Prevalence and Exposure Assessment of Alternaria Toxins in Zhejiang Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Reagents
2.3. Sample Preparation and Analysis
2.4. Method Validation and Quality Control
2.5. Data on Food Consumption
2.6. Dietary Exposure Assessment Methods
2.6.1. Point Assessment
2.6.2. Hazard Quotient (HQ)
2.6.3. Probabilistic Risk Assessment
2.7. Statistical Analysis
3. Results
3.1. Occurrence of Alternaria Toxins in the Zhejiang Province
3.1.1. Contamination of Different Types of Food with Alternaria Toxins
3.1.2. Co-Contamination with Alternaria Toxins
3.2. Survey on Food Consumption
3.3. Dietary Exposure Assessment
3.3.1. Point Assessment of Alternaria Toxins in Zhejiang Province Residents
3.3.2. Point Assessment of Alternaria Toxins in Different Age Groups
3.3.3. Probabilistic Assessment of AOH Exposure Through Wheat Flour
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escrivá, L.; Oueslati, S.; Font, G.; Manyes, L. Alternaria Mycotoxins in Food and Feed: An Overview. J. Food Qual. 2017, 2017, 1569748. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 9, 2407. Available online: https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2407 (accessed on 21 April 2025). [CrossRef]
- Dietary exposure assessment to Alternaria toxins in the European population. EFSA J. 2016, 14, e04654. Available online: https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4654 (accessed on 22 April 2025). [CrossRef]
- Chen, A.; Mao, X.; Sun, Q.; Wei, Z.; Li, J.; You, Y.; Zhao, J.; Jiang, G.; Wu, Y.; Wang, L.; et al. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. J. Agric. Food Chem. 2021, 69, 7817–7830. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Oueslati, S.; Mañes, J. Evaluation of Alternaria mycotoxins in strawberries: Quantification and storage condition. Food Addit. Contam. Part A 2016, 33, 861–868. [Google Scholar] [CrossRef]
- Louro, H. Hazard characterization of Alternaria toxins to identify data gaps and improve risk assessment for human health. Arch. Toxicol. 2024, 98, 425–469. [Google Scholar] [CrossRef] [PubMed]
- Combined Toxicokinetic and In Vivo Genotoxicity Study on Alternaria Toxins. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2014.EN-679 (accessed on 25 May 2025).
- Combina, M.; Dalcero, A.; Varsavsky, E.; Torres, A.; Etcheverry, M.; Rodriguez, M.; Gonzalez, Q.H. Effect of heat treatments on stability of altemariol, alternariol monomethyl ether and tenuazonic acid in sunflower flour. Mycotoxin Res. 1999, 15, 33–38. [Google Scholar] [CrossRef]
- Magan, N.; Cayley, G.R.; Lacey, J. Effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. Appl. Environ. Microbiol. 1984, 47, 1113–1117. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; van der Fels-Klerx, H.J. Occurrence, toxicity, dietary exposure, and management of Alternaria mycotoxins in food and feed: A systematic literature review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70085. [Google Scholar] [CrossRef]
- Mujahid, C.; Savoy, M.-C.; Baslé, Q.; Woo, P.M.; Ee, E.C.Y.; Mottier, P.; Bessaire, T. Levels of Alternaria Toxins in Selected Food Commodities Including Green Coffee. Toxins 2020, 12, 595. [Google Scholar] [CrossRef]
- Behrens, A.M.; Sulyok, M.; Krska, R.; Hennies, I.; Ern, A.; Blechmann, C.; Meyer, J.C. Occurrence of Alternaria secondary metabolites in milling oats and its de-hulled fractions from harvest years 2017 to 2021. Food Addit. Contam. Part A 2024, 41, 188–200. [Google Scholar] [CrossRef]
- Tran, V.N.; Viktorová, J.; Ruml, T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins 2020, 12, 628. [Google Scholar] [CrossRef] [PubMed]
- Dellafiora, L.; Warth, B.; Schmidt, V.; Del Favero, G.; Mikula, H.; Fröhlich, J.; Marko, D. An integrated in silico/in vitro approach to assess the xenoestrogenic potential of Alternaria mycotoxins and metabolites. Food Chem. 2018, 248, 253–261. [Google Scholar] [CrossRef]
