Beyond Sight: The Influence of Opaque Glasses on Wine Sensory Perception
Abstract
1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Tasters Panel
2.3. Design of the Experiment
2.4. Data Analysis
3. Results
3.1. Physicochemical Parameters
3.2. Data Concerning the Context of Tasting Sessions, Whether Using Opaque or Transparent Glasses
3.3. Data Related to the Context of the Winemaking Method
4. Discussion
4.1. Effects of Winemaking Method on Sensory Perception
4.2. The Influence of Tasting Context on Sensory Perception
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Web of Science, Clarivate. 31 August 2025. Available online: https://1910q8dtc-y-https-www-webofscience-com.z.e-nformation.ro/wos/woscc/summary/aaaaf08c-7ced-4649-8bcb-a9748c465b83-0176cff28c/relevance/1 (accessed on 31 August 2025).
- Ballester, J.; Hervé, A.; Langlois, A.; Peyron, D.; Valentin, D. The Odor of Colors: Can Wine Experts and Novices Distinguish the Odors of White, Red, and Rosé Wines? Chemosens. Percept. 2009, 2, 203–213. [Google Scholar] [CrossRef]
- Cardello, A. Consumer expectations and their role in food acceptance. In Measurement of Food Preferences; MacFie, H., Thomson, D., Eds.; Elsevier: London, UK, 1994; pp. 253–297. [Google Scholar]
- Zellner, D.A.; Bartoli, A.M. Influence of Color on Odor Identification and Liking Ratings. Am. J. Psychol. 1991, 105, 547–561. [Google Scholar] [CrossRef]
- Voirol, E.; Daget, N. Comparative study of nasal and retronasal olfactory perception. Lebensm. Wiss. Technol. 1986, 19, 316–319. [Google Scholar]
- Auvray, M.; Spence, C. The multisensory perception of flavor. Conscious. Cogn. 2008, 17, 1016–1031. [Google Scholar] [CrossRef] [PubMed]
- Dalton, P.; Doolitle, N.; Nagata, H.; Breslin, P. The merging of the senses: Integration of subthreshold taste and smell. Nat. Neurosci. 2000, 3, 431–432. [Google Scholar] [CrossRef] [PubMed]
- Temerdashev, Z.; Abakumov, A.; Kaunova, A.; Shelud’ko, O.; Tsyupko, T. Assessment of Quality and Region of Origin of Wines. J. Anal. Chem. 2023, 78, 1724–1740. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages 2022, 8, 1. [Google Scholar] [CrossRef]
- Gottfried, J.A.; Dolan, R.J. The Nose Smells What the Eye Sees: Crossmodal Visual Facilitation of Human Olfactory Perception. Neuron 2003, 39, 375–386. [Google Scholar] [CrossRef]
- Parr, W.V. Application of cognitive psychology to advance understanding of wine sensory evaluation and wine expertise. In Applied Psychology Research Trends; Kiefer, K., Ed.; Nova Science Publishers: New York, NY, USA, 2008; pp. 55–76. [Google Scholar]
- Chu, S.; Downes, J.J. Odour—Evoked Autobiographical Memories: Psychological Investigations of Proustian Phenomena. Chem. Senses 2000, 25, 111–116. [Google Scholar] [CrossRef]
- Parr, W.V. Demystifying wine tasting: Cognitive psychology’s contribution. Food Res. Int. 2019, 124, 230–233. [Google Scholar] [CrossRef]
- Köster, E.P.; Møller, P.; Mojet, J. A ‘Misfit’ Theory of Spontaneous Conscious Odor Perception (MITSCOP): Reflections on the role and function of odor memory in everyday life. Front. Psychol. 2014, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R1308 (accessed on 1 May 2025).
