 | 1.15 | 0.14 | 0.599 | 0.522 | 0.611 |
Ash | 1.20 | 1.21 | 1.16 | 0.01 | 0.551 | 0.624 | 0.888 |
Item | Group 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|
C | H | HE | SEM | C vs. H | H vs. HE | HE vs. C | |
TBARS 3, μM/g | 12.2 | 9.8 | 10.2 | 1.02 | 0.465 | 1.000 | 0.560 |
Catalase, U/mg protein | 3.6 | 3.8 | 3.1 | 0.18 | 1.000 | 0.312 | 0.791 |
Total SOD 4, U/mg protein | 85.5 | 70.2 | 58.3 | 3.65 | 0.252 | 0.465 | 0.005 |
Mn SOD 4, U/mg protein | 38.7 | 26.3 | 32.8 | 1.79 | 0.016 | 0.560 | 0.422 |
CuZn SOD 4, U/mg protein | 46.8 | 43.9 | 25.5 | 3.54 | 1.000 | 0.126 | 0.013 |
Glutathione peroxidase, U/mg protein | 17.0 | 10.9 | 10.6 | 1.86 | 1.000 | 1.000 | 1.000 |
Item | Group 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|
C | H | HE | SEM | C vs. H | H vs. HE | HE vs. C | |
C14:0 | 0.95 0.106 * | 1.06 0.129 * | 0.97 0.106 * | 0.09 | 0.041 | 0.066 | 0.711 |
C16:0 | 24.8 2.78 * | 24.4 2.967 * | 24.6 2.688 * | 0.29 | 0.025 | 0.173 | 0.246 |
C17:0 | 0.14 0.016 * | 0.18 0.022 * | 0.12 0.013 * | 0.03 | 0.003 | 0.0001 | 0.032 |
C18:0 | 9.96 1.117 * | 9.97 1.212 * | 9.62 1.051 * | 0.30 | 0.954 | 0.070 | 0.066 |
C14:1 | 0.16 0.018 * | 0.15 0.018 * | 0.16 0.017 * | 0.002 | 0.270 | 0.412 | 0.722 |
C16:1 | 5.54 0.621 * | 5.75 0.699 * | 5.62 0.614 * | 0.04 | 0.062 | 0.192 | 0.457 |
C17:1 | 0.32 0.036 * | 0.33 0.04 * | 0.33 0.036 * | 0.01 | 0.535 | 0.903 | 0.595 |
C18:1 n9t | 1.19 0.133 * | 1.27 0.154 * | 1.15 0.126 * | 0.02 | 0.035 | 0.005 | 0.245 |
C18:1 n9c | 33.1 3.711 * | 33.2 4.037 * | 33.2 3.627 * | 0.04 | 0.489 | 0.557 | 0.234 |
C20:1 n9 | 0.45 0.05 * | 0.43 0.052 * | 0.39 0.043 * | 0.01 | 0.497 | 0.145 | 0.052 |
C22:1 n9 | 0.11 0.012 * | 0.11 0.013 * | 0.12 0.013 * | 0.002 | 0.577 | 0.198 | 0.407 |
C18:2 n6c | 16.6 1.86 * | 16.5 2.006 * | 16.8 1.835 * | 0.07 | 0.420 | 0.049 | 0.172 |
C18:3 n6 | 0.15 0.017 * | 0.15 0.018 * | 0.15 0.016 * | 0.002 | 0.368 | 0.227 | 0.695 |
C18:3 n3 | 1.57 0.176 * | 1.63 0.198 * | 1.70 0.186 * | 0.03 | 0.465 | 0.349 | 0.125 |
C20:2 n6 | 0.29 0.033 * | 0.33 0.04 * | 0.32 0.035 * | 0.01 | 0.128 | 0.764 | 0.184 |
C20:3 n6 | 0.31 0.035 * | 0.34 0.041 * | 0.24 0.026 * | 0.01 | 0.326 | 0.005 | 0.028 |
C20:3 n3 | 0.18 0.02 * | 0.18 0.022 * | 0.17 0.019 * | 0.003 | 0.837 | 0.111 | 0.137 |
C20:4 n6 | 1.56 0.175 * | 1.44 0.175 * | 1.49 0.163 * | 0.03 | 0.163 | 0.560 | 0.356 |
C20:5 n3 | 0.65 0.073 * | 0.60 0.073 * | 0.72 0.079 * | 0.02 | 0.291 | 0.046 | 0.245 |
C22:6 n3 | 1.94 0.217 * | 2.03 0.247 * | 2.07 0.226 * | 0.03 | 0.174 | 0.580 | 0.079 |
SFA 3 | 35.8 | 35.6 | 35.3 | 0.08 | 0.110 | 0.072 | 0.004 |
MUFA 4 | 40.9 | 41.2 | 41.0 | 0.07 | 0.071 | 0.189 | 0.508 |
PUFA 5 | 23.3 | 23.2 | 23.7 | 0.09 | 0.699 | 0.037 | 0.061 |
n3 | 4.35 | 4.44 | 4.66 | 0.04 | 0.038 | 0.0003 | 0.0001 |
n6 | 18.9 | 18.7 | 19.0 | 0.08 | 0.382 | 0.197 | 0.608 |
MUFA 4/SFA 3 | 1.14 | 1.16 | 1.16 | 0.01 | 0.028 | 0.667 | 0.015 |