- Puntscher, H.; Hankele, S.; Tillmann, K.; Attakpah, E.; Braun, D.; Kütt, M.-L.; Del Favero, G.; Aichinger, G.; Pahlke, G.; Höger, H.; et al. First insights into Alternaria multi-toxin in vivo metabolism. Toxicol. Lett. 2019, 301, 168–178. [Google Scholar] [CrossRef]
- Puntscher, H.; Aichinger, G.; Grabher, S.; Attakpah, E.; Krüger, F.; Tillmann, K.; Motschnig, T.; Hohenbichler, J.; Braun, D.; Plasenzotti, R.; et al. Bioavailability, metabolism, and excretion of a complex Alternaria culture extract versus altertoxin II: A comparative study in rats. Arch. Toxicol. 2019, 93, 3153–3167. [Google Scholar] [CrossRef]
- Pollock, G.A.; DiSabatino, C.E.; Heimsch, R.C.; Coulombe, R.A. The distribution, elimination, and metabolism of 14C-alternariol monomethyl ether. J. Environ. Sci. Health Part B 1982, 17, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Asam, S.; Habler, K.; Rychlik, M. Determination of tenuazonic acid in human urine by means of a stable isotope dilution assay. Anal. Bioanal. Chem. 2013, 405, 4149–4158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zheng, H.; Lv, H.; Yin, J.; Li, Y.; Zhang, K.; Zhang, L.; Zhang, W.; Wang, Z.; Zhao, L.; et al. A Sustainable Approach for Degradation of Alternariol by Peroxidase Extracted from Soybean Hulls: Performance, Pathway, and Toxicity Evaluation. Foods 2024, 13, 2434. [Google Scholar] [CrossRef]
- Bensassi, F.; Gallerne, C.; Sharaf El Dein, O.; Hajlaoui, M.R.; Bacha, H.; Lemaire, C. Cell death induced by the Alternaria mycotoxin Alternariol. Toxicol. In Vitro 2012, 26, 915–923. [Google Scholar] [CrossRef]
- Lehmann, L.; Wagner, J.; Metzler, M. Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells. Food Chem. Toxicol. 2006, 44, 398–408. [Google Scholar] [CrossRef]
- Solhaug, A.; Vines, L.L.; Ivanova, L.; Spilsberg, B.; Holme, J.A.; Pestka, J.; Collins, A.; Eriksen, G.S. Mechanisms involved in alternariol-induced cell cycle arrest. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2012, 738–739, 1–11. [Google Scholar] [CrossRef]
- Pfeiffer, E.; Eschbach, S.; Metzler, M. Alternaria toxins: DNA strand-breaking activity in mammalian cellsin vitro. Mycotoxin Res. 2007, 23, 152–157. [Google Scholar] [CrossRef]
- Pero, R.W.; Posner, H.; Blois, M.; Harvan, D.; Spalding, J.W. Toxicity of metabolites produced by the “Alternaria”. Environ. Health Perspect. 1973, 4, 87–94. [Google Scholar] [CrossRef]
- Smith, E.R.; Fredrickson, T.N.; Hadidian, Z. Toxic effects of the sodium and the N,N’-dibenzylethylenediamine salts of tenuazonic acid (NSC-525816 and NSC-82260). Cancer Chemother. Rep. 1968, 52, 579–585. [Google Scholar]
- Hickert, S.; Krug, I.; Cramer, B.; Humpf, H.-U. Detection and Quantitative Analysis of the Non-cytotoxic allo -Tenuazonic Acid in Tomato Products by Stable Isotope Dilution HPLC-MS/MS. J. Agric. Food Chem. 2015, 63, 10879–10884. [Google Scholar] [CrossRef]
- Steyn, P.S.; Rabie, C.J. Characterization of magnesium and calcium tenuazonate from Phoma sorghina. Phytochemistry 1976, 15, 1977–1979. [Google Scholar] [CrossRef]
- Schadler, D.L.; Steele, J.A.; Durbin, R.D. Some effects of tentoxin on mature and developing chloroplasts. Mycopathologia 1976, 58, 101–105. [Google Scholar] [CrossRef]
- Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. J. Adv. Res. 2010, 1, 113–122. [Google Scholar] [CrossRef]
- Ji, X.; Deng, T.; Xiao, Y.; Jin, C.; Lyu, W.; Wu, Z.; Wang, W.; Wang, X.; He, Q.; Yang, H. Emerging Alternaria and Fusarium mycotoxins in tomatoes and derived tomato products from the China market: Occurrence, methods of determination, and risk evaluation. Food Control 2023, 145, 109464. [Google Scholar] [CrossRef]
- Ji, X.; Jin, C.; Xiao, Y.; Deng, M.; Wang, W.; Lyu, W.; Chen, J.; Li, R.; Li, Y.; Yang, H. Natural Occurrence of Regulated and Emerging Mycotoxins in Wheat Grains and Assessment of the Risks from Dietary Mycotoxins Exposure in China. Toxins 2023, 15, 389. [Google Scholar] [CrossRef]