- Anton Paar GmbH. FTIR Wine Analyzer: Lyza 5000 Wine. 2025. Available online: https://www.anton-paar.com/corp-en/products/details/lyza-5000-wine/?srsltid=AfmBOoqXMtI_gxrWSnnbZ17Ctq2qVJP9loLK4y5QEAybcCYa6_EZl8XX (accessed on 2 May 2025).
- Cozzolino, D.; Dambergs, R.; Janik, L.; Cynkar, W.; Gishen, M. Analysis of grapes and wine by near infrared spectroscopy. J. Near Infrared Spectrosc. 2006, 14, 279–289. [Google Scholar] [CrossRef]
- Anton Paar. Attenuated Total Reflectance (ATR). 2025. Available online: https://wiki.anton-paar.com/en/attenuated-total-reflectance-atr/ (accessed on 15 May 2025).
- Patz, C.; Blieke, A.; Ristow, R.; Dietrich, H. Application of FT—MIR spectrometry in wine analysis. Anal. Chim. Acta 2004, 513, 81–89. [Google Scholar] [CrossRef]
- O.I.V. Compendium of International Methods of Wine and Must Analysis. January 2025. Available online: https://www.oiv.int/sites/default/files/publication/2025-03/Compendium%20of%20MA%20Wine%20Complet%202025.pdf (accessed on 15 May 2025).
- Nieuwoudt, H.H.; Pretorius, I.S.; Bauer, F.F.; Nel, D.G.; Prior, B.A. Rapid screening of the fermentation profiles of wine yeasts by Fourier transform infrared spectroscopy. J. Microbiol. Methods 2006, 67, 248–256. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Tasting—A Professional Handbook, 4th ed.; Nikki Levy: Chennai, India, 2023; p. 59. [Google Scholar]
- WSET. Wine & Spirit Education Trust. Available online: https://www.wsetglobal.com/ (accessed on 4 May 2025).
- WSET. Wine & Spirit Education Trust, WSET Level 4 Systematic Approach to Tasting Wine® (2023, Issue 1.2). 2023. Available online: https://www.wsetglobal.com/knowledge-centre/wset-systematic-approach-to-tasting-sat/ (accessed on 16 April 2025).
- Harding, J.; Robinson, J.; Thomas, T.Q. The Oxford Companion to Wine, 5th ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Lawless, H.; Schlegel, M.P. Direct and Indirect Scaling of Sensory Differences in Simple Taste and Odor Mixtures. J. Food Sci. 1984, 49, 44–46. [Google Scholar] [CrossRef]
- Review of Sensory Analysis of Wine. Available online: https://www.oiv.int/node/1631 (accessed on 1 May 2025).
- Qannari, E.; Schlich, P. Matching sensory and instrumental data. In Flavour in Food; Voilley, A., Etievant, P., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2006; pp. 98–116. [Google Scholar]
- International Organisation of Vine and Wine. Section 2—Physical Analysis. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis/annex-a-methods-of-analysis-of-wines-and-musts/section-2-physical-analysis (accessed on 15 May 2025).