MUFA 4/PUFA 5 | 1.76 | 1.78 | 1.73 | 0.01 | 0.361 | 0.052 | 0.216 |
PUFA 5/SFA 3 | 0.63 | 0.65 | 0.67 | 0.01 | 0.304 | 0.266 | 0.053 |
n6/n3 | 4.35 | 4.22 | 4.08 | 0.04 | 0.035 | 0.026 | 0.001 |
Item | Group 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|
C | H | HE | SEM | C vs. H | H vs. HE | HE vs. C | |
Mg | 392 | 381 | 384 | 3.71 | 0.246 | 0.730 | 0.372 |
Ca | 57.3 | 64.7 | 66.0 | 2.41 | 0.218 | 0.828 | 0.173 |
Na | 586 | 666 | 731 | 17.8 | 0.031 | 0.076 | 0.001 |
K | 4954 | 4720 | 4496 | 60.2 | 0.073 | 0.084 | 0.002 |
Zn | 8.3 | 8.8 | 9.0 | 0.16 | 0.239 | 0.531 | 0.092 |
Cu | 0.37 | 0.41 | 0.32 | 0.01 | 0.104 | 0.001 | 0.041 |
Fe | 5.05 | 5.46 | 4.59 | 0.10 | 0.050 | 0.0003 | 0.034 |
Mn | 0.18 | 0.17 | 0.16 | 0.003 | 0.260 | 0.122 | 0.014 |
Cr | 0.22 | 0.21 | 0.23 | 0.004 | 0.800 | 0.121 | 0.163 |
Pb | 0.089 | 0.087 | 0.090 | 0.001 | 0.628 | 0.399 | 0.679 |
Cd | 0.042 | 0.043 | 0.049 | 0.001 | 0.909 | 0.070 | 0.068 |
Se | 3.34 | 3.40 | 3.04 | 0.10 | 0.801 | 0.176 | 0.235 |
P | 3175 | 3148 | 3238 | 27.2 | 0.692 | 0.212 | 0.350 |
Al | 030 | 0.27 | 0.23 | 0.01 | 0.299 | 0.123 | 0.017 |
Ba | 0.039 | 0.033 | 0.040 | 0.002 | 0.123 | 0.104 | 0.856 |
Si | 5.77 | 4.56 | 5.19 | 0.22 | 0.034 | 0.232 | 0.275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adaszyńska-Skwirzyńska, M.; Konieczka, P.; Kozłowski, K.; Witkowska, D.; Yu, Y.-H.; Barszcz, M.; Konopka, A.; Bucław, M.; Bartkowiak, A. Impact of Dietary Alginate Hydrogel Capsules with Lavender Essential Oil on Oxidative Stability, Fatty Acid Profile, and Mineral Composition of Breast Muscles in Broiler Chickens. Foods 2025, 14, 3409. https://doi.org/10.3390/foods14193409
Adaszyńska-Skwirzyńska M, Konieczka P, Kozłowski K, Witkowska D, Yu Y-H, Barszcz M, Konopka A, Bucław M, Bartkowiak A. Impact of Dietary Alginate Hydrogel Capsules with Lavender Essential Oil on Oxidative Stability, Fatty Acid Profile, and Mineral Composition of Breast Muscles in Broiler Chickens. Foods. 2025; 14(19):3409. https://doi.org/10.3390/foods14193409
Chicago/Turabian StyleAdaszyńska-Skwirzyńska, Michalina, Paweł Konieczka, Krzysztof Kozłowski, Dorota Witkowska, Yu-Hsiang Yu, Marcin Barszcz, Adrianna Konopka, Mateusz Bucław, and Artur Bartkowiak. 2025. "Impact of Dietary Alginate Hydrogel Capsules with Lavender Essential Oil on Oxidative Stability, Fatty Acid Profile, and Mineral Composition of Breast Muscles in Broiler Chickens" Foods 14, no. 19: 3409. https://doi.org/10.3390/foods14193409
APA StyleAdaszyńska-Skwirzyńska, M., Konieczka, P., Kozłowski, K., Witkowska, D., Yu, Y.-H., Barszcz, M., Konopka, A., Bucław, M., & Bartkowiak, A. (2025). Impact of Dietary Alginate Hydrogel Capsules with Lavender Essential Oil on Oxidative Stability, Fatty Acid Profile, and Mineral Composition of Breast Muscles in Broiler Chickens. Foods, 14(19), 3409. https://doi.org/10.3390/foods14193409