- Müller, M.E.H.; Korn, U. Alternaria mycotoxins in wheat—A 10 years survey in the Northeast of Germany. Food Control 2013, 34, 191–197. [Google Scholar] [CrossRef]
- Juan, C.; Mañes, J.; Font, G.; Juan-García, A. Determination of mycotoxins in fruit berry by-products using QuEChERS extraction method. LWT 2017, 86, 344–351. [Google Scholar] [CrossRef]
- Hickert, S.; Bergmann, M.; Ersen, S.; Cramer, B.; Humpf, H.-U. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach. Mycotoxin Res. 2016, 32, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Scheibenzuber, S.; Dick, F.; Asam, S.; Rychlik, M. Analysis of 13 Alternaria mycotoxins including modified forms in beer. Mycotoxin Res. 2021, 37, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.M.; Zhao, W.; Feng, S.; Lau, B.P.-Y. Alternaria toxins alternariol and alternariol monomethyl ether in grain foods in Canada. Mycotoxin Res. 2012, 28, 261–266. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.J.; de Nijs, M. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control 2016, 60, 196–204. [Google Scholar] [CrossRef]
- He, L.; Qin, Z.; Ren, L.; Song, Y.; You, F. Investigation on Contamination of Alternaria Toxins From Wheat and Its Products Sold in Sichuan Province. J. Prev. Med. Inf. 2020, 36, 1433–1437. [Google Scholar]
- Zwickel, T.; Klaffke, H.; Richards, K.; Rychlik, M. Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices. J. Chromatogr. A 2016, 1455, 74–85. [Google Scholar] [CrossRef]
- Riolo, M.; Luz, C.; Bua, C.; Barreca, S.; Tambè, M.C.; Calpe, J.; Masi, M.; Cimmino, A.; Tirrò, G.; Meca, G.; et al. Qualitative and relative abundance analysis of Alternaria alternata metabolites in pomegranate (Punica granatum L.) cultivars affected by Heart Rot using UHPLC-Q-TOF-MS. Food Control 2025, 172, 111204. [Google Scholar] [CrossRef]
- Carbonell-Rozas, L.; Albasi, V.; Camardo Leggieri, M.; Dall’Asta, C.; Battilani, P. Apple mycotoxins: From orchard to processed apple puree. Fungal Biol. 2024, 128, 2422–2430. [Google Scholar] [CrossRef]
- Ji, X.; Xiao, Y.; Jin, C.; Wang, W.; Lyu, W.; Tang, B.; Yang, H. Alternaria mycotoxins in food commodities marketed through e-commerce stores in China: Occurrence and risk assessment. Food Control 2022, 140, 109125. [Google Scholar] [CrossRef]
- Ji, X.; Xiao, Y.; Wang, W.; Lyu, W.; Wang, X.; Li, Y.; Deng, T.; Yang, H. Mycotoxins in cereal-based infant foods marketed in China: Occurrence and risk assessment. Food Control 2022, 138, 108998. [Google Scholar] [CrossRef]
- Woo, S.Y.; Lee, S.Y.; Jeong, T.K.; Park, S.M.; Auh, J.H.; Shin, H.-S.; Chun, H.S. Natural Occurrence of Alternaria Toxins in Agricultural Products and Processed Foods Marketed in South Korea by LC–MS/MS. Toxins 2022, 14, 824. [Google Scholar] [CrossRef]
- Sanzani, S.M.; Gallone, T.; Garganese, F.; Caruso, A.G.; Amenduni, M.; Ippolito, A. Contamination of fresh and dried tomato by Alternaria toxins in southern Italy. Food Addit. Contam. Part A 2019, 36, 789–799. [Google Scholar] [CrossRef]
- Myresiotis, C.K.; Testempasis, S.; Vryzas, Z.; Karaoglanidis, G.S.; Papadopoulou-Mourkidou, E. Determination of mycotoxins in pomegranate fruits and juices using a QuEChERS-based method. Food Chem. 2015, 182, 81–88. [Google Scholar] [CrossRef]
- Onuorah, S.C.; Orji, M. Fungi Associated with the Spoilage of Post-harvest Tomato Fruits Sold in Major Markets in Awka, Nigeria. Univers. J. Microbiol. Res. 2015, 3, 11–16. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Wu, Y.; Liu, P. Quantitative Dietary Exposure Assessment Modelling and its Variability and Uncertainty Study. Chin. J. Health Stat. 2008, 25, 7–9+14. [Google Scholar]
- Chapter 6: Dietary Exposure Assessment for Chemicals in Food. Available online: https://www.who.int/publications/i/item/9789241572408 (accessed on 28 April 2025).