- Cotea, V.D.; Zănoagă, C.V.; Cotea, V.V. Treatise of Oenochemistry; Academia Română: București, Romania, 2009. [Google Scholar]
- Lubbers, S.; Voilley, A.; Feuillat, M.; Charpentier, C. Influence of Mannaproteins from Yeast on the Aroma Intensity of a Model Wine. Lebensm. Wiss. Technol. 1994, 27, 108–114. [Google Scholar] [CrossRef]
- Cameleyre, M.; Monsant, C.; Tempere, S.; Lytra, G.; Barbe, J.-C. Toward a Better Understanding of Perceptive Interactions between Volatile and Nonvolatile Compounds: The Case of Proanthocyanidic Tannins and Red Wine Fruity Esters—Methodological, Sensory, and Physicochemical Approaches. J. Agric. Food Chem. 2021, 69, 9895–9904. [Google Scholar] [CrossRef]
- Robinson, A.L.; Ebeler, S.E.; Heymann, H.; Boss, P.K.; Solomon, P.S.; Trengove, R.D. Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. J. Agric. Food Chem. 2009, 57, 10313–10322. [Google Scholar] [CrossRef]
- Voilley, A.; Beghin, V.; Charpentier, C.; Peyron, D. Interactions between aroma substances and macromolecules in a model wine. Lebensm. Wiss. Technol. 1991, 24, 469–472. [Google Scholar]
- Brochet, F.; Dubourdieu, D. Wine Descriptive Language Supports Cognitive Specificity of Chemical Senses. Brain Lang. 2001, 77, 187–196. [Google Scholar] [CrossRef]
- Marais, J.; Van Wyk, C. Effect of grape maturity and juice treatments on terpene concentrations and wine quality of Vitis vinifera L. cv. Weisser Riesling and Bukettraube. S. Afr. J. Enol. Vitic. 1986, 7, 26–35. [Google Scholar] [CrossRef]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angew. Chem. 2014, 53, 7124–7143. [Google Scholar] [CrossRef]
- Ferreira, V.; De La Fuente-Blanco, A.; Saénz-Navajas, M.P. A New Classification of Perceptual Interactions between Odorants to Interpret Complex Aroma Systems. Application to Model Wine Aroma. Foods 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; De La Fuente, A.; Saénz-Navajas, M.P. Wine aroma vectors and sensory attributes. In Managing Wine Quality, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2022; Volume 1: Viticulture and Wine Quality, pp. 3–39. [Google Scholar]
- Ma, Y.; Xu, Y.; Tang, K. Olfactory perception complexity induced by key odorants perceptual interactions of alcoholic beverages: Wine as a focus case example. Food Chem. 2025, 463, 141433. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.G. Managing Wine Quality; Woodhead Publishing: Cambridge, UK, 2022; Volume 1: Viticulture and Wine Quality. [Google Scholar]
- Moini, J.; Logalbo, A.; Ahangari, R. Sensation and Perception. Foundations of the Mind, Brain, and Behavioral Relationships Understanding Physiological Psychology, 1st ed.; Nikki P. Levy: London, UK, 2024; p. 115. [Google Scholar]
- Lesschaeve, I. Sensory Evaluation of Wine and Commercial Realities: Review of Current Practices and Perspectives. Am. J. Enol. Vitic. 2007, 58, 252–258. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Durner, D. Sensory evaluation of wine aroma: Should colour—Driven descriptors be used? Food Qual. Prefer. 2023, 107, 104844. [Google Scholar] [CrossRef]