- Liu, C.; Xu, W.; Ni, L.; Chen, H.; Hu, X.; Lin, H. Development of a sensitive simultaneous analytical method for 26 targeted mycotoxins in coix seed and Monte Carlo simulation-based exposure risk assessment for local population. Food Chem. 2024, 435, 137563. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, R.; Wu, P.; Zhao, D.; Chen, J.; Pan, X.; Wang, J.; Zhang, H.; Qi, X.; Weng, Q.; et al. Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China. Toxins 2024, 17, 9. [Google Scholar] [CrossRef]
- Sirot, V.; Fremy, J.-M.; Leblanc, J.-C. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem. Toxicol. 2013, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- EFSA. International Frameworks Dealing with Human Risk Assessment of Combined Exposure to Multiple Chemicals. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2013.3313 (accessed on 28 April 2025).
- Orina, A.S.; Gavrilova, O.P.; Gogina, N.N.; Gannibal, P.B.; Gagkaeva, T.Y. Natural Occurrence of Alternaria Fungi and Associated Mycotoxins in Small-Grain Cereals from The Urals and West Siberia Regions of Russia. Toxins 2021, 13, 681. [Google Scholar] [CrossRef]
- Zhao, K.; Li, F.; Yang, D.; Jiang, T. Natural Occurrence, Bioavailablity and Risk Assessment of Alternaria Mycotoxins in Foods. Ph.D. Thesis, Chinese Center for Disease Control and Prevention, Beijing, China, June 2015. [Google Scholar]
- Jiang, D.; Wei, D.; Li, H.; Wang, L.; Jiang, N.; Li, Y.; Wang, M. Natural occurrence of Alternaria mycotoxins in wheat and potential of reducing associated risks using magnolol. J. Sci. Food Agric. 2021, 101, 3071–3077. [Google Scholar] [CrossRef] [PubMed]
- Azcarate, M.P.; Patriarca, A.; Terminiello, L.; Pinto, V.F. Alternaria Toxins in Wheat during the 2004 to 2005 Argentinean Harvest. J. Food Prot. 2008, 71, 1262–1265. [Google Scholar] [CrossRef]
- Edwards, S.G. Fusarium mycotoxin content of UK organic and conventional wheat. Food Addit. Contam. Part A 2009, 26, 496–506. [Google Scholar] [CrossRef]
- Chen, B.; Ji, W.; Zhu, F. Contamination of four Alternaria toxins in wheat flour sampled in Jiangsu province. China Public Health 2018, 34, 393–395. [Google Scholar] [CrossRef]
- Noser, J.; Schneider, P.; Rother, M.; Schmutz, H. Determination of six Alternaria toxins with UPLC-MS/MS and their occurrence in tomatoes and tomato products from the Swiss market. Mycotoxin Res. 2011, 27, 265–271. [Google Scholar] [CrossRef]
- Zhao, K.; Shao, B.; Yang, D.; Li, F. Natural occurrence of four Alternaria mycotoxins in tomato- and citrus-based foods in China. J. Agric. Food Chem. 2015, 63, 343–348. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, L.; Yuan, Y.; Yue, T. Dietary Exposure and Risk Assessment of Aflatoxin B1 in Corn-based Foods in China Using Probabilistic Approach. Food Sci. 2013, 34, 24–27. [Google Scholar]
- Ji, X.; Xiao, Y.; Lyu, W.; Li, M.; Wang, W.; Tang, B.; Wang, X.; Yang, H. Probabilistic Risk Assessment of Combined Exposure to Deoxynivalenol and Emerging Alternaria Toxins in Cereal-Based Food Products for Infants and Young Children in China. Toxins 2022, 14, 509. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xu, A.; Liu, M.; Yan, Z.; Qin, L.; Liu, H.; Wu, A.; Liu, N. Mycotoxins in Wheat Flours Marketed in Shanghai, China: Occurrence and Dietary Risk Assessment. Toxins 2022, 14, 748. [Google Scholar] [CrossRef] [PubMed]
- EC-European Commission. Commission Recommendation (EU) 2022/553 of 5 April 2022 on monitoring the presence of Alternaria toxins in food. Off. J. Eur. Communities 2022, 107, 90. [Google Scholar]
- Bensassi, F.; Gallerne, C.; Sharaf El Dein, O.; Rabeh Hajlaoui, M.; Bacha, H.; Lemaire, C. Combined effects of alternariols mixture on human colon carcinoma cells. Toxicol. Mech. Methods 2015, 25, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zou, L.; Zhao, J.; Zhu, Y.; Xue, L.; Lu, D. Combined Toxicity with Four Alternaria Toxins in Food of BRL-3A Cells. J. Chin. Inst. Food Sci. Technol. 2024, 24, 99–107. [Google Scholar]
Mycotoxin | Food Name | Detection Rate (%) | Mean Pollution Concentration MB 5 (LB 6-UB 7) (µg/kg) | P50 Pollution Concentration MB (LB-UB) (µg/kg) | P95 Pollution Concentration MB (LB-UB) (µg/kg) | Max Pollution Concentration (µg/kg) |
---|---|---|---|---|---|---|
AOH 1 | Wheat flour | (6/116) | 2.87 | 1.50 | 4.30 | 65.10 |
5.17 | (1.44–4.29) | (0–3) | (3.18–5.43) | |||
Maize and its products | (2/75) | 2.11 | 1.50 | 1.50 | 27.00 | |
2.67 | (0.65–3.57) | (0–3.0) | (0–3.0) | |||
Coix rice | (2/34) | 3.49 | 1.50 | 8.64 | 48.80 | |
5.88 | (2.08–4.90) | (0–3.0) | (7.67–9.62) | |||
Fruits | (0/100) | 1.50 | 1.50 | 1.50 | 0 | |
0 | (0–3.0) | (0–3.0) | (0–3.0) | |||
AME 2 | Wheat flour | (28/116) | 1.74 | 0.40 | 2.10 | 63.40 |
24.14 | (1.43–2.04) | (0–0.80) | (2.10–2.10) | |||
Maize and its products | (7/75) | 0.73 | 0.40 | 1.0 | 20.30 | |
9.33 | (0.37–1.09) | (0–0.80) | (1.0–1.0) | |||
Coix rice | (6/34) | 2.06 | 0.40 | 3.21 | 48.40 | |
17.65 | (1.73–2.39) | (0–0.80) | (3.21–3.21) | |||
Fruits | (0/100) | 0.40 | 0.40 | 0.40 | 0 | |
0 | (0–0.80) | (0–0.80) | (0–0.80) | |||
TeA 3 | Wheat flour | (105/116) | 36.20 | 28.80 | 95.38 | 183.00 |
90.52 | (36.13–36.27) | (28.80–28.80) | (95.38–95.38) | |||
Maize and its products | (29/75) | 7.46 | 0.75 | 35.71 | 105.00 | |
38.67 | (7.00–7.92) | (0–1.5) | (35.71–35.71) | |||
Coix rice | (25/34) | 34.73 | 11.95 | 111.67 | 237.00 | |
73.53 | (34.54–34.93) | (11.95–11.95) | (111.67–111.67) | |||
Fruits | (2/100) | 1.94 | 0.75 | 0.75 | 103.00 | |
2.00 | (1.20–2.67) | (0–1.50) | (0–1.50) | |||
TEN 4 | Wheat flour | (106/116) | 3.03 | 2.00 | 9.15 | 17.60 |
91.38 | (3.02–3.05) | (2.00–2.00) | (9.15–9.15) | |||
Maize and its products | (3/75) | 0.25 | 0.15 | 0.15 | 7.10 | |
4.00 | (0.11–0.40) | (0–0.30) | (0–0.30) | |||
Coix rice | (13/34) | 0.57 | 0.15 | 1.35 | 8.60 | |
38.24 | (0.48–0.67) | (0–0.30) | (1.35–1.35) | |||
Fruits | (2/100) | 0.36 | 0.15 | 0.15 | 12.70 | |
2 | (0.22–0.51) | (0–0.30) | (0–0.30) |
Co-Occurrence | Combination | Frequency |
---|---|---|
2 toxins | AOH-TeA | 1/325 (0.31%) |
AME-TeA | 6/325 (1.85%) | |
AME-TEN | 1/325 (0.31%) | |
TeA-TEN | 75/325 (23.08%) | |
Total | 83/325 (25.54%) | |