- Mateo, J.; Jiménez, M. Monoterpenes in grape juice and wines. J. Chromatogr. 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Delwiche, J. The impact of perceptual interactions on perceived flavor. Food Qual. Prefer. 2004, 15, 137–146. [Google Scholar] [CrossRef]
- Morrot, G.; Brochet, F.; Dubourdieu, D. The Color of Odors. Brain Lang. 2001, 79, 309–320. [Google Scholar] [CrossRef]
ID | Vintage | Grape Variety | Vinified | Winery | Region |
---|---|---|---|---|---|
V1 | 2021 | Bobal | Blanc de noir | Vicente Gandia | ES–Utiel Requena |
V2 | 2020 | Bobal | Red | Vicente Gandia | ES–Utiel Requena |
V3 | 2021 | Cabernet Sauvignon | Blanc de noir | Rojevas Agroinvest | RO–Târgu Bujor |
V4 | 2022 | Cabernet Sauvignon | Rosé | Rojevas Agroinvest | RO–Târgu Bujor |
V5 | 2021 | Cabernet Sauvignon | Red | Rojevas Agroinvest | RO–Târgu Bujor |
V6 | 2021 | Cabernet Sauvignon | Blanc de noir | Domaine Vinarte | RO–Sâmburești |
V7 | 2017 | Cabernet Sauvignon | Red | Domaine Vinarte | RO–Sâmburești |
V8 | 2019 | Tinta Negra | Blanc de noir | Diana Silva Wines | PT–Madeira |
V9 | 2019 | Tinta Negra | Red | Diana Silva Wines | PT–Madeira |
V10 | 2019 | Tinta Roriz | Red | Quinta do Vallado | PT–Douro |
V11 | 2021 | Tinta Roriz | Blanc de noir | Quinta Nova | PT–Alto Douro |
V12 | 2021 | Touriga Franca (95%) | Blanc de noir | Ravasqueira | PT–Alentejo |
V13 | 2020 | Touriga Franca (95%) | Red | Ravasqueira | PT–Alentejo |
Conventional Ordinal Number Allocated in the Representation of Statistical Values * | Descriptor Title | Description of the Specific Features/Notes Appraised by Descriptor | References |
---|---|---|---|
1 | Existence of a maceration stage and perceived intensity of it | Presumed exclusively based on orthonasal olfactory stimuli in tasting sessions with opaque glasses. | – |
2 | Overall olfactory intensity | Exclusively based on orthonasal olfactory stimuli. | – |
3 | Floral notes | Blossom notes, consisting in elderflower, honeysuckle, jasmine, rose, violet, acacia, chamomile, linden, honey, geranium odors/aromas | [25] |
4 | Vegetal/herbal notes | Eucalyptus, mint, fennel, dill, dried herbs thyme, oregano, lavender odors/aromas | [25] |
5 | ‘Green’/fresh/citrus fruits | Apple, pear, gooseberry, grape–fruit, orange, grape odors/aromas | [25] |
6 | Exotic fruits/stone fruits/tropical fruits | Peach, apricot, nectarine, plum banana, melon, watermelon, passion fruit, pineapple odors/aromas | [25] |
7 | Red fruits | Redcurrant, cranberry, raspberry, strawberry, red cherry, red plum, pomegranate odors/aromas | [25] |
8 | Berries/forest fruits | Blackcurrant, Blackberry, blueberry, Black cherry, Black plum, sour–cherry odors/aromas | [25] |
9 | Overripe fruits | Figs, dried plums, raisins, prune, jam odors/aromas | [25] |