3 toxins | AME-TeA-TEN | 28/325 (8.62%) |
TeA-TEN-AOH | 2/325 (0.62%) | |
Total | 30/325 (9.23%) | |
4 toxins | AOH-AME-TeA-TEN | 6/325 (1.85%) |
Total | 6/325 (1.85%) |
Age Group | Food Name | Consumption (g/Day) | ||
---|---|---|---|---|
Mean | P50 | P95 | ||
≤6 years | Maize and its products | 5.16 | 2.00 | 16.51 |
Wheat flour | 6.69 | 2.86 | 25.71 | |
Fruits | 10.91 | 3.33 | 45.00 | |
7–12 years | Maize and its products | 6.91 | 2.67 | 21.43 |
Wheat flour | 10.05 | 3.33 | 42.86 | |
Fruits | 13.59 | 4.11 | 57.14 | |
13–17 years | Maize and its products | 8.65 | 2.67 | 28.57 |
Wheat flour | 11.26 | 3.67 | 42.86 | |
Fruits | 13.95 | 5.00 | 57.14 | |
18–59 years | Maize and its products | 7.33 | 3.00 | 25.71 |
Wheat flour | 14.22 | 5.00 | 57.14 | |
Fruits | 14.67 | 4.87 | 60.00 | |
≥60 years | Maize and its products | 8.59 | 3.00 | 28.57 |
Wheat flour | 13.01 | 5.00 | 45.43 | |
Fruits | 13.63 | 4.00 | 60.00 | |
All | Maize and its products | 7.45 | 3.86 | 25.71 |
Wheat flour | 13.20 | 5.00 | 50.00 | |
Fruits | 14.16 | 4.33 | 57.14 | |
Coix rice | 29.82 | 20.00 | 88.85 |
Foodstuffs | PDI 1 (µg/kg bw/Day) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AOH | AME | TeA | TEN | |||||||||
Scenario 1 2 | Scenario 2 3 | Scenario 3 4 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 1 | Scenario 2 | Scenario 3 | |
Maize and its products | 0.0003 | 0.0001 | 0.0007 | 0.0001 | <0.0001 | 0.0005 | <0.01 | <0.01 | 0.02 | <0.01 | <0.01 | <0.01 |
Wheat flour | 0.0007 | 0.0001 | 0.0038 | 0.0004 | <0.0001 | 0.0019 | 0.01 | <0.01 | 0.09 | <0.01 | <0.01 | 0.01 |
Fruits | 0.0004 | 0.0001 | 0.0015 | 0.0001 | <0.0001 | 0.0004 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Coix rice | 0.0017 | 0.0005 | 0.0128 | 0.0010 | 0.0001 | 0.0047 | 0.02 | <0.01 | 0.17 | <0.01 | <0.01 | <0.01 |
Total | 0.0031 | 0.0009 | 0.0188 | 0.0016 | 0.0002 | 0.0075 | 0.03 | 0.01 | 0.27 | <0.01 | <0.01 | 0.01 |
HQ (%) 5 | 122.44 | 34.02 | 752.77 | 65.19 | 9.07 | 299.03 | 1.82 | 0.44 | 17.83 | 0.07 | 0.02 | 0.69 |
Toxins | Age Group | PDI 1 MB 2 (LB 3–UB 4) (µg/kg bw/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Wheat Flour | Maize and Its Products | Fruits | ||||||||
Scenario 1 5 | Scenario 2 6 | Scenario 3 7 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 1 | Scenario 2 | Scenario 3 | ||
AOH | ≤6 | 0.0010 | 0.0002 | 0.0058 | 0.0006 | 0.0002 | 0.0013 | 0.0008 | 0.0002 | 0.0034 |
(0.0005–0.0015) | (<0.0001–0.0005) | (0.0043–0.0074) | (0.0002–0.0009) | (<0.0001–0.0003) | (<0.0001–0.0025) | (<0.0001–0.0016) | (<0.0001–0.0005) | (<0.0001–0.0067) | ||
7–12 | 0.0009 | 0.0001 | 0.0055 | 0.0004 | 0.0001 | 0.0009 | 0.0006 | 0.0002 | 0.0025 | |
(0.0004–0.0013) | (<0.0001–0.0003) | (0.0041–0.0070) | (0.0001–0.0007) | (<0.0001–0.0002) | (<0.0001–0.0019) | (<0.0001–0.0012) | (<0.0001–0.0004) | (<0.0001–0.0051) | ||
13–17 | 0.0006 | 0.0001 | 0.0036 | 0.0003 | 0.0001 | 0.0008 | 0.0004 | 0.0001 | 0.0016 | |
(0.0003–0.0010) | (<0.0001–0.0002) | (0.0027–0.0046) | (0.0001–0.0006) | (<0.0001–0.0002) | (<0.0001–0.0016) | (<0.0001–0.0008) | (<0.0001–0.0003) | (<0.0001–0.0033) | ||
18–59 | 0.0007 | 0.0001 | 0.0040 | 0.0003 | 0.0001 | 0.0006 | 0.0004 | 0.0001 | 0.0015 | |
(0.0003–0.0010) | (<0.0001–0.0002) | (0.0030–0.0051) | (0.0001–0.0004) | (<0.0001–0.0001) | (<0.0001–0.0013) | (<0.0001–0.0007) | (<0.0001–0.0002) | (<0.0001–0.0029) | ||
≥60 | 0.0006 | 0.0001 | 0.0033 | 0.0003 | 0.0001 | 0.0007 | 0.0003 | 0.0001 | 0.0015 | |
(0.0003–0.0009) | (<0.0001–0.0003) | (0.0025–0.0042) | (0.0001–0.0005) | (<0.0001–0.0002) | (<0.0001–0.0014) | (<0.0001–0.0007) | (<0.0001–0.0002) | (<0.0001–0.0030) | ||
AME | ≤6 | 0.0006 | 0.0001 | 0.0028 | 0.0002 | <0.0001 | 0.0008 | 0.0002 | 0.0001 | 0.0009 |
(0.0005–0.0007) | (<0.0001–0.0001) | (0.0028–0.0028) | (0.0001–0.0003) | (<0.0001–0.0001) | (0.0008–0.0008) | (<0.0001–0.0004) | (<0.0001–0.0001) | (<0.0001–0.0018) | ||
7–12 | 0.0005 | <0.0001 | 0.0027 | 0.0001 | <0.0001 | 0.0006 | 0.0002 | <0.0001 | 0.0007 | |
(0.0004–0.0006) | (<0.0001–0.0001) | (0.0027–0.0027) | (0.0001–0.0002) | (<0.0001–0.0001) | (0.0006–0.0006) | (<0.0001–0.0003) | (<0.0001–0.0001) | (<0.0001–0.0014) | ||
13–17 | 0.0004 | <0.0001 | 0.0018 | 0.0001 | <0.0001 | 0.0005 | 0.0001 | <0.0001 | 0.0004 | |
(0.0003–0.0005) | (<0.0001–0.0001) | (0.0018–0.0018) | (0.0001–0.0002) | (<0.0001–<0.0001) | (0.0005–0.0005) | (<0.0001–0.0002) | (< 0.0001–0.0001) | (<0.0001–0.0009) | ||
18–59 | 0.0004 | <0.0001 | 0.0020 | 0.0001 | <0.0001 | 0.0004 | 0.0001 | <0.0001 | 0.0004 | |
(0.0003–0.0005) | (<0.0001–0.0001) | (0.0020–0.0020) | (<0.0001–0.0001) | (<0.0001–<0.0001) | (0.0004–0.0004) | (<0.0001–0.0002) | (<0.0001–0.0001) | (<0.0001–0.0008) | ||
≥60 | 0.0001 | <0.0001 | 0.0016 | 0.0001 | <0.0001 | 0.0005 | 0.0001 | <0.0001 | 0.0004 | |
(0.0001–0.0002) | (<0.0001–0.0001) | (0.0016–0.0016) | (0.0001–0.0002) | (<0.0001–<0.0001) | (0.0005–0.0005) | (<0.0001–0.0002) | (< 0.0001–0.0001) | (<0.0001–0.0008) |
Toxins | Age Group | PDI 1 MB 2 (LB 3–UB 4) (µg/kg bw/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Wheat Flour | Maize and Its Products | Fruits | ||||||||
Scenario 1 5 | Scenario 2 6 | Scenario 3 7 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 1 | Scenario 2 | Scenario 3 | ||
TeA | ≤6 | 0.01 | <0.01 | 0.13 | <0.01 | <0.01 | 0.03 | <0.01 | <0.01 | <0.01 |
(0.01–0.01) | (<0.01–<0.01) | (0.13–0.13) | (<0.01–<0.01) | (<0.01–<0.01) | (0.03–0.03) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | ||
7–12 | 0.01 | <0.01 | 0.12 | <0.01 | <0.01 | 0.02 | <0.01 | <0.01 | <0.01 | |
(0.01–0.01) | (<0.01–<0.01) | (0.12–0.12) | (<0.01–<0.01) | (<0.01–<0.01) | (0.02–0.02) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | ||
13–17 | 0.01 | <0.01 | 0.08 | <0.01 | <0.01 | 0.02 | <0.01 | <0.01 | <0.01 | |
(0.01–0.01) | (<0.01–<0.01) | (0.08–0.08) | (<0.01–<0.01) | (<0.01–<0.01) | (0.02–0.02) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | ||
18–59 | 0.01 | <0.01 | 0.09 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | |
(0.01–0.01) | (<0.01–<0.01) | (0.09–0.09) | (<0.01–<0.01) | (<0.01–<0.01) | (0.01–0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | ||
≥60 | <0.01 | <0.01 | 0.07 | <0.01 | <0.01 | 0.02 | <0.01 | <0.01 | <0.01 | |