10 | Spice notes | Cinnamon, pepper, cloves, saffron, vanilla, coconut, liquorice, cedar, nutmeg, anise odors/aromas | [25] |
11 | Maillard–type notes | Roasted hazelnut/walnut, almond, coal smoke, cocoa, coffee, caramel, chocolate, toast, resins, tobacco odors/aromas. | – |
12 | Other specific notes | Leather, tanned leather, mushrooms, wet stone, flint, red earth, eucalyptus odors/aromas | [25] |
13 | Acidity/sourness | Fresh or sour taste produced by the natural organic acids, one of the primary tastes sensed by tastebuds on the tongue | [26] |
14 | Sweetness | One of the primary tastes involved in tasting, mainly because of the amount of residual sugar they contain | [26] |
15 | Bitterness | Among primary tastes which can be detected via taste buds mainly on the tongue, often confused with the quite different tactile sensation caused by astringency | [26] |
16 | Astringency | A complex tactile response resulting from shrinking, drawing, or puckering of the tissues of the mouth, based in principle by binding between tannins with proteins | [26] |
17 | Unctuousness | More a perceptual descriptor to describe the physical property of viscosity understood as the quality sensed by the human palate in the form of resistance as the solution is rinsed around the mouth | [26] |
18 | Finish/post–taste persistence | Somehow derided tasting term to appraise the persistency of flavour and the impact of the wines on the palate, supposed to be direct proportional with some colloids | [26] |
19 | Overall evaluation | Based on summarizing all previous personal sensory judgments | – |
Parameter | V1 | V2 | V3 | V4 | V5 | V6 | V7 |
---|---|---|---|---|---|---|---|
Ethanol (% vol) | 12.24 ± 0.00 | 14.42 ± 0.01 | 12.08 ± 0.00 | 13.84 ± 0.01 | 11.36 ± 0.00 | 12.8 ± 0.00 | 14.32 ± 0.00 |
Glucose + Fructose (g/L) | 0.90 ± 0.02 | 0.10 ± 0.01 | 0.80 ± 0.03 | 6.80 ± 0.02 | n/d ± 0.00 | 0.90 ± 0.00 | 0.50 ± 0.02 |
Titratable acidity (g/L *) | 4.73 ± 0.00 | 4.64 ± 0.00 | 4.57 ± 0.00 | 6.85 ± 0.01 | 5.5 ± 0.01 | 4.79 ± 0.00 | 4.69 ± 0.00 |
Volatile acidity (g/L **) | 0.46 ± 0.01 | 0.69 ± 0.01 | 0.38 ± 0.00 | 0.33 ± 0.00 | 0.78 ± 0.01 | 0.37 ± 0.01 | 1.13 ± 0.01 |
Malic acid (g/L) | 1.09 ± 0.01 | n/d ± 0.00 | 1.33 ± 0.02 | 1.78 ± 0.02 | n/d ± 0.00 | 0.68 ± 0.01 | n/d ± 0.01 |
Tartaric acid (g/L) | 1.11 ± 0.00 | 1.58 ± 0.01 | 0.99 ± 0.00 | 2.62 ± 0.02 | 1.81 ± 0.00 | 1.69 ± 0.00 | 1.13 ± 0.00 |
Lactic acid (g/L) | 0.63 ± 0.00 | 1.22 ± 0.01 | 0.65 ± 0.00 | n/d ± 0.00 | 1.93 ± 0.00 | 0.26 ± 0.00 | 1.53 ± 0.01 |
pH | 3.40 ± 0.01 | 3.56 ± 0.01 | 3.47 ± 0.01 | 3.11 ± 0.00 | 3.56 ± 0.01 | 3.34 ± 0.02 | 3.67 ± 0.01 |
Density (g/mL) | 0.9915 ± 0.01 | 0.9910 ± 0.00 | 0.9913 ± 0.00 | 0.9922 ± 0.01 | 0.9950 ± 0.01 | 0.9887 ± 0.00 | 0.9919 ± 0.01 |
Total dry extract (g/L) | 24.50 ± 0.01 | 29.60 ± 0.02 | 23.40 ± 0.00 | 30.80 ± 0.00 | 30.70 ± 0.00 | 18.90 ± 0.01 | 31.60 ± 0.01 |
Glycerol (g/L) | 8.00 ± 0.00 | 9.30 ± 0.00 | 7.00 ± 0.01 | 6.70 ± 0.00 | 9.30 ± 0.02 | 6.60 ± 0.01 | 9.90 ± 0.01 |
Polyphenols–total (mg/L) | 1.28 ± 0.00 | 2.08 ± 0.00 | 0.49 ± 0.00 | 1.22 ± 0.00 | 2.64 ± 0.00 | 0.87 ± 0.00 | 2.27 ± 0.00 |
Parameter | V8 | V9 | V10 | V11 | V12 | V13 | |
Ethanol (% vol) | 11.66 ± 0.00 | 11.44 ± 0.01 | 14.43 ± 0.01 | 12.55 ± 0.00 | 12.43 ± 0.01 | 14.58 ± 0.00 | |
Glucose + Fructose (g/L) | 0.30 ± 0.02 | n/d ± 0.00 | n/d ± 0.00 | 0.40 ± 0.01 | 0.70 ± 0.02 | 0.40 ± 0.01 | |
Titratable acidity (g/L *) | 6.37 ± 0.00 | 5.09 ± 0.00 | 4.19 ± 0.00 | 5.33 ± 0.01 | 5.13 ± 0.01 | 4.66 ± 0.00 | |
Volatile acidity (g/L **) | 0.43 ± 0.01 | 0.74 ± 0.01 | 0.77 ± 0.01 | 0.41 ± 0.00 | 0.38 ± 0.01 | 0.88 ± 0.00 | |
Malic acid (g/L) | 2.11 ± 0.02 | n/d ± 0.00 | 0.15 ± 0.00 | 1.95 ± 0.01 | 1.22 ± 0.01 | n/d ± 0.00 | |
Tartaric acid (g/L) | 2.11 ± 0.01 | 1.77 ± 0.01 | 0.51 ± 0.00 | 1.12 ± 0.00 | 1.49 ± 0.01 | 1.30 ± 0.00 | |
Lactic acid (g/L) | n/d ± 0.00 | 2.08 ± 0.01 | 1.55 ± 0.00 | 0.05 ± 0.00 | 0.22 ± 0.00 | 1.45 ± 0.00 | |
pH | 3.20 ± 0.01 | 3.47 ± 0.01 | 3.66 ± 0.00 | 3.35 ± 0.01 | 3.33 ± 0.01 | 3.62 ± 0.02 | |
Density (g/mL) | 0.9895 ± 0.02 | 0.9920 ± 0.01 | 0.9902 ± 0.00 | 0.9883 ± 0.00 | 0.9891 ± 0.01 | 0.9905 ± 0.01 | |
Total dry extract (g/L) | 17.50 ± 0.01 | 23.30 ± 0.01 | 27.40 ± 0.02 | 17.10 ± 0.00 | 18.80 ± 0.01 | 28.80 ± 0.01 | |
Glycerol (g/L) | 5.70 ± 0.00 | 8.30 ± 0.00 | 9.60 ± 0.00 | 5.70 ± 0.01 | 6.30 ± 0.00 | 9.70 ± 0.01 | |
Polyphenols–total (mg/L) | 0.64 ± 0.00 | 1.80 ± 0.00 | 2.00 ± 0.00 | n/d ± 0.00 | 0.75 ± 0.00 | 1.90 ± 0.00 |
Muscat Varieties > 6 mg/L | Non–Muscat, Aromatic Varieties 1–4 mg/L | Neutral Varieties < 1 mg/L |
---|---|---|
Canada Muscat | Traminer | Bacchus |
Gewürztraminer | Huxelrebe | Chardonnay |
Muscat of Alexandria | Kerner | Chasselas |
Muscat blanc à petits grains | Morio–Muskat | Chenin blanc |
Moscato Bianco | Müller–Thurgau | Clairette |
Muscat Ottonel | Riesling | Nobling |
Moscato Italiano | Scheurebe | Rkatsiteli |
Siegerrebe | Sauvignon blanc | |
Sylvaner | Sémillon | |
Würzer | Sultana | |
Italian Riesling | Trebbiano | |
Verdelho | ||
Viognier | ||
Vidal blanc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coman, G.Ș.; Luchian, C.E.; Scutarașu, E.C.; Cotea, V.V. Beyond Sight: The Influence of Opaque Glasses on Wine Sensory Perception. Foods 2025, 14, 3231. https://doi.org/10.3390/foods14183231
Coman GȘ, Luchian CE, Scutarașu EC, Cotea VV. Beyond Sight: The Influence of Opaque Glasses on Wine Sensory Perception. Foods. 2025; 14(18):3231. https://doi.org/10.3390/foods14183231
Chicago/Turabian StyleComan, George Ștefan, Camelia Elena Luchian, Elena Cristina Scutarașu, and Valeriu V. Cotea. 2025. "Beyond Sight: The Influence of Opaque Glasses on Wine Sensory Perception" Foods 14, no. 18: 3231. https://doi.org/10.3390/foods14183231
APA StyleComan, G. Ș., Luchian, C. E., Scutarașu, E. C., & Cotea, V. V. (2025). Beyond Sight: The Influence of Opaque Glasses on Wine Sensory Perception. Foods, 14(18), 3231. https://doi.org/10.3390/foods14183231