(<0.01–<0.01) | (<0.01–<0.01) | (0.07–0.07) | (<0.01–<0.01) | (<0.01–<0.01) | (0.02–0.02) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | ||
TEN | ≤6 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
(<0.01–<0.01) | (<0.01–<0.01) | (0.01–0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | ||
7–12 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
(<0.01–<0.01) | (<0.01–<0.01) | (0.01–0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | ||
13–17 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
(<0.01–<0.01) | (<0.01–<0.01) | (0.01–0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | ||
18–59 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
(<0.01–<0.01) | (<0.01–<0.01) | (0.01–0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | ||
≥60 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
(<0.01–<0.01) | (<0.01–<0.01) | (0.01–0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) | (<0.01–<0.01) |
Age Group | Percentile of AOH Estimates Through Wheat Flour Exposure and 90% Confidence Limits (µg/kg bw/Day) | |||||
---|---|---|---|---|---|---|
P91 1 | P92 | P93 | P94 | P95 | P96 | |
≤6 | 0.0022 2 | 0.0025 | 0.0029 | 0.0034 | 0.0040 | 0.0049 |
(0.0019–0.0026) 3 | (0.0022–0.0030) | (0.0025–0.0034) | (0.0029–0.0040) | (0.0034–0.0047) | (0.0041–0.0057) | |
7–12 | 0.0019 | 0.0022 | 0.0025 | 0.0029 | 0.0035 | 0.0042 |
(0.0016–0.0022) | (0.0018–0.0025) | (0.0021–0.0029) | (0.0025–0.0034) | (0.0030–0.0040) | (0.0036–0.0050) | |
13–17 | 0.0014 | 0.0015 | 0.0018 | 0.0021 | 0.0025 | 0.0030 |
(0.0011–0.0016) | (0.0012–0.0018) | (0.0014–0.0021) | (0.0017–0.0025) | (0.0020–0.0030) | (0.0025–0.0037) | |
18–59 | 0.0014 | 0.0016 | 0.0018 | 0.0021 | 0.0025 | 0.0031 |
(0.0013–0.0014) | (0.0015–0.0016) | (0.0017–0.0019) | (0.0020–0.0022) | (0.0024–0.0027) | (0.0030–0.0033) | |
≥60 | 0.0014 | 0.0015 | 0.0018 | 0.0021 | 0.0024 | 0.0030 |
(0.0012–0.0015) | (0.0014–0.0017) | (0.0016–0.0019) | (0.0019–0.0023) | (0.0022–0.0027) | (0.0027–0.0033) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Zhang, R.; Wu, P.; Zhao, D.; Chen, J.; Pan, X.; Wang, J.; Zhang, H.; Qi, X.; Ye, S.; et al. Prevalence and Exposure Assessment of Alternaria Toxins in Zhejiang Province, China. Foods 2025, 14, 3298. https://doi.org/10.3390/foods14193298
Lu Z, Zhang R, Wu P, Zhao D, Chen J, Pan X, Wang J, Zhang H, Qi X, Ye S, et al. Prevalence and Exposure Assessment of Alternaria Toxins in Zhejiang Province, China. Foods. 2025; 14(19):3298. https://doi.org/10.3390/foods14193298
Chicago/Turabian StyleLu, Zijie, Ronghua Zhang, Pinggu Wu, Dong Zhao, Jiang Chen, Xiaodong Pan, Jikai Wang, Hexiang Zhang, Xiaojuan Qi, Shufeng Ye, and et al. 2025. "Prevalence and Exposure Assessment of Alternaria Toxins in Zhejiang Province, China" Foods 14, no. 19: 3298. https://doi.org/10.3390/foods14193298
APA StyleLu, Z., Zhang, R., Wu, P., Zhao, D., Chen, J., Pan, X., Wang, J., Zhang, H., Qi, X., Ye, S., & Zhou, B. (2025). Prevalence and Exposure Assessment of Alternaria Toxins in Zhejiang Province, China. Foods, 14(19), 3298. https://doi.org/10.3390/foods14193298